JPH08332350A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification

Info

Publication number
JPH08332350A
JPH08332350A JP7140829A JP14082995A JPH08332350A JP H08332350 A JPH08332350 A JP H08332350A JP 7140829 A JP7140829 A JP 7140829A JP 14082995 A JP14082995 A JP 14082995A JP H08332350 A JPH08332350 A JP H08332350A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
carrier
purification
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7140829A
Other languages
Japanese (ja)
Other versions
JP3327054B2 (en
Inventor
Hiroshi Hirayama
洋 平山
Shigeharu Suzuki
重治 鈴木
Kazunobu Ishibashi
一伸 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14082995A priority Critical patent/JP3327054B2/en
Publication of JPH08332350A publication Critical patent/JPH08332350A/en
Application granted granted Critical
Publication of JP3327054B2 publication Critical patent/JP3327054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve the activity at a low temperature and the durability of an exhaust gas purifying catalyst at a high temperature by depositing palladium at a specified high density in an upper stream side of a carrier. CONSTITUTION: A catalytic converter 1 is composed of a monolithic catalyst 2, an outer cylinder 10 to house the monolithic catalyst 2, and a pair of cones 11, 12 extended from the outer cylinder 10 in a conical shape. Platinum and rhodium are deposited in the whole length of the monolithic catalyst 2 and palladium is further deposited in the upper stream part 20 arranged in the exhaust gas flowing-in side of the catalytic converter 1. The deposited density of the palladium in the upper stream part 20 is set to be 7-20g per 1 liter volume of the upper stream part 20 of the carrier. Consequently, unburned HC can be lessened by the catalyst for exhaust gas purification from immediately after starting of an engine to the time when the engine is warmed up and at the same time, the emission of platinum and CO, HC, NOx carried in the whole body of the catalyst can be lowered and thus the catalytic converter has high three-dimentional purification performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関から排出され
る排ガス中の炭化水素(HC)、一酸化炭素(CO)及
び窒素酸化物(NOx )を効率良く浄化する排ガス浄化
用触媒に関し、さらに詳しくは低温時における浄化活性
の高い排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for efficiently purifying hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NO x ) in exhaust gas discharged from an internal combustion engine. More specifically, it relates to an exhaust gas purifying catalyst having a high purifying activity at low temperatures.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを行って排
ガスを浄化する三元触媒が用いられている。このような
三元触媒としては、例えばコーディエライトなどからな
る耐熱性基材にγ−アルミナからなる多孔質担体層を形
成し、その多孔質担体層に白金(Pt)、ロジウム(R
h)、パラジウム(Pd)などの触媒貴金属を担持させ
たものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by oxidizing CO and HC and reducing NO x has been used as a catalyst for purifying exhaust gas of automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat resistant base material made of cordierite, and platinum (Pt) and rhodium (R) are formed on the porous carrier layer.
Those in which a catalytic noble metal such as h) and palladium (Pd) are supported are widely known.

【0003】ところで、触媒貴金属による触媒活性と反
応温度との間には正の相関関係があり、温度が高いほど
触媒活性が高くなる。したがって排ガス浄化用触媒に流
入する排ガス温度が高いほど浄化性能が向上するが、冬
季の始動時など排ガス温度が低い場合には排ガス浄化用
触媒による浄化が不十分となり、浄化されるべき成分が
高濃度に含まれる排ガスが放出される場合があった。
By the way, there is a positive correlation between the catalytic activity of the catalytic noble metal and the reaction temperature, and the higher the temperature, the higher the catalytic activity. Therefore, the higher the temperature of the exhaust gas flowing into the exhaust gas purification catalyst, the better the purification performance.However, when the exhaust gas temperature is low, such as during winter startup, purification by the exhaust gas purification catalyst becomes insufficient and the components to be purified are high. Exhaust gas contained in the concentration was sometimes released.

【0004】このような不具合を解決する排ガス浄化用
触媒として、例えば特開昭63−84635号公報に
は、担体全長の1/10〜2/5の排ガス流入側にPd
を担持し、担体全長の3/5〜9/10の排ガス流出側
にPtを担持し、全長にわたってさらにRhを担持した
排ガス浄化用触媒が開示されている。Pdは低温時にお
いてもHC及びCOの酸化活性に優れているため、この
特開昭63−84635号公報に開示された排ガス浄化
用触媒は低温時の浄化性能に優れている。すなわち低温
の排ガスが流入した場合には、先ず排ガスは上流側に担
持されたPd及びRhと接触し、Pdによる接触反応で
HC及びCOが酸化浄化される。この時の反応熱が排ガ
スに伝わるため排ガスは高温となって下流側へ流れ、流
出側に担持されたPt及びRhとの接触反応によりさら
に浄化される。これにより排ガスを高効率で浄化するこ
とができる。
As an exhaust gas purifying catalyst for solving such a problem, for example, Japanese Patent Laid-Open No. 63-84635 discloses Pd on the exhaust gas inflow side of 1/10 to 2/5 of the entire length of the carrier.
A catalyst for purifying exhaust gas in which Pt is carried on the exhaust gas outflow side of 3/5 to 9/10 of the entire length of the carrier and Rh is further carried over the entire length is disclosed. Since Pd has excellent HC and CO oxidizing activity even at low temperatures, the exhaust gas-purifying catalyst disclosed in JP-A-63-84635 has excellent purification performance at low temperatures. That is, when low-temperature exhaust gas flows in, the exhaust gas first comes into contact with Pd and Rh carried on the upstream side, and HC and CO are oxidatively purified by the catalytic reaction of Pd. Since the reaction heat at this time is transferred to the exhaust gas, the exhaust gas becomes hot and flows to the downstream side, and is further purified by the contact reaction with Pt and Rh carried on the outflow side. As a result, the exhaust gas can be purified with high efficiency.

【0005】[0005]

【発明が解決しようとする課題】ところが特開昭63−
84635号公報に開示の排ガス浄化用触媒では、HC
の50%を浄化できる最低温度(HC50%浄化温度)
が約400℃と高く、低温活性がまだ不十分であること
が明らかとなった。また高温下における耐久性能が十分
でなく、耐久試験後の浄化性能の低下度合いが大きいこ
とも明らかとなった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the exhaust gas purifying catalyst disclosed in Japanese Patent No.
Temperature that can purify 50% of HC (HC50% purification temperature)
Was as high as about 400 ° C., which revealed that the low temperature activity was still insufficient. It was also clarified that the durability performance at high temperature was not sufficient and the degree of reduction in purification performance after the durability test was large.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、低温活性が高くかつ高温下における耐久性
能にも優れた排ガス浄化用触媒とすることを目的とす
る。
The present invention has been made in view of such circumstances, and an object thereof is to provide an exhaust gas-purifying catalyst that has high activity at low temperatures and excellent durability performance at high temperatures.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒は、排ガス流の上流側にPdとR
hを担持し下流側にPtとRhを担持した排ガス浄化用
触媒であって、上流側のPdの担持密度をPdが担持さ
れた担体の上流側部分の体積1リットル当たり7〜20
gとしたことを特徴とする。
The exhaust gas-purifying catalyst of the present invention which solves the above-mentioned problems is provided with Pd and R on the upstream side of the exhaust gas flow.
An exhaust gas purifying catalyst that carries h and carries Pt and Rh on the downstream side, and has a carrying density of Pd on the upstream side of 7 to 20 per 1 liter volume of the upstream part of the carrier carrying Pd.
It is characterized in that it is g.

【0008】[0008]

【作用】[Action]

(担体上流側部分の作用)本発明の排ガス浄化用触媒で
は、担体の上流側には体積1リットルに対して7〜20
gのPdが担持されている。このようにPdが高密度で
担持されていることにより、HC50%浄化温度が35
0℃前後にまで低下でき、低温活性が向上するため始動
時など排ガス温度が低い場合であっても高い酸化浄化能
を示す。またRhと排ガス中のHC及びCOの還元成分
の存在により、排ガス中のNOx が還元浄化される。
(Action of carrier upstream side portion) In the exhaust gas purifying catalyst of the present invention, 7 to 20 per volume of 1 liter is provided upstream of the carrier.
g of Pd is carried. Since Pd is loaded at a high density in this way, the HC50% purification temperature is 35%.
Since it can be lowered to around 0 ° C. and the low temperature activity is improved, it exhibits a high oxidation purification ability even when the exhaust gas temperature is low such as at the time of starting. Further, the presence of Rh and reducing components of HC and CO in the exhaust gas reduces and purifies NO x in the exhaust gas.

【0009】そして高温下では、Pdが高密度で担持さ
れているために、Pdのシンタリング(粒成長)が生じ
ても活性点が多く存在することにより耐久性に優れてお
り、高温下においても酸化触媒性能の低下度合いが小さ
い。したがってエンジン本体近傍に配置された場合にお
いても、長期間良好な触媒性能を示す。この上流側部分
に担持されたPdの担持密度が、その上流側部分の担体
の体積1リットル当たり7g未満では低温時の酸化浄化
性能に劣るとともに耐久性が低下し、20gを越えて担
持すると上流側でHCとCOの大部分が酸化されてしま
うためにNOx の還元浄化性能が低下する。特に望まし
い範囲は7〜10gである。 (担体下流側部分の作用)上流側における酸化反応によ
る発熱が排ガスに伝わり、十分加熱された排ガスが下流
側に流入する。そして上流側で未浄化のHC及びCO
は、Pt及びRhとの接触反応により酸化されて浄化さ
れる。またPt及びRhと排ガス中のHC及びCOの還
元成分の存在により、排ガス中の残部のNOx がさらに
還元浄化される。
At high temperature, since Pd is loaded at a high density, even if sintering (grain growth) of Pd occurs, many active points are present, so that durability is excellent. Also, the degree of deterioration of the oxidation catalyst performance is small. Therefore, even when it is arranged in the vicinity of the engine body, it shows good catalyst performance for a long period of time. If the loading density of Pd supported on the upstream side portion is less than 7 g per 1 liter volume of the carrier on the upstream side portion, the oxidation purification performance at low temperature is deteriorated and the durability is lowered. Since most of HC and CO are oxidized on the side, the NO x reduction and purification performance deteriorates. A particularly desirable range is 7 to 10 g. (Operation of the downstream part of the carrier) The heat generated by the oxidation reaction on the upstream side is transmitted to the exhaust gas, and the sufficiently heated exhaust gas flows into the downstream side. And unpurified HC and CO on the upstream side
Is oxidized and purified by the catalytic reaction with Pt and Rh. Further, due to the presence of Pt and Rh and the reducing components of HC and CO in the exhaust gas, the remaining NO x in the exhaust gas is further reduced and purified.

【0010】[0010]

【実施例】【Example】

〔発明の具体例〕担体としては従来用いられている無機
質多孔質体を用いることができ、アルミナ、シリカ、チ
タニア、ジルコニア、シリカ−アルミナ、ゼオライトな
どから選択して用いることができる。中でも耐熱性及び
貴金属分散性に優れたアルミナを用いるのが特に好まし
い。この担体は、コージェライト又はメタルなどから形
成されたモノリス担体基材に被覆形成したり、あるいは
ペレット状に形成したりすることで従来と同様に用いる
ことができる。
[Specific Example of the Invention] As the carrier, a conventionally used inorganic porous material can be used, and it can be selected from alumina, silica, titania, zirconia, silica-alumina, zeolite and the like. Above all, it is particularly preferable to use alumina which is excellent in heat resistance and noble metal dispersibility. This carrier can be used in the same manner as in the past by forming it on a monolith carrier substrate formed of cordierite or metal, or by forming it in the form of pellets.

【0011】担体の上流側部分とは排ガスの流入する側
をいい、例えばモノリス担体であれば排ガスの流入する
端面から全長の1/10〜1/4の長さの範囲をいう。
上流側部分の長さがこれより短いと低温時の活性が低下
し、これより長くなるとNO x の浄化率が低下する。R
hの担持密度は、担体全体に均一とすることができ、担
体体積1リットル当たり0.1〜0.5gとすることが
できる。Rhの担持密度がこれより少ないとNOx の浄
化率が低下し、これより多く担持しても効果が飽和する
ばかりかコストの増大を招く。0.2〜0.4gが特に
好ましい。
The upstream side portion of the carrier means the side into which exhaust gas flows
For example, in the case of a monolith carrier, exhaust gas flows in
It is a range of 1/10 to 1/4 of the entire length from the end face.
If the length of the upstream part is shorter than this, the activity at low temperature decreases.
However, if it is longer than this, NO xThe purification rate of is reduced. R
The loading density of h can be uniform over the entire carrier,
It can be 0.1 to 0.5 g per liter of body volume.
it can. NO if the Rh carrying density is less than thisxPurification of
The conversion rate decreases, and the effect is saturated even if more than this is loaded.
Not only does this lead to an increase in cost. 0.2-0.4 g is especially
preferable.

【0012】また下流側のPtの担持密度は、担体の下
流側部分の体積1リットル当たり0.5〜2.0gが好
ましく、1.0〜1.5gが特に好ましい。Ptの担持
密度をこれ以上増加させても活性は向上せず、その有効
利用が図れない。またPtの担持密度がこれより少ない
と、実用上十分な活性が得られない。なお、Ptは上流
側部分にも担持するのが好ましい。このようにすればP
dによるHCの酸化により発生した熱で上流側のPtと
Rhの触媒作用が速やかに発現し、三元浄化性能が一層
向上する。この場合上流側に担持するPtの担持密度
は、上記と同様に上流側部分の担体体積1リットル当た
り0.5〜2.0gが好ましく、1.0〜1.5gが特
に好ましい。
The Pt carrying density on the downstream side is preferably 0.5 to 2.0 g, and particularly preferably 1.0 to 1.5 g per liter volume of the downstream portion of the carrier. Even if the Pt carrying density is further increased, the activity is not improved and the Pt cannot be effectively used. Further, if the Pt carrying density is lower than this, sufficient activity for practical use cannot be obtained. It is preferable that Pt is also loaded on the upstream side portion. If you do this, P
The catalytic action of Pt and Rh on the upstream side is rapidly developed by the heat generated by the oxidation of HC by d, and the three-way purification performance is further improved. In this case, the loading density of Pt loaded on the upstream side is preferably 0.5 to 2.0 g, and particularly preferably 1.0 to 1.5 g per 1 liter of the carrier volume of the upstream side, as described above.

【0013】これらの触媒貴金属を担体に担持させるに
は、その塩化物や硝酸塩等を用いて、含浸法、噴霧法、
スラリー混合法などを利用して従来と同様に担持させる
ことができる。 〔実施例〕以下、実施例により具体的に説明する。 (実施例1)図1に本発明の一実施例の排ガス浄化用触
媒を配置した触媒コンバータを示す。この触媒コンバー
タ1は、モノリス触媒2と、モノリス触媒2を収納する
外筒10と、外筒10の両端から円錐台状に延びる一対
のコーン11,12とから構成されている。モノリス触
媒2には、全長にわたってPtとRhが担持され、触媒
コンバータの排ガス流入側に配置された上流側部分20
にはさらにPdが担持されている。この上流側部分20
の長さは、モノリス触媒2全長の1/5である。
In order to support these catalytic noble metals on the carrier, the chloride, nitrate or the like thereof is used to impregnate, spray, or
It can be supported in the same manner as in the past by using a slurry mixing method or the like. [Examples] Hereinafter, specific examples will be described. (Embodiment 1) FIG. 1 shows a catalytic converter in which an exhaust gas purifying catalyst according to an embodiment of the present invention is arranged. The catalytic converter 1 includes a monolith catalyst 2, an outer cylinder 10 that houses the monolith catalyst 2, and a pair of cones 11 and 12 that extend in a truncated cone shape from both ends of the outer cylinder 10. The monolith catalyst 2 carries Pt and Rh over the entire length, and the upstream side portion 20 arranged on the exhaust gas inflow side of the catalytic converter.
Is further loaded with Pd. This upstream part 20
Is 1/5 of the total length of the monolith catalyst 2.

【0014】次にモノリス触媒2の製造方法を説明する
ことで、モノリス触媒2の構成の詳細な説明に代える。
活性アルミナ粉末100重量部と、40重量%硝酸アル
ミニウム水溶液65重量部及び水80重量部を混合し、
コーティング用アルミナスラリーを調製した。そしてフ
ェライト系ステンレス箔の平板と波板を重ねて巻回する
ことで製造されたメタル担体(体積0.7リットル、4
00セル、全長120mm)に上記アルミナスラリを塗
布し、250℃で1時間乾燥後600℃で1時間焼成し
てアルミナコート層を形成した。
Next, a method for producing the monolith catalyst 2 will be described, and will be replaced with a detailed description of the structure of the monolith catalyst 2.
100 parts by weight of activated alumina powder, 65 parts by weight of 40% by weight aluminum nitrate aqueous solution and 80 parts by weight of water are mixed,
An alumina slurry for coating was prepared. And a metal carrier (volume 0.7 liter, 4 liters) produced by stacking and winding a ferritic stainless steel foil flat plate and a corrugated plate.
The above alumina slurry was applied to 100 cells (total length: 120 mm), dried at 250 ° C. for 1 hour, and then baked at 600 ° C. for 1 hour to form an alumina coat layer.

【0015】このようにして得られたモノリス担体を所
定濃度のジニトロジアンミン白金と塩化ロジウムの混合
水溶液中に1時間浸漬し、引き上げて余分な水滴を吹き
払った後250℃で1時間乾燥した。次に所定濃度の硝
酸パラジウム水溶液中に、モノリス担体の上流側の端面
より25mmの部分を1時間浸漬し、引き上げて余分な
水滴を吹き払った後250℃で1時間乾燥して実施例1
のモノリス触媒2を調製した。
The monolithic carrier thus obtained was dipped in a mixed aqueous solution of dinitrodiammine platinum and rhodium chloride having a predetermined concentration for 1 hour, pulled up to blow off excess water droplets, and then dried at 250 ° C. for 1 hour. Then, a portion of 25 mm from the end face on the upstream side of the monolith carrier was immersed in an aqueous palladium nitrate solution having a predetermined concentration for 1 hour, pulled up to blow off excess water droplets, and then dried at 250 ° C. for 1 hour.
Monolith Catalyst 2 of was prepared.

【0016】なお、各触媒貴金属の担持量は、モノリス
触媒2の1個当たりにPdが1.0g、Ptが1.0
g、Rhが0.21gである。担持密度に換算すると、
Pdはモノリス触媒2の上流側部分20の体積1リット
ル当たり7g担持され、Pt及びRhはモノリス触媒2
の全体に体積1リットル当たりそれぞれ1.5gと0.
3g担持されている。
The loading amount of each noble metal catalyst is 1.0 g of Pd and 1.0 of Pt per one monolith catalyst 2.
g and Rh are 0.21 g. Converted to the loading density,
Pd is supported in an amount of 7 g per 1 liter volume of the upstream portion 20 of the monolith catalyst 2, and Pt and Rh are the monolith catalyst 2
The total volume is 1.5 g per liter and 0.
It carries 3 g.

【0017】上記した実施例1の触媒コンバータ1は、
例えば図3に示すようにエンジン本体5の排気マニホー
ルド50の直下に取付けられ、エンジン本体5の始動に
より排ガスは排気マニホールド50を介して触媒コンバ
ータ1を通過した後、さらに触媒コンバータ6を通過
し、排ガス中のHC、CO及びNOx が浄化される。こ
の際、触媒コンバータ1は排ガスの熱により素早く暖め
られ、さらには上流側部分20にはPdが高密度で担持
されているために活性化時間が短くなり、エンジン始動
直後から暖機に至るまでのHC、CO及びNOx の排出
量を低減することができる。 (実施例2)上流側部分20のPdの担持量をモノリス
触媒2の1個当たり1.45g、すなわち担持密度をモ
ノリス触媒2の上流側部分20の体積1リットル当たり
10gとしたこと以外は実施例1と同様の構成である。 (実施例3)上流側部分20のPdの担持量をモノリス
触媒2の1個当たり2.9g、すなわち担持密度をモノ
リス触媒2の上流側部分20の体積1リットル当たり2
0gとしたこと以外は実施例1と同様の構成である。 (実施例4)図2に実施例4の排ガス浄化用触媒を配置
した触媒コンバータを示す。この触媒コンバータは、排
ガス流路の上流側に体積0.15リットル、400セ
ル、全長25mmの第1モノリス触媒3を配置し、10
mmの間隔を隔てた下流側に体積0.55リットル、4
00セル、全長95mmの第2モノリス触媒4を配置し
たこと以外は実施例1と同様である。
The catalytic converter 1 of the first embodiment described above is
For example, as shown in FIG. 3, the exhaust gas is mounted immediately below the exhaust manifold 50 of the engine body 5, and when the engine body 5 is started, the exhaust gas passes through the exhaust manifold 50, passes through the catalytic converter 1, and then further passes through the catalytic converter 6. HC, CO and NO x in the exhaust gas are purified. At this time, the catalytic converter 1 is quickly warmed by the heat of the exhaust gas, and further, since the upstream side portion 20 carries Pd at a high density, the activation time is shortened, and immediately after the engine is started until it is warmed up. It is possible to reduce the emissions of HC, CO and NO x . (Example 2) Except that the loading amount of Pd in the upstream portion 20 was 1.45 g per one monolith catalyst 2, that is, the loading density was 10 g per 1 liter volume of the upstream portion 20 of the monolith catalyst 2. The configuration is the same as in Example 1. (Example 3) The loading amount of Pd in the upstream portion 20 was 2.9 g per one monolith catalyst 2, that is, the loading density was 2 per volume of 1 liter of the upstream portion 20 of the monolith catalyst 2.
The configuration is the same as that of the example 1 except that it is set to 0 g. (Embodiment 4) FIG. 2 shows a catalytic converter in which the exhaust gas purifying catalyst of Embodiment 4 is arranged. In this catalytic converter, the first monolith catalyst 3 having a volume of 0.15 liters, 400 cells, and a total length of 25 mm is arranged on the upstream side of the exhaust gas flow path, and 10
Volume 0.55 liters on the downstream side with a space of 4 mm, 4
Example 2 is the same as Example 1 except that the second monolith catalyst 4 having 00 cells and a total length of 95 mm is arranged.

【0018】第1モノリス触媒3及び第2モノリス触媒
4は、それぞれ実施例1と同様に製作され、第1モノリ
ス触媒3にはPdとPt及びRhが担持され、第2モノ
リス触媒4にはPtとRhが担持されている。Pdは第
1モノリス触媒3のみに担持され、その担持量は1.4
5gで、担持密度は第1モノリス触媒3の1体積1リッ
トル当たり10gである。Pt及びRhは第1モノリス
触媒3と第2モノリス触媒4にそれぞれ同じ密度で担持
され、Ptの担持量はそれぞれ0.23g(第1モノリ
ス触媒)と0.83g(第2モノリス触媒)であり、R
hの担持量はそれぞれ0.05g(第1モノリス触媒)
と0.17g(第2モノリス触媒)である。 (比較例1)上流側部分20のPdの担持量をモノリス
触媒2の1個当たり0.73g、すなわち担持密度をモ
ノリス触媒2の上流側部分20の体積1リットル当たり
5gとしたこと以外は実施例1と同様の構成である。 (比較例2)実施例1と同様の方法で、上流側部分20
を除く下流側部分95mmにPtとRhを担持し、上流
側部分20にPdのみを担持したこと以外は実施例1と
同様である。Pdは上流側部分20に1.45g担持さ
れ、Pt及びRhは下流側部分にそれぞれ0.83gと
0.17g担持されている。担持密度に換算すれば、P
dは上流側部分20の体積1リットル当たり10g担持
され、Pt及びRhはモノリス触媒2の下流側部分の体
積1リットル当たりそれぞれ1.5gと0.3g担持さ
れている。 (浄化性能の評価)上記のそれぞれの触媒コンバータを
排気量2リットルのエンジンの排気系に取付け、排ガス
温度900℃、A/F=14.6(ストイキ)の条件で
100時間排ガスを流通させる耐久試験を行った。耐久
試験後のHC50%浄化温度(T50)と、耐久試験後
のHC、CO及びNOx の浄化率を測定し、結果を表1
に示す。またHC50%浄化温度とPd担持量の関係を
グラフ化して図4に示す。なお、HC50%浄化温度は
排ガス温度が250〜450℃の間の測定値であり、浄
化率はそれぞれ排ガス温度が450℃の場合の測定値で
ある。
The first monolith catalyst 3 and the second monolith catalyst 4 were respectively manufactured in the same manner as in Example 1. Pd, Pt and Rh were carried on the first monolith catalyst 3 and Pt was carried on the second monolith catalyst 4. And Rh are carried. Pd is supported only on the first monolith catalyst 3, and the supported amount is 1.4.
At 5 g, the supported density is 10 g per 1 liter volume of the first monolith catalyst 3. Pt and Rh were loaded on the first monolith catalyst 3 and the second monolith catalyst 4 respectively at the same density, and the loading amounts of Pt were 0.23 g (first monolith catalyst) and 0.83 g (second monolith catalyst), respectively. , R
The amount of h carried is 0.05 g each (first monolith catalyst)
And 0.17 g (second monolith catalyst). (Comparative Example 1) Except that the loading amount of Pd in the upstream portion 20 was 0.73 g per one monolith catalyst 2, that is, the loading density was 5 g per 1 liter volume of the upstream portion 20 of the monolith catalyst 2. The configuration is the same as in Example 1. (Comparative Example 2) In the same manner as in Example 1, the upstream side portion 20
Example 1 is the same as Example 1 except that Pt and Rh are supported on the downstream side portion 95 mm except for and Pd and Rh are supported on the upstream side portion 20. 1.45 g of Pd is carried in the upstream portion 20, and 0.83 g and 0.17 g of Pt and Rh are carried in the downstream portion, respectively. Converted to the loading density, P
10 g is carried per 1 liter volume of the upstream side portion 20, and Pt and Rh are carried with 1.5 g and 0.3 g per 1 liter volume of the downstream side portion of the monolith catalyst 2, respectively. (Evaluation of purification performance) Durability of attaching each of the above catalytic converters to the exhaust system of an engine with a displacement of 2 liters and flowing exhaust gas for 100 hours under the conditions of exhaust gas temperature of 900 ° C and A / F = 14.6 (stoichiometric) The test was conducted. The HC50% purification temperature after durability test (T50), HC after the durability test, by measuring the purification efficiency of CO and NO x, Table 1 Results
Shown in A graph showing the relationship between the HC50% purification temperature and the amount of Pd carried is shown in FIG. The HC50% purification temperature is a measured value when the exhaust gas temperature is between 250 and 450 ° C, and the purification rate is a measured value when the exhaust gas temperature is 450 ° C.

【0019】[0019]

【表1】 表1及び図4より、上流側部分のPdの担持密度が高く
なるにつれてHC50%浄化温度が低下し、低温活性が
著しく向上することがわかる。またPdが7g/L未満
では、HC50%浄化温度が400℃前後となるため好
ましくないこともわかる。
[Table 1] From Table 1 and FIG. 4, it can be seen that the HC50% purification temperature decreases and the low temperature activity remarkably improves as the Pd carrying density in the upstream portion increases. It is also understood that when the Pd is less than 7 g / L, the HC50% purification temperature is around 400 ° C, which is not preferable.

【0020】また耐久試験後の浄化率を比較すると、比
較例1では耐久後のNOx 浄化率の低下度合いが実施例
より大きいことがわかり、これはPdの担持量が少ない
ことに起因していることが明らかである。さらに実施例
2と比較例2の比較から明らかなように、上流側部分に
Pdに加えてPtとRhを担持することで、特にCOと
NOx の浄化率が向上している。また実施例4が実施例
2より優れた浄化性能を示しているが、これは実施例4
では上流側部分と下流側部分との間に空間を設けたこと
により排ガス流の乱れが生じ、下流側部分に流入する排
ガスと触媒との接触効率が向上したことによる効果と推
察される。したがって上流側部分と下流側部分とは分割
した方が好ましい。
Further, when the purification rates after the durability test were compared, it was found that in Comparative Example 1, the degree of decrease in the NO x purification rate after the durability was higher than that in the Examples, which is due to the small loading amount of Pd. It is clear that Further, as is clear from the comparison between Example 2 and Comparative Example 2, by carrying Pt and Rh in addition to Pd on the upstream side, the purification rate of CO and NO x is particularly improved. Example 4 also shows better purification performance than Example 2, which is the same as Example 4.
It is assumed that the effect is that the exhaust gas flow is disturbed by providing the space between the upstream side portion and the downstream side portion, and the contact efficiency between the exhaust gas flowing into the downstream side portion and the catalyst is improved. Therefore, it is preferable to divide the upstream side portion and the downstream side portion.

【0021】[0021]

【発明の効果】したがって本発明の排ガス浄化用触媒に
よれば、エンジン始動直後から暖機に至るまでの未燃物
(特にHC)の排出を低減できるとともに、Pt及び全
体に担持されたRhによりCO,HC,NOx の排出量
を低減することができ、高い三元浄化性能を有してい
る。
Therefore, according to the exhaust gas purifying catalyst of the present invention, it is possible to reduce the emission of unburned substances (particularly HC) from immediately after the engine is started to when the engine is warmed up. CO, HC, and NO x emissions can be reduced, and high three-way purification performance is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の排ガス浄化用触媒を触媒コ
ンバータに収納した状態で示す断面図である。
FIG. 1 is a sectional view showing a state in which an exhaust gas purifying catalyst according to an embodiment of the present invention is housed in a catalytic converter.

【図2】本発明の第4の実施例の排ガス浄化用触媒を触
媒コンバータに収納した状態で示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which an exhaust gas purifying catalyst according to a fourth embodiment of the present invention is housed in a catalytic converter.

【図3】本発明の排ガス浄化用触媒を自動車エンジンの
排気系に挿着した状態を示す説明図である。
FIG. 3 is an explanatory view showing a state in which the exhaust gas purifying catalyst of the present invention is attached to an exhaust system of an automobile engine.

【図4】実施例の排ガス浄化用触媒のHC50%浄化温
度とPd担持密度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the HC50% purification temperature and the Pd carrying density of the exhaust gas purifying catalyst of the example.

【符号の説明】[Explanation of symbols]

1:触媒コンバータ 2:モノリス触媒(排ガス浄
化用触媒) 20:上流側部分
1: Catalytic converter 2: Monolith catalyst (exhaust gas purification catalyst) 20: Upstream side part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排ガス流の上流側にパラジウムとロジウ
ムを担持し下流側に白金とロジウムを担持した排ガス浄
化用触媒であって、 上流側のパラジウムの担持密度をパラジウムが担持され
た担体の上流側部分の体積1リットル当たり7〜20g
としたことを特徴とする排ガス浄化用触媒。
1. A catalyst for exhaust gas purification in which palladium and rhodium are supported on the upstream side of the exhaust gas flow and platinum and rhodium are supported on the downstream side, and the density of palladium on the upstream side is upstream of the carrier on which palladium is supported. 7-20g per liter volume of the side part
The exhaust gas purifying catalyst is characterized in that
JP14082995A 1995-06-07 1995-06-07 Exhaust gas purification catalyst Expired - Fee Related JP3327054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14082995A JP3327054B2 (en) 1995-06-07 1995-06-07 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14082995A JP3327054B2 (en) 1995-06-07 1995-06-07 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH08332350A true JPH08332350A (en) 1996-12-17
JP3327054B2 JP3327054B2 (en) 2002-09-24

Family

ID=15277695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14082995A Expired - Fee Related JP3327054B2 (en) 1995-06-07 1995-06-07 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3327054B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864214B2 (en) 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst
KR100506780B1 (en) * 2002-06-20 2005-08-05 현대자동차주식회사 Three way catalyst for automobile and method for manufacturing it
JP2005211794A (en) * 2004-01-29 2005-08-11 Cataler Corp Catalyst for emission gas purification
WO2006028028A1 (en) * 2004-09-09 2006-03-16 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
WO2006080369A1 (en) * 2005-01-31 2006-08-03 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and exhaust-gas purification controller using the same
JP2006205002A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Catalyst for cleaning exhaust gas
WO2008129671A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
JP2008264636A (en) * 2007-04-17 2008-11-06 Tokyo Roki Co Ltd Oxidation catalyst of exhaust gas purification system for diesel engines
JP2008296102A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Exhaust gas purifying catalyst and its manufacturing method
JP2010089004A (en) * 2008-10-07 2010-04-22 Mitsubishi Motors Corp Exhaust gas treatment catalyst
US7846865B2 (en) 2006-07-20 2010-12-07 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
EP2129883B1 (en) 2007-02-21 2015-09-16 Umicore AG & Co. KG Catalyst system and use thereof
WO2020071065A1 (en) * 2018-10-04 2020-04-09 三菱自動車工業株式会社 Exhaust gas purification catalyst
US10688476B2 (en) 2014-09-10 2020-06-23 Cataler Corporation Exhaust gas purification catalyst

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864214B2 (en) 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst
KR100506780B1 (en) * 2002-06-20 2005-08-05 현대자동차주식회사 Three way catalyst for automobile and method for manufacturing it
JP4503304B2 (en) * 2004-01-29 2010-07-14 株式会社キャタラー Exhaust gas purification catalyst
JP2005211794A (en) * 2004-01-29 2005-08-11 Cataler Corp Catalyst for emission gas purification
WO2006028028A1 (en) * 2004-09-09 2006-03-16 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
JP2006205002A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Catalyst for cleaning exhaust gas
WO2006080369A1 (en) * 2005-01-31 2006-08-03 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases and exhaust-gas purification controller using the same
US7846865B2 (en) 2006-07-20 2010-12-07 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
EP2129883B1 (en) 2007-02-21 2015-09-16 Umicore AG & Co. KG Catalyst system and use thereof
US7867944B2 (en) 2007-04-17 2011-01-11 Ibiden Co., Ltd. Catalyst supporting honeycomb and method of manufacturing the same
JP2008264636A (en) * 2007-04-17 2008-11-06 Tokyo Roki Co Ltd Oxidation catalyst of exhaust gas purification system for diesel engines
WO2008129671A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
JP2008296102A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Exhaust gas purifying catalyst and its manufacturing method
JP2010089004A (en) * 2008-10-07 2010-04-22 Mitsubishi Motors Corp Exhaust gas treatment catalyst
US10688476B2 (en) 2014-09-10 2020-06-23 Cataler Corporation Exhaust gas purification catalyst
WO2020071065A1 (en) * 2018-10-04 2020-04-09 三菱自動車工業株式会社 Exhaust gas purification catalyst
CN112823058A (en) * 2018-10-04 2021-05-18 三菱自动车工业株式会社 Exhaust gas purifying catalyst
JPWO2020071065A1 (en) * 2018-10-04 2021-09-02 三菱自動車工業株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP3327054B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP3391878B2 (en) Exhaust gas purification catalyst
US7846865B2 (en) Catalyst for purifying exhaust gas
WO2007057981A1 (en) Catalyst for exhaust-gas purification
JPWO2006057067A1 (en) Exhaust gas purification catalyst
JP3327054B2 (en) Exhaust gas purification catalyst
JP3821343B2 (en) Exhaust gas purification device
JPH11267504A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning system using it
JP3882627B2 (en) Exhaust gas purification catalyst
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH0480739B2 (en)
JP3546908B2 (en) Ammonia purification catalyst device
JP4413366B2 (en) Exhaust gas purification catalyst
JP3335755B2 (en) Exhaust gas purification catalyst
JP4459346B2 (en) Exhaust gas purification catalyst
JPH09220470A (en) Catalyst for purification of exhaust gas
JPH11107744A (en) Exhaust emission control catalyst device
JP2005131551A (en) Catalyst for purifying exhaust gas
JP3551346B2 (en) Exhaust gas purification equipment
JPH08281071A (en) Waste gas purifying method and waste gas purifying catalyst
JP2004000978A (en) Cleaning method of exhaust gas and catalyst for cleaning of exhaust gas
JP3347481B2 (en) Exhaust gas purification catalyst
JP3433885B2 (en) Diesel exhaust gas purification catalyst
JPH0871424A (en) Catalyst for purification of exhaust gas
JP2000070722A (en) Exhaust gas purification catalyst
JPH10249204A (en) Sulfur-resistant lean nox catalyst for treatment of emission from diesel engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees