JPS5888102A - Method of hydrogenating body-centered cubic phase alloy at room temperature - Google Patents

Method of hydrogenating body-centered cubic phase alloy at room temperature

Info

Publication number
JPS5888102A
JPS5888102A JP19669882A JP19669882A JPS5888102A JP S5888102 A JPS5888102 A JP S5888102A JP 19669882 A JP19669882 A JP 19669882A JP 19669882 A JP19669882 A JP 19669882A JP S5888102 A JPS5888102 A JP S5888102A
Authority
JP
Japan
Prior art keywords
metal
hydrogen
centered cubic
cubic phase
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19669882A
Other languages
Japanese (ja)
Inventor
ア−ヌルフ・ジユリアス・メ−ランド
ジヨ−ジ・ゴツトハ−ト・リボウイツチ
ジヨ−ジ・ラツク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Chemical Corp filed Critical Allied Chemical Corp
Publication of JPS5888102A publication Critical patent/JPS5888102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は水素ガスと遷移金属合金との反応、特に穏やか
な温度における水素ガスとニオブまたはタンタルを含有
する合金との迅速な反応忙関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the reaction of hydrogen gas with transition metal alloys, particularly the rapid reaction of hydrogen gas with alloys containing niobium or tantalum at mild temperatures.

水素化物を形成する金属の大部分は、塊状で室温におい
て水素ガスときわめて緩徐に反応する。
Most of the metals that form hydrides are bulky and react very slowly with hydrogen gas at room temperature.

たとえば金属ニオブは塊状で室温においては水素ガスの
存在下で比較的不活性であり、水素は金属の生石立方相
構造内へ飽和されるまでごく緩徐に溶解しくいわゆるα
相形成)、次いで追加された水素はごく緩徐に反応して
水素化ニオブの沈厳を形成する。水素化物を形成する他
の金属も大部分が同様な様式で反応する。α相形成およ
び水素化物形成の速度は金属および合金毎に変わるが、
室温では1時間以内に起こることはまれである。ニオブ
上にニッケルまたはノぞラジウムまたは鉄妃めっきする
ことによりこの速度な高める試みが報告されている。
For example, the metal niobium is bulky and relatively inert at room temperature in the presence of hydrogen gas, and hydrogen dissolves very slowly into the raw stone cubic phase structure of the metal until it becomes saturated.
phase formation), then the added hydrogen reacts only slowly to form a niobium hydride phase. Other metals that form hydrides react in a largely similar manner. The rates of alpha phase formation and hydride formation vary between metals and alloys, but
It rarely occurs within 1 hour at room temperature. Attempts to increase this speed by nickel or radium or iron plating on niobium have been reported.

水素化金属の多くの用途にとって、塊状金属がら水素化
物を形成させ、水素化物を微粉砕してグラニユールまた
は粉末の構造なもついずれかの形状のものとなし、その
後循環的に水素原子を離脱させてより低級の水素化物ま
たは遊離の金属を形成させたのち水素原子を再度導入し
てもとの水素化物な形成させることが望ましい。塊状金
属または塊状合金から出発する場合、金属をたとえば6
00〜700℃の温度に加熱する誘導期を経たのち高圧
下で水素と反応させ、次いでこの系を約100℃以下の
温度(好ましくはほぼ室温)になるまできわめて緩徐に
冷却することが普通は必要である。これよりも高い温度
では水素が金属に溶解する(α相)速度が上昇して、時
間または日よりもむしろ分の程度で飽和が達成される。
For many metal hydride applications, the hydride is formed from bulk metal, the hydride is pulverized into some form with a granule or powder structure, and then the hydrogen atoms are cyclically removed. It is desirable to form a lower hydride or a free metal, and then reintroduce hydrogen atoms to form the original hydride. When starting from a bulk metal or a bulk alloy, the metal may be
It is usual to react with hydrogen under high pressure after an induction period of heating to a temperature between 000 and 700°C, and then to cool the system very slowly to a temperature below about 100°C (preferably about room temperature). is necessary. At higher temperatures the rate at which hydrogen dissolves in the metal (alpha phase) increases and saturation is achieved on the order of minutes rather than hours or days.

しかし高温では水素の平衡圧が高いため、実際には比較
的少量の水素が溶解し、あるいは水素化物を形成する。
However, at high temperatures, the equilibrium pressure of hydrogen is high, so relatively small amounts of hydrogen actually dissolve or form hydrides.

従って、飽和α相が形成されたのち水素化物が形成され
るのは、徐々に冷却した場合にのみである。多くの金属
は水素化物な形成するためには1回の誘導過程す必要と
するにすぎず、その後水素化物粉末は妥当な反応速度で
循環するが、この誘導過程が金属水素化物の形成および
使用に際して明らかに不利になっている点を明確にすべ
ぎである。
Therefore, after the formation of the saturated alpha phase, hydrides are formed only upon gradual cooling. Many metals require only one induction step to form a hydride, after which the hydride powder is circulated at a reasonable rate; It is important to clarify the points that are clearly disadvantageous.

意外にモ、ニオブおよびタンタルのある種の合金が塊状
であっても緩和な温度(たとえば約100℃以下)で速
やかに水素と反応して、室温においてすら秒または分の
程度で水素化物を形成することが見出された。従って本
発明は、水素ガスを約0〜約100℃の温度で、 (α)ニオブ、タンタルおよびそれらの混合物よりなる
群から選ばれる体心立方相構造を形成する第1の金属、
ならびに (b)  これらの体心立方相構造中に溶解した、アル
ミニウム、コバルト、クロム、鉄、マンガン、モリブデ
ン、ニッケル、銅、バナジウム、ケイ素、ゲルマニウム
、ガリウムおよびそれらの混合物よりなる群から選ばれ
る少なくとも約1種の第2の金属少なくとも約0.5原
子%よりなる固溶体と反応させ、その際上記の温度にお
けるこの固溶体と水素の反応速度が上記の温度および等
しい水素圧における第1の金属と水素の反応速度の少な
くとも約2倍であることよりなる、金属水素化物の製造
方法である。
Surprisingly, certain alloys of molybdenum, niobium, and tantalum, even in bulk, react rapidly with hydrogen at moderate temperatures (e.g., below about 100°C) to form hydrides in seconds or minutes even at room temperature. It was found that Accordingly, the present invention provides hydrogen gas at a temperature of about 0 to about 100° C. to (α) a first metal forming a body-centered cubic phase structure selected from the group consisting of niobium, tantalum, and mixtures thereof;
and (b) at least one selected from the group consisting of aluminum, cobalt, chromium, iron, manganese, molybdenum, nickel, copper, vanadium, silicon, germanium, gallium and mixtures thereof dissolved in these body-centered cubic phase structures. reacting with a solid solution comprising at least about 0.5 atomic percent of about one second metal, such that the reaction rate of the solid solution with hydrogen at the above temperature is greater than the reaction rate of the first metal with hydrogen at the above temperature and equal hydrogen pressure; A method for producing a metal hydride, the reaction rate being at least about twice that of the reaction rate of

本発明によれば、水素を低温で少なくとも2種の金属の
固溶体と反応させる。用いられる水素ガスは、反応温度
で生成する水素化物の解離圧、たとえば減圧、大気圧ま
たは過圧(たとえば0.1〜約10,000&Pα)状
態の純粋な水素であってもよい。またこの圧力は、水素
化物の形成反応に害を与えない他のガスとの混合物中の
水素の分圧として採用してもよい。水素を不活性ガス、
たとえばアルゴン、ヘリウムおよび窒素と混合してもよ
い。
According to the invention, hydrogen is reacted with a solid solution of at least two metals at low temperatures. The hydrogen gas used may be pure hydrogen at the dissociation pressure of the hydride formed at the reaction temperature, such as reduced pressure, atmospheric pressure or overpressure (eg 0.1 to about 10,000 &Pα). This pressure may also be taken as the partial pressure of hydrogen in a mixture with other gases that do not harm the hydride formation reaction. hydrogen as an inert gas,
For example, it may be mixed with argon, helium and nitrogen.

さらに水素は、大部分の水素化物形成反応にとって有害
であるが本発明の特定の固溶体はこれに対して不感受性
である気体、たとえば−酸化炭素、水蒸気および酸素な
どとの混合物中に存在してもよい。従って本発明はこの
種の気体混合物から水素を除去するため、たとえば工業
的な水素形成反応中に生成する水素とヘリウムの混合物
から水素を除去するため、または水素と一酸化炭素もし
くは二酸化炭素の混合物から水素を除去するための手段
として用いることができる。反応温度は、反応開始時に
約0〜約100℃であることが望ましい。
Additionally, hydrogen may be present in mixtures with gases that are deleterious to most hydride-forming reactions, but to which the particular solid solutions of the present invention are insensitive, such as carbon oxides, water vapor, and oxygen. Good too. The invention is therefore useful for removing hydrogen from gaseous mixtures of this type, for example from mixtures of hydrogen and helium produced during industrial hydrogen-forming reactions, or from mixtures of hydrogen and carbon monoxide or carbon dioxide. It can be used as a means to remove hydrogen from. The reaction temperature is preferably about 0 to about 100°C at the beginning of the reaction.

本発明の範囲内の多くの反応が高度に発熱性であるので
、反応に対する逆の作用な4えることなく温度が短期間
100℃を越えることが予想される。
Since many reactions within the scope of this invention are highly exothermic, it is expected that temperatures will exceed 100° C. for short periods without adverse effects on the reaction.

事実、本発明の反応の多くの場合熱の除去が速度制限工
程として作用し、適切な熱の除去がなされるならば反応
は数秒以内に行われる。反応を約50℃以下で開始する
ことが好ましく、室温が開始には好都合である。
In fact, heat removal acts as the rate-limiting step in many of the reactions of the present invention, with reactions taking place within seconds if adequate heat removal is provided. It is preferred to initiate the reaction below about 50°C, with room temperature being convenient for initiation.

本発明に用いられる固溶体状合金は第1の金属としてニ
オブ、タンタルまたはそれらの混合物を含有する。これ
ら2種の金属は相互に完全に溶解し、両者とも体心立方
相構造を形成するので、これら2者を互いにいかなる比
率においても使用することができる。ニオブの方が入手
しやすく安価であるため好ましい。
The solid solution alloy used in the present invention contains niobium, tantalum, or a mixture thereof as the first metal. Since these two metals are completely soluble in each other and both form a body-centered cubic phase structure, they can be used in any ratio with respect to each other. Niobium is preferred because it is easier to obtain and cheaper.

第2の金属はコバルト、クロム、鉄、マンガン、ニッケ
ル、銅、バナジウムもしくはそれらの混合物の群の遷移
金属、またはアルミ−1ム、ケイ素、ゲルマニウム、ガ
リウムもしくはそれらの混合物から選ばれる■族もしく
は■族の元素であってもよい。少なくとも約0.5原子
%の第2金属を用いることが好ましく、第2の金属の上
限は第1の金属により形成される体心立方相構造中への
第2の金属の溶解性の限界によって一般に決定される。
The second metal is a transition metal of the group cobalt, chromium, iron, manganese, nickel, copper, vanadium or mixtures thereof, or a group selected from aluminum, silicon, germanium, gallium or mixtures thereof. It may be an element of the group. Preferably, at least about 0.5 atomic percent of the second metal is used, with the upper limit of the second metal being determined by the limits of solubility of the second metal in the body-centered cubic phase structure formed by the first metal. generally determined.

適切な溶解性をもつ金属に関しては約1〜約10%の範
囲の第2金属が好ましい。第2金属の混合物を用いる場
合は、特定の第2金属単独に関して許容できる第2金属
の割合を越えることが時には可能である。バナジウムな
どある種の金属の場合は、溶解性が十分であるならば第
2金属の好ましい最大含量は混合物全体の約60M子%
である。
For metals with adequate solubility, a range of about 1 to about 10% of the second metal is preferred. When using mixtures of second metals, it is sometimes possible to exceed the proportion of second metal that is acceptable for a particular second metal alone. For certain metals, such as vanadium, the preferred maximum content of the second metal is about 60 M% of the total mixture, provided that solubility is sufficient.
It is.

特に好ましいものは各金属が約40〜約60原子%のバ
ナジウムとニオブの°組成物である。
Particularly preferred are compositions of vanadium and niobium with about 40 to about 60 atomic percent of each metal.

後記の表1にはマックス・ノ・ンセン著「2成分合金1
265の構造」(マツフグロー・ヒル、1958年)の
表B’に報告された値に基づいて、本発明に用いられる
第1の金属および第2の合金それぞれの有効金属半径を
示す。0N=12に関する値は1.03で割ることによ
りON = 8に変えられる。一般に適切な第2の金属
はニオブの金属半径よりも少なくとも約5%小さい(ま
たタンタルの同半径よりも小さい)金属半径をもつ遷移
金属である。ニオブの原子半径よりも少なくとも約5%
小さい原子半径をもつ他の第2の遷移金属は、これらが
ニオブにより形成される体心立方相中に少なくとも約0
.5原子%程度溶解しうるならば適しているであろう。
Table 1 below shows Max Noh Nsen's ``Binary Alloy 1''.
The effective metal radii of each of the first metal and second alloy used in the present invention are shown based on the values reported in Table B' of ``Structures of 265'' (Matsufugrow-Hill, 1958). The value for 0N=12 is changed to ON=8 by dividing by 1.03. Generally suitable second metals are transition metals having a metal radius at least about 5% smaller than that of niobium (and smaller than the same radius of tantalum). At least about 5% smaller than the atomic radius of niobium
Other second transition metals with small atomic radii are such that they contain at least about 0% in the body-centered cubic phase formed by niobium.
.. It would be suitable if it could dissolve about 5 at.%.

非遷移金属(たとえばアルミニウム、ガリウム、ゲルマ
ニウムおよびケイ素)の場合は、ニオ/の金属半径より
も少なくとも約5%小さい金属半径は必要ではない。第
2の金属の水素化物形成に際しての挙動は本発明の急速
な反応速度における決定的因子ではなく、適切な第2の
金属のあるものは2成分水素化物に関する平衡水素圧が
低く、また他のものは平衡水素圧がきわめて高い。比較
例2に示されるように、バナジウムよりも大きな金属半
径をもつ表1末尾に挙げたチタンまたはジルコニウムな
どある種の遷移金属は適切でなく、ニオブと合金を形成
した場合に得られる反応遠吠が低い。
For non-transition metals (eg, aluminum, gallium, germanium, and silicon), a metal radius that is at least about 5% smaller than the metal radius of Nio/ is not required. The behavior of the second metal in hydride formation is not a determining factor in the rapid reaction rate of the present invention; some suitable second metals have low equilibrium hydrogen pressures for binary hydrides, and others The equilibrium hydrogen pressure is extremely high. As shown in Comparative Example 2, certain transition metals such as titanium or zirconium listed at the end of Table 1, which have a larger metal radius than vanadium, are not suitable and the reaction howler obtained when alloyed with niobium. is low.

しかし本発明の固溶体は前駅の第1金属および第2金属
以外の副食の金属を排除することを意図するものではな
い。たとえばジルコニウムは適切な第2の金属ではない
が、これは第1の金属(たとえばニオブ)および第2の
金属(たとえば鉄)と−緒に合金中に存在してもよい。
However, the solid solution of the present invention is not intended to exclude secondary metals other than the first and second metals at the front station. For example, zirconium is not a suitable second metal, although it may be present in an alloy with a first metal (eg, niobium) and a second metal (eg, iron).

ある種の適切な組成物は約5〜70%のチタンまたはジ
ルコニウムを含有する。しかし第1の金属、および第2
の金属以外の金属が組成物の約25原子%以上にならな
いように、より好ましくは組成物の約10原子%以上に
ならないように制限することが好ましい。
Certain suitable compositions contain about 5-70% titanium or zirconium. However, the first metal, and the second
It is preferable to limit metals other than the above metals to no more than about 25 atomic percent of the composition, and more preferably to no more than about 10 atomic percent of the composition.

本発明を実施するに際しては、固溶体が塊状であるか、
あるいは約1000μm以上の平均粒径なもつ形状であ
ることが好ましい。この寸法以下の粒径をもつ固溶体は
速やかに反応するが、本発明の範囲外の同様な材料(た
とえばニオブ単独)についても速やかな反応が起るかも
知れない。従って本発明の利点は、塊状のもの(1sn
以上)、たとえばメルトかも直接に鋳造されたものを用
いた場合に最も顕著に達成される。
When carrying out the present invention, whether the solid solution is in the form of a lump or
Alternatively, it is preferable to have a shape with an average particle size of about 1000 μm or more. Solid solutions with particle sizes below this dimension react rapidly, but similar materials outside the scope of the present invention (eg, niobium alone) may also react rapidly. Therefore, the advantage of the present invention is that the lump-like (1sn
(above) can be achieved most noticeably when, for example, a melt or directly cast material is used.

以下の具体例は本発明を具体的に説明するものであり、
比較のため緩和な温度で水素と徐々にしか反応しない本
発明の範囲外の特定の金属および合金を示す。これらの
実施例の各種の付加、削除および変更は前記の特許請求
の範囲に示された本発明の範囲および精神に包含される
と考えられると解すべきである。
The following specific examples specifically illustrate the present invention:
For comparison, certain metals and alloys outside the scope of the present invention are shown that react only slowly with hydrogen at mild temperatures. It should be understood that various additions, deletions, and modifications to these embodiments are considered to be included within the scope and spirit of the invention as defined by the following claims.

表1 Nb  1.43   Q   − Tα 1.43   OS CD  1.21 −15.4   FCl  1.2
4 −13.3   FF1 1.23 −14.OF Mn  1.26 −11.9   F犯 1.21 
−15.4   F C藝 1.24 −13.5  S※ V   1.!+2  −78   FGα 1.55
  −5.6  F Gm  1.55  −5.6   FS龜 1.!1
0  −91   F Atl、39  −2.8   F Mo  1.66  −4.9   FZr  1.5
5   +8.4  87番 1.43  0   S F=速い S=遅い !1Ii1%Cμの場合は遅い。より多量のCuの場合
はより速やかであろう。
Table 1 Nb 1.43 Q - Tα 1.43 OS CD 1.21 -15.4 FCl 1.2
4 -13.3 FF1 1.23 -14. OF Mn 1.26 -11.9 F crime 1.21
-15.4 FC 1.24 -13.5 S* V 1. ! +2 -78 FGα 1.55
-5.6 F Gm 1.55 -5.6 FS gun 1. ! 1
0 -91 F Atl, 39 -2.8 F Mo 1.66 -4.9 FZr 1.5
5 +8.4 No. 87 1.43 0 S F = Fast S = Slow! In the case of 1Ii1%Cμ, it is slow. Higher amounts of Cu would be faster.

※壷 1.05で割ることにより0N=12から転換例
 1−第2金属1%を含む合金 ニオブ9ワ 鉄、コバルト、ニッケ+、<Lバナジウム、アルミニウ
ム、ケイ素およびゲルマニウム1モル%と水冷した銅製
炉床上でアルゴン下にアーク溶融させることにより合金
を製造した。各バッチは約41であった。これらの合金
をアルゴン下に直径約10〜12酊、高さ7〜9朋のボ
タンに鋳造した。
*Vase Example of converting from 0N=12 by dividing by 1.05 1 - Alloy niobium 9 containing 1% of the second metal Iron, cobalt, nickel + <L Vanadium, aluminum, silicon and germanium 1 mol% and water cooled The alloy was produced by arc melting under argon on a copper hearth. Each batch was about 41. These alloys were cast under argon into buttons approximately 10-12 mm in diameter and 7-9 mm high.

各ボタンを室温付近にまで放冷し、再溶融した。Each button was allowed to cool to around room temperature and remelted.

確実に均質化するためにこの過程を.6〜4回繰返した
。各ボタンを石英管内部のA乃2ンレススチールボート
内に置き、次いで石英管な真空システムに連結した。次
いで排気しながらく約1 0”” )ル)試料を700
℃に加熱したのち室温に冷却した。水素を約1気圧にな
るまで導入した。それぞれの場合に急激な圧力低下がみ
られ、発熱して一時的に150℃程度(場合によっては
恐らくそれ以上)の温度となった。ボタンはこの反応中
に激しく破砕して粉末状になった。Nb 9 9%、2
41%の合金から得られた粒度分布を代表例として示す
This process is done to ensure homogenization. Repeated 6-4 times. Each button was placed in an A-2 stainless steel boat inside a quartz tube and then connected to the quartz tube vacuum system. Then pump the sample to about 10")
After heating to ℃, it was cooled to room temperature. Hydrogen was introduced until the pressure was about 1 atm. In each case, a rapid pressure drop was observed, and heat was generated, temporarily reaching a temperature of around 150°C (possibly higher in some cases). The buttons were violently crushed into powder during this reaction. Nb 9 9%, 2
The particle size distribution obtained from a 41% alloy is shown as a representative example.

−20+60メツシユ(850〜250μrIL)、4
5、1%;−60+80メツシユ(250〜180μm
)、16.7%;−80+100メツシユ(180〜1
50μm)、74%; − 1 o O + 325メ
ツシユ(150〜45μrrL)、20.1%;および
−625メツシユ(45μm以下)、10.7%、反応
は一般に6分以内に終了した。最終圧力は約0、8気圧
であり、組成は水素約0、9/ニオブであった。三水素
化物はこれよりも高い水素圧を用いるか、または試料を
室温よりも低温に冷却することによって製造できる。
-20+60 mesh (850-250μrIL), 4
5.1%; -60+80 mesh (250-180 μm
), 16.7%; -80+100 mesh (180 to 1
- 1 o O + 325 meshes (150-45 μrrL), 20.1%; and -625 meshes (<45 μm), 10.7%; reactions were generally completed within 6 minutes. The final pressure was about 0.8 atmospheres and the composition was about 0.9 hydrogen/niobium. Trihydrides can be produced using higher hydrogen pressures or by cooling the sample below room temperature.

例 2(比較例) ニオブ90モル%ならびに個別にチータンおよびジルコ
ニウム10モル%の合金につき例1と同様な処理を行っ
た。場合によっては、溶解した金属は実際には10%以
下であった。水素により加圧したのちには有意の水素圧
低下はみられず、室温で24時間後に圧力はI Q Q
 kPα以上に保たれていた。
Example 2 (comparative example) A treatment similar to Example 1 was carried out on an alloy of 90 mol% niobium and 10 mol% titanium and zirconium individually. In some cases, the dissolved metal was actually less than 10%. After pressurizing with hydrogen, no significant hydrogen pressure drop was observed, and after 24 hours at room temperature the pressure was I Q Q
It was maintained at or above kPα.

例  ろ 表2の最初の2欄に示されるN A 1 +H,2?M
xQ、合金それぞれにつき例1と同様な一般的処理を行
った。
Example N A 1 +H,2 shown in the first two columns of Table 2? M
The same general treatment as in Example 1 was carried out for each of the xQ and alloys.

圧力低下、および室温で反応が80%終了した時点で配
録されたおおよその時間に基づいて反応な観察した。平
衡状態に達したのち(一般に5〜5分)の最終生成物な
次いでX線回折により分析した。これらの時間および組
et表2に報告する。
The reaction was observed based on the pressure drop and the approximate time marked when the reaction was 80% complete at room temperature. The final product after reaching equilibrium (generally 5-5 minutes) was then analyzed by X-ray diffraction. These times and sets are reported in Table 2.

たとえば第1列はNb、7Cr3が約140秒以内に少
なくとも80%反応し1.平衡状態における生成物はN
b9□Cr5H84であること?示す。
For example, the first column shows that Nb, 7Cr3 reacts at least 80% within about 140 seconds and 1. The product at equilibrium is N
Is it b9□Cr5H84? show.

表   2 Or 0.03 140 97 584Or   O,
0512095582 Gr   O,10120901082Ft O,05
2409558;l’ Ft O,10150901080 GO,0,0112099188 GO0,0310097887 GO0,0510095584 Mo   0.20   150    80  20
 65Mo O,30260703045 Ni O,0116099188 Ni O,026098289 Ni O,036097686 Ni O,056095585 階0.10 180 901074 V   O,10(80901082 V   O,50<100    50.  50 8
0V D、60 160 406064 V O,70S  507060 A/!、 0.10 240 901072St   
O,02(10098285※約1時間 例  4 表3の最初の6欄に示される6成分合金Nb1−jc、
、、7Mxz、につき例6と同様な処理な行い、表6に
示す80%終了詩間、および平衡状態における最終組成
が得られた 表   3 TLO158Ge O,0540057385169T
i O,47Ga O,0655047476168Z
r O,25Fg 0.10560652510165
(外4名) 第1頁の続き 優先権主張 01982年4月5日■米国(US)■3
65119
Table 2 Or 0.03 140 97 584Or O,
0512095582 Gr O,10120901082Ft O,05
2409558;l' Ft O,10150901080 GO,0,0112099188 GO0,0310097887 GO0,0510095584 Mo 0.20 150 80 20
65Mo O, 30260703045 Ni O, 0116099188 Ni O, 026098289 Ni O, 036097686 Ni O, 056095585 Floor 0.10 180 901074 V O, 10 (80901082 V O, 50<10 0 50. 50 8
0V D,60 160 406064 V O,70S 507060 A/! , 0.10 240 901072St
O,02 (10098285 * Approximately 1 hour Example 4 Six-component alloy Nb1-jc shown in the first six columns of Table 3,
, 7Mxz, were subjected to the same treatment as in Example 6, and the final composition at 80% completion and equilibrium state shown in Table 6 was obtained.
i O,47Ga O,0655047476168Z
r O,25Fg 0.10560652510165
(4 others) Continued from page 1 Priority claim 04/5/1982■United States (US)■3
65119

Claims (1)

【特許請求の範囲】 (lj  水素ガスを約0〜100℃の温度で、(a)
ニオブ、タンタルおよびそれらの混合物よりなる群から
選ばれる体心立方相構造を形成する第1の金属、ならび
に (b)  これらの体心立方相構造中に溶解した、アル
ミニウム、コバルト、クロム、鉄、マンガン、モリブデ
ン、ニッケル、銅、バナジウム、ケイ素、ゲルマニウム
、ガリウムおよびそれらの混合物よりなる群から選ばれ
る第2の金属少なくとも0.5原子%よりなる固溶体と
反応させ、その際上記の温度におけるこの固溶体と水素
の反応速度が上記の温度および等しい圧力における第1
の金属と水素の反応速度の少なくとも2倍であることよ
りなる、金属水素化物の製造方法。 (2)第1の金属がニオブである、特許請求の範囲第1
項記載の方法。 (3)第2の金属がバナジウムである、特許請求の範囲
第2項記載の方法。 (4)固溶体がさらにジルコニウムおよびチタンよりな
る群から選ばれる少なくとも1種の追加金属5〜70原
子%を含み、この追加金属と第2の金属の量が体心立方
相構造中に共に溶解できるほど十分に少ない、特許請求
の範囲第2項記載の方法。 +b+m2の金属がアルミニウム、ケイ素、ゲルマニウ
ム、ガリウムおよびそれらの混合物よりなる群から選ば
れる、特許請求の範囲第2項記載の方法。 (6)第2の金属がケイ素である、特許請求の範囲第5
項記載の方法。 (7)第2の金属が1〜10原子%の量で存在する、特
許請求の範囲第5項記載の方法。 (8)第2の金属が1〜10原子%の量で存在する、特
許請求の範囲第1項記載の方法。 (9)温度が0〜50℃であり、固溶体が1000μm
以上の粒径をもつ塊状である、特許請求の範囲w1項記
載の方法。 00)水素ガスが水素、不活性ガスおよび剛着の一酸化
炭素を含む気体混合物中に存在し、この混合物が水素化
に有害な気体を実質的に含まない、特許請求の範囲第1
項記載の方法。
[Claims] (lj Hydrogen gas at a temperature of about 0 to 100°C, (a)
a first metal forming a body-centered cubic phase structure selected from the group consisting of niobium, tantalum, and mixtures thereof, and (b) aluminum, cobalt, chromium, iron, dissolved in these body-centered cubic phase structures; reacting with a solid solution consisting of at least 0.5 atom % of a second metal selected from the group consisting of manganese, molybdenum, nickel, copper, vanadium, silicon, germanium, gallium and mixtures thereof, at a temperature mentioned above; and hydrogen at the above temperature and equal pressure.
A method for producing a metal hydride, the reaction rate of which is at least twice the reaction rate of metal and hydrogen. (2) Claim 1, wherein the first metal is niobium
The method described in section. (3) The method according to claim 2, wherein the second metal is vanadium. (4) The solid solution further contains 5 to 70 atomic percent of at least one additional metal selected from the group consisting of zirconium and titanium, and the amount of the additional metal and the second metal can be dissolved together in a body-centered cubic phase structure. 3. The method of claim 2, wherein the method is substantially less than 100%. 3. The method of claim 2, wherein the +b+m2 metal is selected from the group consisting of aluminum, silicon, germanium, gallium and mixtures thereof. (6) Claim 5, wherein the second metal is silicon.
The method described in section. (7) The method of claim 5, wherein the second metal is present in an amount of 1 to 10 atomic percent. (8) The method of claim 1, wherein the second metal is present in an amount of 1 to 10 atomic percent. (9) The temperature is 0 to 50°C, and the solid solution is 1000 μm
The method according to claim w1, wherein the method is in the form of a lump having a particle size of at least 100 mL. 00) The hydrogen gas is present in a gas mixture comprising hydrogen, an inert gas and rigid carbon monoxide, the mixture being substantially free of gases harmful to hydrogenation.
The method described in section.
JP19669882A 1981-11-12 1982-11-09 Method of hydrogenating body-centered cubic phase alloy at room temperature Pending JPS5888102A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32039181A 1981-11-12 1981-11-12
US320391 1981-11-12
US365119 1982-04-05

Publications (1)

Publication Number Publication Date
JPS5888102A true JPS5888102A (en) 1983-05-26

Family

ID=23246199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19669882A Pending JPS5888102A (en) 1981-11-12 1982-11-09 Method of hydrogenating body-centered cubic phase alloy at room temperature

Country Status (1)

Country Link
JP (1) JPS5888102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159503A (en) * 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Hydrogen separating film of niobium alloy
JP2007113977A (en) * 2005-10-19 2007-05-10 Hara Doki Kk Multifunctional tape measure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118917A (en) * 1974-03-04 1975-09-18
JPS50123022A (en) * 1974-03-18 1975-09-27
JPS50123019A (en) * 1974-03-15 1975-09-27
JPS51124616A (en) * 1975-04-25 1976-10-30 Hitachi Ltd Activation method of hydrogen storage material
JPS5392317A (en) * 1977-01-25 1978-08-14 Agency Of Ind Science & Technol Hydrogen storing tib1-xax alloy
JPS5468702A (en) * 1977-11-11 1979-06-02 Matsushita Electric Ind Co Ltd Material for preserving hydrogen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118917A (en) * 1974-03-04 1975-09-18
JPS50123019A (en) * 1974-03-15 1975-09-27
JPS50123022A (en) * 1974-03-18 1975-09-27
JPS51124616A (en) * 1975-04-25 1976-10-30 Hitachi Ltd Activation method of hydrogen storage material
JPS5392317A (en) * 1977-01-25 1978-08-14 Agency Of Ind Science & Technol Hydrogen storing tib1-xax alloy
JPS5468702A (en) * 1977-11-11 1979-06-02 Matsushita Electric Ind Co Ltd Material for preserving hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159503A (en) * 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Hydrogen separating film of niobium alloy
JP2007113977A (en) * 2005-10-19 2007-05-10 Hara Doki Kk Multifunctional tape measure

Similar Documents

Publication Publication Date Title
US4839085A (en) Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
US4440737A (en) Room temperature reaction of vanadium-based alloys with hydrogen
US4425318A (en) Hydriding body-centered cubic phase alloys at room temperature
US4269624A (en) Method for the production of non-evaporable ternary gettering alloys
US4440736A (en) Titanium-based body-centered cubic phase alloy compositions and room temperature hydride-forming reactions of same
US4996002A (en) Tough and porus getters manufactured by means of hydrogen pulverization
US4783329A (en) Hydriding solid solution alloys having a body centered cubic structure stabilized by quenching near euctectoid compositions
JPS5888102A (en) Method of hydrogenating body-centered cubic phase alloy at room temperature
JPS5928626B2 (en) Mitsushi Metal for Hydrogen Storage - Manufacturing method of nickel-based quaternary alloy
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
JPS5978908A (en) Titanium-base cubic alloy composition and manufacture of hydride of same at room temperature
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
US2926071A (en) Preparation of titanium nitride of high purity
JPS61250136A (en) Titanium-type hydrogen occluding alloy
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
US4670216A (en) Process for producing molybdenum and tungsten alloys containing metal carbides
JPS6256939B2 (en)
JPH0471985B2 (en)
JPS5928624B2 (en) Manufacturing method for hydrogen storage alloy
JPS5983908A (en) Manufacture of hydride of vanadium-base alloy
JPS59208037A (en) Alloy for storing hydrogen
JPS6159389B2 (en)
JPS583025B2 (en) Metal materials for hydrogen storage
JPS5946294B2 (en) Method for manufacturing hydrogen storage material