JPS5928624B2 - Manufacturing method for hydrogen storage alloy - Google Patents

Manufacturing method for hydrogen storage alloy

Info

Publication number
JPS5928624B2
JPS5928624B2 JP55123663A JP12366380A JPS5928624B2 JP S5928624 B2 JPS5928624 B2 JP S5928624B2 JP 55123663 A JP55123663 A JP 55123663A JP 12366380 A JP12366380 A JP 12366380A JP S5928624 B2 JPS5928624 B2 JP S5928624B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123663A
Other languages
Japanese (ja)
Other versions
JPS5747854A (en
Inventor
泰章 大角
博 鈴木
明彦 加藤
啓介 小黒
重征 河合
忠義 種井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sekisui Chemical Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sekisui Chemical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP55123663A priority Critical patent/JPS5928624B2/en
Publication of JPS5747854A publication Critical patent/JPS5747854A/en
Publication of JPS5928624B2 publication Critical patent/JPS5928624B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明は水素吸蔵用合金、特にMm (ミツシュメタル
)、Ni、Mnを主構成元素として含むMmNi 5−
xMnx系合金の製造法に関し、水素吸蔵用合金に詳し
くは一定温度における水素吸蔵解離平衡圧の平坦部、所
謂プラトー域での該平衡圧の圧力変化の小さい合金の製
造法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides hydrogen storage alloys, particularly MmNi 5-
Regarding the manufacturing method of xMnx alloys, in detail for hydrogen storage alloys, the present invention provides a method for manufacturing alloys with small pressure changes in the equilibrium pressure at a flat part of the hydrogen storage dissociation equilibrium pressure at a constant temperature, the so-called plateau region. .

或種の金属もしくは合金は、特定の条件下で水素と定量
的に反応して金属水素化物となる事が知られている。
It is known that certain metals or alloys react quantitatively with hydrogen to form metal hydrides under certain conditions.

この反応は可逆反応であるため、種種のシステムへの応
用が実用化され、あるいは研究されつトある。
Since this reaction is reversible, its application to various systems has been put into practical use or is being studied.

これら金属水素化物を使用するための重要な特性の一つ
が、一定温度における水素吸蔵解離平衡圧特性であり、
特にプラトー域が平坦で圧力変化が小さい事が要求され
ている。
One of the important properties for using these metal hydrides is the hydrogen storage dissociation equilibrium pressure property at a constant temperature.
In particular, it is required that the plateau region be flat and the pressure change be small.

この合金として、MmNi 5−xMnx系合金が開発
されているが、この合金は従来、成分単体金属をアルゴ
ンアーク炉、高周波炉等で直接溶融し、水冷ルツボ等で
急冷して製造するために液体一固体の相変化が急凝に起
きるため、不安定な格子間隔をもったまメ固化しプラト
ー域での圧力変化が大きくなる欠点があった。
MmNi 5-xMnx alloy has been developed as this alloy, but this alloy has conventionally been produced by directly melting the component metals in an argon arc furnace, high-frequency furnace, etc., and then rapidly cooling them in a water-cooled crucible. Since the phase change of a solid occurs rapidly, it solidifies with an unstable lattice spacing, resulting in a large pressure change in the plateau region.

本発明は上記従来の欠点を解消することを目的とし、そ
の要旨はMmN i 5− x Mnx系の合金を溶融
温度より低温の700℃乃至1000℃で加熱し、そし
て冷却することにある。
The purpose of the present invention is to solve the above-mentioned conventional drawbacks, and the gist thereof is to heat a MmN i 5- x Mnx alloy at a temperature of 700° C. to 1000° C., which is lower than the melting temperature, and then cool it.

本発明においては、主としてニッケル、マンガン及びミ
ツシュメタルより構成され、その組成がMmN i 5
− x Mn xで表わされ、Xが0.2〜2.0の範
囲である合金を対象とする。
In the present invention, it is mainly composed of nickel, manganese and Mitsushi metal, and its composition is MmN i 5
- Alloys represented by x Mn x, where X is in the range of 0.2 to 2.0, are targeted.

この合金は、比較的安価に得られ、水素吸蔵量も大きい
特徴があるが、ミツシュメタルの成分の一つであるセリ
ウム分が増加するに従ってプラトー域での勾配が大きく
なることが知られている。
This alloy can be obtained relatively inexpensively and has a large hydrogen storage capacity, but it is known that as the cerium content, which is one of the components of Mitsushi metal, increases, the gradient in the plateau region becomes larger.

又、マンガンの量が増大するに従って、MmNi5−x
MnxのXが0.2を越えると、やはりプラトー域の勾
配が大きくなる。
Also, as the amount of manganese increases, MmNi5-x
When X of Mnx exceeds 0.2, the slope of the plateau region also increases.

従って、本発明の実施に際してはセリウムがミツシュメ
タルの50%以上を構成し、しかもMnxのXが0.2
以上である合金に対して特に有効になる。
Therefore, when carrying out the present invention, cerium constitutes 50% or more of Mitsushi metal, and X of Mnx is 0.2.
It is particularly effective for alloys with the above-mentioned values.

MmNi5−XMnX系の水素吸蔵用合金は、まず周知
の如くアルゴンアーク炉等を用いて成分単体金属を溶融
して合金となせばよい。
The MmNi5-XMnX-based hydrogen storage alloy can be prepared by first melting the component metals using an argon arc furnace or the like, as is well known, to form an alloy.

次いで真空中あるいはアルゴン等の不活性ガス雰囲気中
で該合金をシリコニットあるいはニクロム発熱体等の電
気炉で、700℃乃至1000℃の温度で加熱し、そし
て次に冷却することにより、水素吸蔵用合金を製造せし
めるのである。
Next, the alloy is heated in a vacuum or in an inert gas atmosphere such as argon in an electric furnace using a siliconite or nichrome heating element at a temperature of 700°C to 1000°C, and then cooled to produce a hydrogen storage alloy. It makes them manufacture.

MmN i 5− x Mx系合金の加熱には、その溶
融温度約1330℃より低い1000’C以下であれば
、特殊な操作、装置を用いなくとも、良好な結果が得ら
れることを見い出した。
It has been found that when heating the MmN i 5- x Mx alloy at a temperature of 1000'C or less, which is lower than its melting temperature of about 1330C, good results can be obtained without using special operations or equipment.

1000℃を越えて溶融温度付近になると、マンガンの
高い蒸気圧のための目的の合金が得難くなるものと推考
される。
It is assumed that when the temperature exceeds 1000° C. and approaches the melting temperature, it becomes difficult to obtain the desired alloy due to the high vapor pressure of manganese.

一方、加熱温度が700℃未満となれば、加熱時間が長
時間必要となり、現実的ではなくなる。
On the other hand, if the heating temperature is less than 700° C., a long heating time is required, which is not practical.

好ましくは800℃以上であることが望ましG)。The temperature is preferably 800°C or higher (G).

合金の加熱後の冷却は、直ちに氷水中に浸漬してもよい
し、空気中で徐冷してもよい。
After heating, the alloy may be cooled by immediately immersing it in ice water or by slowly cooling it in air.

本発明製造法によって得られた水素吸蔵用合金は、単−
相からなり、しかも結晶の格子間距離もはゾ均一で、結
晶粒子の太きさもはシ一定であるため、従来のものに比
べ水素の吸蔵解離平衡圧の平坦部、所謂プラトー域での
圧力変化が極めて小さいので、実用上吸蔵放出して利用
し得る水素量が大きくなるという利点を有し、しかも、
活性化処理における水素との反応速度が大きく、反応完
結時間が短かくなり、活性化が極めて容易になされると
いう水素吸蔵用合金として実用上極めて有益な特性が得
られるのである。
The hydrogen storage alloy obtained by the production method of the present invention is
Furthermore, since the interstitial distance of the crystals is uniform and the size of the crystal particles is constant, the pressure in the so-called plateau region of hydrogen absorption and dissociation equilibrium pressure is lower than that of conventional ones. Since the change is extremely small, it has the advantage of increasing the amount of hydrogen that can be absorbed and desorbed in practical use.
The reaction rate with hydrogen during activation treatment is high, the reaction completion time is short, and activation is extremely easy, which are extremely useful properties in practice as a hydrogen storage alloy.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

市販のミツシュメタル(成分はランクニューム約24%
、セリウム約62%)、高純度ニッケル、高純度マンガ
ンを各々MmN i 4.5 Mn 6.5の組成にな
るように分取した後、これを水冷銅ルツボに入れ、アル
ゴンアーク炉で直接溶融させる。
Commercially available Mitsushmetal (component is approximately 24% Rank Nuum)
After separating high-purity nickel and high-purity manganese to a composition of MmN i 4.5 Mn 6.5, they were placed in a water-cooled copper crucible and directly melted in an argon arc furnace. let

溶融を数回繰返して組成の均質化を行った後、炉より取
出して、これを原料とする。
After repeating melting several times to homogenize the composition, it is taken out of the furnace and used as a raw material.

この塊状の原料を石英容器に入れ、容器内にアルゴンガ
スを導入して容器内を十分にガス置換した後、真空装置
で容器内を1 torrに減圧した。
This lumpy raw material was placed in a quartz container, and after introducing argon gas into the container to sufficiently replace the inside of the container with gas, the pressure inside the container was reduced to 1 torr using a vacuum device.

この容器を予じめ950℃に保持している電気炉中に入
れ、2時間加熱したのち電気炉より容器を取出し、直ち
に氷水中で冷却して、水素吸蔵用合金を製造した。
This container was placed in an electric furnace previously maintained at 950° C., heated for 2 hours, and then taken out from the electric furnace and immediately cooled in ice water to produce a hydrogen storage alloy.

この合金をX線回析した結果を、第1図に示す。The results of X-ray diffraction of this alloy are shown in FIG.

この結果を本発明製造法によらない同じ組成の合金のX
線回折図と比較した所、回折図形がよりシャープで、し
かも半値巾も小さく、均質な結晶相となっていることが
明らかである。
This result can be compared to the X
When compared with the line diffraction pattern, it is clear that the diffraction pattern is sharper and the half width is smaller, indicating a homogeneous crystalline phase.

水素吸蔵用合金は活性化処理を施して合金が定量的に水
素の吸蔵放出反応を起こすようにする必要がある。
It is necessary to perform an activation treatment on the hydrogen storage alloy so that the alloy undergoes a quantitative hydrogen storage and release reaction.

この活性化処理はMl−11N14.5 Mn o、5
の場合は30 Ky/crfH度の圧力を常温で合金に
印加すれば可能である。
This activation treatment was performed using Ml-11N14.5 Mn o, 5
This can be achieved by applying a pressure of 30 Ky/crfH degrees to the alloy at room temperature.

この実施例による合金と比較例の合金の活性化反応の進
行状態を第2図に示す。
FIG. 2 shows the progress of the activation reaction of the alloy according to this example and the alloy of the comparative example.

実施例の合金のものは、比較例の合金よりも100%反
応を完了する時間が約1/3に短縮されることが確認さ
れた。
It was confirmed that the time required for completing 100% reaction of the alloy of the example was reduced to about ⅓ compared to the alloy of the comparative example.

水素平衡圧−水素化物組成曲線は第3図に示した。The hydrogen equilibrium pressure-hydride composition curve is shown in FIG.

30℃においては、実施例のMmNi4,5Mn□、5
合金の所謂プラトー域は水素平衡圧2.1−2.9at
mを示した。
At 30°C, MmNi4,5Mn□,5
The so-called plateau region of the alloy is at a hydrogen equilibrium pressure of 2.1-2.9at.
m was shown.

比較例においてはプラトー域は1、1−7.0 atm
を示し、本発明製造法により、プラトー域の圧力変化が
極めて小さくなった水素吸蔵用合金が得られた事が確認
された。
In the comparative example, the plateau region is 1, 1-7.0 atm
It was confirmed that the production method of the present invention produced a hydrogen storage alloy in which the pressure change in the plateau region was extremely small.

尚、上記と同じ組成のMmNi4.5 Mn□、5合金
の、加熱温度を850℃、750℃にし、加熱時間を段
階的に変えたものの、効果を確認した。
In addition, although the heating temperature of MmNi4.5Mn□,5 alloy having the same composition as above was set to 850°C and 750°C, and the heating time was changed stepwise, the effect was confirmed.

比較は上記の加熱温度950℃、加熱時間2時間の実施
例において、 の値を100とし、他の実施例における同じ計算値でf
に対し90〜100%のものをA、70〜90%のもの
をB、50〜70%のものをCに評価した。
For comparison, in the above example in which the heating temperature was 950°C and the heating time was 2 hours, the value of was set to 100, and the same calculated value in other examples was used.
90% to 100% of the sample was rated A, 70% to 90% was rated B, and 50% to 70% was rated C.

その結果を第1表に示す。The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明製造法による実施例と比較例
を対比するもので、第1図は合金のX線回折図、第2図
は合金の初期水素化反応速度図、第3図は合金の水素平
衡圧−水素化物組成曲線図である。
Figures 1 to 3 compare examples and comparative examples according to the production method of the present invention, with Figure 1 being an X-ray diffraction diagram of the alloy, Figure 2 being an initial hydrogenation reaction rate diagram of the alloy, and Figure 3 being The figure is a hydrogen equilibrium pressure-hydride composition curve diagram of the alloy.

Claims (1)

【特許請求の範囲】[Claims] 1 主としてニッケル、マンガン及びミツシュメタルよ
り構成され、その組成がMmNi5−xMnxで表わさ
れ、Xが0.2〜2,0の範囲である合金を、700°
C乃至1000°Cの温度で加熱し、次いでその合金を
冷却することを特徴とする水素吸蔵用合金の製造法。
1. An alloy mainly composed of nickel, manganese and Mitsushi metal, whose composition is represented by MmNi5-xMnx, and where X is in the range of 0.2 to 2.0, is heated at 700°
1. A method for producing a hydrogen storage alloy, which comprises heating at a temperature of 1000°C to 1000°C, and then cooling the alloy.
JP55123663A 1980-09-05 1980-09-05 Manufacturing method for hydrogen storage alloy Expired JPS5928624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55123663A JPS5928624B2 (en) 1980-09-05 1980-09-05 Manufacturing method for hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55123663A JPS5928624B2 (en) 1980-09-05 1980-09-05 Manufacturing method for hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS5747854A JPS5747854A (en) 1982-03-18
JPS5928624B2 true JPS5928624B2 (en) 1984-07-14

Family

ID=14866199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55123663A Expired JPS5928624B2 (en) 1980-09-05 1980-09-05 Manufacturing method for hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPS5928624B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752559Y2 (en) * 1986-12-10 1995-11-29 東洋リビング株式会社 Automatic dryer
JP2940730B2 (en) * 1991-09-30 1999-08-25 三洋電機株式会社 Evaluation method of equilibrium characteristics of hydrogen storage alloy

Also Published As

Publication number Publication date
JPS5747854A (en) 1982-03-18

Similar Documents

Publication Publication Date Title
JPH0517293B2 (en)
JP4838963B2 (en) Method for producing hydrogen storage alloy
US4440737A (en) Room temperature reaction of vanadium-based alloys with hydrogen
Semenova et al. Structural phase transformation and shape memory effect in ZrRh and ZrIr
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
JPS5928626B2 (en) Mitsushi Metal for Hydrogen Storage - Manufacturing method of nickel-based quaternary alloy
JPS5928624B2 (en) Manufacturing method for hydrogen storage alloy
JP4183959B2 (en) Method for producing hydrogen storage alloy
Latuch et al. Crystallization of amorphous Al85Y10Ni5 and Al85Y5Ni10 alloys
US3770422A (en) Process for purifying eu and yb and forming refractory compounds therefrom
JPH0250968B2 (en)
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
US3342591A (en) Ferromagnetic compounds and method of preparation
JPH0471985B2 (en)
Predel et al. Precipitation behavior of α-solid solutions of the Fe-Sn system
JPS59107914A (en) Manufacture of diamond powder
JPH0826424B2 (en) Hydrogen storage alloy and method for producing the same
JPS60131942A (en) Hydrogen storage material for superchemical weight alloy
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
Mandal et al. bcc metastable phase coexisting with the icosahedral phase in rapidly quenched Fe 28 Ti 68 Si 4 alloys
Kimura et al. Solid state phase transformation of BaB 2 O 4 during the isothermal annealing process
JPS6256939B2 (en)
JPH02228434A (en) Manufacture of hydrogen storage alloy
JP3569743B2 (en) Skutterudite single crystal and method for producing the same
JPS583025B2 (en) Metal materials for hydrogen storage