JPS5946294B2 - Method for manufacturing hydrogen storage material - Google Patents

Method for manufacturing hydrogen storage material

Info

Publication number
JPS5946294B2
JPS5946294B2 JP54115771A JP11577179A JPS5946294B2 JP S5946294 B2 JPS5946294 B2 JP S5946294B2 JP 54115771 A JP54115771 A JP 54115771A JP 11577179 A JP11577179 A JP 11577179A JP S5946294 B2 JPS5946294 B2 JP S5946294B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage material
atmosphere
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54115771A
Other languages
Japanese (ja)
Other versions
JPS5641339A (en
Inventor
義人 福部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP54115771A priority Critical patent/JPS5946294B2/en
Publication of JPS5641339A publication Critical patent/JPS5641339A/en
Publication of JPS5946294B2 publication Critical patent/JPS5946294B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 この発明は水素貯蔵材料の製造方法に関し、特にTi、
Zr、Hfまたは稀土類に属する金属とFe、Coまた
はNiとの金属間化合物またはいくつかのかかる金属間
化合物で構成された水素貯蔵材料を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hydrogen storage material, and in particular to a method for producing a hydrogen storage material.
The present invention relates to a method for producing a hydrogen storage material composed of an intermetallic compound of Zr, Hf or a rare earth metal and Fe, Co or Ni or several such intermetallic compounds.

かかる金属間化合物は多量の水素を吸蔵して貯蔵できる
特性を有し、これによって構成された水素貯蔵材料を使
用する水素貯蔵方法は従来の水素を高度に圧縮した気体
としてまたは液化水素として貯蔵する方法に比べて水素
貯蔵能力が著しく太き(安全性にすぐれ取扱いが容易で
あり、従ってこのような水素貯蔵材料は最近特に注目さ
れて来た。
Such intermetallic compounds have the property of being able to absorb and store a large amount of hydrogen, and conventional hydrogen storage methods using hydrogen storage materials constructed using these intermetallic compounds store hydrogen as a highly compressed gas or as liquefied hydrogen. These hydrogen storage materials have recently attracted particular attention because they have significantly greater hydrogen storage capacity (they are safer and easier to handle) than conventional hydrogen storage methods.

上述の水素貯蔵材料を水素の貯蔵に使用する際には、例
えばこれを反応容器の中に収容し、この容器内を真空に
排気したのちにこれの中に適当な温度で高圧下に水素を
導入する。
When using the above-mentioned hydrogen storage material to store hydrogen, for example, it is placed in a reaction vessel, the inside of this vessel is evacuated, and then hydrogen is charged into the vessel at an appropriate temperature and under high pressure. Introduce.

この作業は活性化と称せられ、これによって多量の水素
が容器の中の水素貯蔵材料に金属間化合物を水素化させ
た状態で吸蔵される。
This operation is called activation, and it causes a large amount of hydrogen to be stored in the hydrogen storage material in the container in the form of hydrogenated intermetallic compounds.

それ以後は水素貯蔵材料は単に温度または圧力条件を変
えることによって必要に応じ所望のときに水素を吸収で
き或いは放出できる。
Thereafter, the hydrogen storage material can absorb or release hydrogen as needed and desired simply by changing temperature or pressure conditions.

しかしながら従来の製造方法例えばAr雰囲気中での原
料の溶解および凝固によって製造された上述したような
金属間化合物の水素貯蔵材料では、その中のTi、Zr
、Hfまたは稀土類金属が著しく活性であるからArガ
ス中に不純物として含有されている微量の酸素ガスによ
って材料の表面に酸化被膜が形成される。
However, in the above-mentioned intermetallic compound hydrogen storage material manufactured by conventional manufacturing methods, for example, by melting and solidifying raw materials in an Ar atmosphere, Ti, Zr, etc.
, Hf or rare earth metals are extremely active, so an oxide film is formed on the surface of the material by a trace amount of oxygen gas contained as an impurity in the Ar gas.

この酸化被膜は水素の出入を著しく阻止し、水素貯蔵材
料の水素貯蔵作用を大きく妨害する。
This oxide film significantly blocks the ingress and egress of hydrogen and greatly impedes the hydrogen storage function of the hydrogen storage material.

故に従来の製造方法によって作られた前述の金属間化合
物の水素貯蔵材料はその活性化に先立って酸化被膜を除
くための熱処理を必要とする。
Therefore, the aforementioned intermetallic hydrogen storage materials made by conventional manufacturing methods require heat treatment to remove the oxide layer prior to their activation.

しかしこの熱処理は例えば100kg/cmの水素雰囲
気中で材料を長時間に渉って450℃に維持するなどの
極めて厄介で時間および費用の掛る作業である。
However, this heat treatment is a very troublesome, time-consuming and expensive operation, such as maintaining the material at 450° C. for an extended period of time in a hydrogen atmosphere of 100 kg/cm.

この発明はこのような従来の欠点を除いた新規な水素貯
蔵材料の製造方法を提供することを目的とする。
The object of the present invention is to provide a novel method for producing a hydrogen storage material that eliminates such conventional drawbacks.

この目的の達成のためこの発明の水素貯蔵材料の製造方
法は、Ti、Zr、Hfおよび稀土類に属する金属のう
ちの1種類または多種類からなる第1原料とFe、Co
およびNiのうちの1種類または多種類カーらなる第2
原料とを水素雰囲気または水素と稀ガスの混合雰囲気の
中で一緒に溶解し凝固させて第1原料に含まれる金属と
第2原料に含まれる金属との金属間化合物によって構成
され若干量の水素を吸収した水素貯蔵材料を製造するこ
とを特徴とする。
To achieve this objective, the method for producing a hydrogen storage material of the present invention includes a first raw material consisting of one or more of Ti, Zr, Hf, and metals belonging to rare earths, and Fe, Co, etc.
and a second car consisting of one or more types of Ni.
The raw materials are melted and solidified together in a hydrogen atmosphere or a mixed atmosphere of hydrogen and a rare gas to form an intermetallic compound of the metal contained in the first raw material and the metal contained in the second raw material, with a slight amount of hydrogen. The method is characterized by producing a hydrogen storage material that absorbs hydrogen.

この方法において、第1原料と第2原料を一緒に溶解し
凝固させることによって上述のような金属間化合物で構
成される水素貯蔵材料が得られること自身は、すでに知
られている。
It is already known that in this method, a hydrogen storage material composed of the above-mentioned intermetallic compound can be obtained by melting and solidifying the first raw material and the second raw material together.

しかしながらかかる溶解および凝固を水素雰囲気または
水素と稀ガスの混合雰囲気中で達成することは、得られ
る水素貯蔵材料の特性を著しく改善させる新規な事項で
ある。
However, achieving such dissolution and solidification in a hydrogen atmosphere or a mixed hydrogen and rare gas atmosphere is a novelty that significantly improves the properties of the resulting hydrogen storage material.

この発明の方法によれば溶解および凝固の際にすなわち
まだ高温であるときに雰囲気中の水素が被溶解物の中に
吸収されて金属間化合物と結合する。
According to the method of the invention, during melting and solidification, ie while still hot, hydrogen in the atmosphere is absorbed into the material to be melted and combines with the intermetallic compound.

見出したところによれば、かかる予め吸収された水素は
活性化の際の水素吸収作用を促進させる。
It has been found that such pre-absorbed hydrogen enhances the hydrogen absorption action upon activation.

また、酸化被膜が実際上形成されることはなく、仮りに
酸化被膜などの被膜が形成されるとしても水素雰囲気中
で溶解凝固させた場合には水素の作用によってこの被膜
は水素を極めて通し易い多孔状に維持される。
In addition, an oxide film is not actually formed, and even if a film such as an oxide film is formed, when it is melted and solidified in a hydrogen atmosphere, this film is extremely permeable to hydrogen due to the action of hydrogen. Remains porous.

水素の作用に関する上述の説明は概念的であるけれども
、実際に見出したところによれば、この発明に従う製造
方法によって製造された水素貯蔵材料は、これと原料、
溶解方法を同じくし雰囲気をこの発明で作用される雰囲
気と異なる例えばAr雰囲気とした製造方法によって製
造された水素貯蔵材料よりすぐれた吸蔵能力を有する。
Although the above explanation regarding the action of hydrogen is conceptual, it has actually been found that the hydrogen storage material produced by the production method according to the present invention can be made by combining this and raw materials,
It has a better occlusion ability than a hydrogen storage material manufactured by a manufacturing method using the same melting method but using an atmosphere different from that used in the present invention, for example, an Ar atmosphere.

詳しく言えば従来方法による水素貯蔵材料を熱処理した
のちの吸蔵能力を熱処理なしに有する。
Specifically, it has the same storage capacity as a conventional hydrogen storage material without heat treatment.

実際にこの発明の方法によって得られた水素貯蔵材料は
熱処理を行なわな(でも充分に活性化できる。
In fact, the hydrogen storage material obtained by the method of the present invention can be sufficiently activated even without heat treatment.

上述したことから明らかなように雰囲気中の水素が水素
貯蔵材料にすぐれた特性を与えるのであるから、雰囲気
は水素だけからなるものでよい。
As is clear from the above, the atmosphere may consist solely of hydrogen, since hydrogen in the atmosphere provides excellent properties to the hydrogen storage material.

しかしながら水素は公知のように爆発するおそれが極め
て大きいので、水素と稀ガスの混合雰囲気を採用して水
素をある程度希釈して置(ことが望ましくかつ実用的で
ある。
However, as is well known, hydrogen has a very high risk of exploding, so it is desirable and practical to dilute the hydrogen to some extent by employing a mixed atmosphere of hydrogen and a rare gas.

よく知られているようにガスは実質上池の物質と反応し
ないので水素の作用を阻害しない。
As is well known, the gas does not substantially react with the substances in the pond and therefore does not interfere with the action of hydrogen.

稀ガス以外の気体と水素の混合雰囲気は、この気体が被
溶解物に作用して水素の作用を妨害すると考えられるの
で採用できない。
A mixed atmosphere of gases other than rare gases and hydrogen cannot be used because this gas is thought to act on the material to be dissolved and interfere with the action of hydrogen.

この発明の方法において溶解は種種の方法で達成できる
が、望ましいのは誘導加熱溶解および非消耗電極アーク
溶解である。
Melting in the process of this invention can be accomplished in a variety of ways, but preferred are induction heating melting and non-consumable electrode arc melting.

これら両溶解方法はいずれもこの発明の溶解方法で採用
される前述した原料の溶解に適し、また特定の雰囲気を
維持する密閉槽の中で溶解を行なうに適している。
Both of these dissolving methods are suitable for dissolving the above-mentioned raw materials employed in the dissolving method of the present invention, and are also suitable for dissolving in a closed tank in which a specific atmosphere is maintained.

もちろん凝固も前述した特定の雰囲気の中で行なわなけ
ればならないが、アーク溶解の場合には一般に溶解に使
用したルツボそれ自身が鋳型にでるのでこの点に問題は
ない。
Of course, solidification must also be carried out in the above-mentioned specific atmosphere, but in the case of arc melting, there is generally no problem in this regard because the crucible itself used for melting is exposed to the mold.

誘導加熱溶解の場合にはルツボおよび鋳型の双方が特定
雰囲気の中に配置されなげればならず、従って特定雰囲
気を維持する密閉槽の中にルツボ、鋳型および注湯機構
を収容するなどの対策を必要とする。
In the case of induction heating melting, both the crucible and the mold must be placed in a specific atmosphere, so measures such as housing the crucible, mold, and pouring mechanism in a closed tank that maintains a specific atmosphere are required. Requires.

なお、上述した特定雰囲気の中での溶解および凝固とは
、ルツボおよび鋳型が特定雰囲気の中に配置される場合
に限定されるのではなく、これらの中の被溶解物の露出
面が特定雰囲気に接触している状態での溶解凝固を意味
する。
Note that the above-mentioned melting and solidification in a specific atmosphere is not limited to cases in which the crucible and mold are placed in a specific atmosphere; Means melting and solidification while in contact with.

この発明の方法の実施例について説明すれば、タングス
テンの非消耗電極と銅水冷ルツボを使用した密閉型の非
消耗電極アーク溶解炉を使用し、稀ルツボの上方の密閉
空間の中を水素25%、稀ガスであるアルゴン(Ar)
75%の700トールの雰囲気に維持しなから純鉄(F
e)50%と純チタン(Ti)50%の混合物を溶解し
、溶解完了後にアーク電源を切ってルツボ内で溶湯を凝
固させた。
To describe an embodiment of the method of the present invention, a closed type non-consumable electrode arc melting furnace using a tungsten non-consumable electrode and a copper water-cooled crucible is used. , argon (Ar), a rare gas
Pure iron (F
e) A mixture of 50% pure titanium (Ti) and 50% pure titanium (Ti) was melted, and after the melting was completed, the arc power was turned off to solidify the molten metal in the crucible.

かくして得られたFeとTiからなる金属間化合物の塊
を破砕し、これの水素貯蔵特性を調べた。
The thus obtained lump of intermetallic compound consisting of Fe and Ti was crushed and its hydrogen storage properties were investigated.

その結果として、この方法で得られた金属間化合物は、
同一の溶解装置および同一の原料を使用してただし雰囲
気をアルゴン雰囲気として作られた金属間化合物の水素
貯蔵材料の熱処理後の水素貯蔵特性に実質上等しい特性
を、熱処理なしに備えていた。
As a result, the intermetallic compounds obtained by this method are
The intermetallic hydrogen storage material produced using the same melting equipment and the same raw materials but with an argon atmosphere had hydrogen storage properties after heat treatment, without heat treatment.

同様の作業はさらに、非消耗電極アーク溶解炉の代りに
密閉槽の中に誘導加熱ルツボ、鋳型および注湯機構を有
し密閉槽内の雰囲気内で溶解および凝固が達されるよう
になっている誘導加熱溶解炉を用いて、密閉槽内の雰囲
気を水素とアルゴンの混合雰囲気として行なわれた。
A similar operation is also carried out by using an induction heating crucible, a mold, and a pouring mechanism in a closed tank instead of a non-consumable electrode arc melting furnace, so that melting and solidification are achieved in the atmosphere inside the closed tank. The process was carried out using an induction heating melting furnace with a mixed atmosphere of hydrogen and argon in the closed tank.

また上記両溶解凝固方法で、第1原料および第2原料の
種類を変えてまたは水素とアルゴンの混合比を変えて試
験が行なわれ、いずれの場合にも水素貯蔵特性のす′ぐ
れた実質上熱処理を必要とせずに活性化できる水素貯蔵
材料が得られる。
Furthermore, with both of the melting and solidification methods mentioned above, tests were conducted by changing the types of the first raw material and the second raw material or by changing the mixing ratio of hydrogen and argon, and in each case, it was found that the hydrogen storage properties were substantially improved. A hydrogen storage material is obtained that can be activated without the need for heat treatment.

純水素の雰囲気の中でまたはアルゴン以外の稀ガスと水
素の混合雰囲気の中で溶解凝固を行なっても同様の効果
が得られることは明らかである。
It is clear that similar effects can be obtained by performing melting and solidification in an atmosphere of pure hydrogen or in a mixed atmosphere of hydrogen and a rare gas other than argon.

Claims (1)

【特許請求の範囲】[Claims] I Ti、Zr、Hfおよび稀土類に属する金属のう
ちの1種類または多種類からなる第1原料とFe、Co
およびNiのうちの1種類または多種類からなる第2原
料とを水素雰囲気または水素と稀ガスの混合雰囲気の中
で一緒に溶解し凝固させて、第1原料に含まれる金属と
第2原料に含まれる金属との金属間化合物によって構成
され若干量の水素を吸収した水素貯蔵材料を製造するこ
とを特徴とする水素貯蔵材料を製造する方法。
A first raw material consisting of one or more of Ti, Zr, Hf, and rare earth metals, and Fe, Co
and a second raw material consisting of one or more kinds of Ni in a hydrogen atmosphere or a mixed atmosphere of hydrogen and a rare gas, and solidify them together to dissolve the metal contained in the first raw material and the second raw material. 1. A method for producing a hydrogen storage material, which comprises producing a hydrogen storage material that is composed of an intermetallic compound with a metal contained therein and has absorbed a certain amount of hydrogen.
JP54115771A 1979-09-11 1979-09-11 Method for manufacturing hydrogen storage material Expired JPS5946294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54115771A JPS5946294B2 (en) 1979-09-11 1979-09-11 Method for manufacturing hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54115771A JPS5946294B2 (en) 1979-09-11 1979-09-11 Method for manufacturing hydrogen storage material

Publications (2)

Publication Number Publication Date
JPS5641339A JPS5641339A (en) 1981-04-18
JPS5946294B2 true JPS5946294B2 (en) 1984-11-12

Family

ID=14670640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54115771A Expired JPS5946294B2 (en) 1979-09-11 1979-09-11 Method for manufacturing hydrogen storage material

Country Status (1)

Country Link
JP (1) JPS5946294B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209433A (en) * 1983-05-12 1984-11-28 Yamato Tekkosho:Kk Method of mounting press-in type flange of container such as drum and the like
US5450721A (en) * 1992-08-04 1995-09-19 Ergenics, Inc. Exhaust gas preheating system

Also Published As

Publication number Publication date
JPS5641339A (en) 1981-04-18

Similar Documents

Publication Publication Date Title
JP2649245B2 (en) Method for producing tough and porous getter by hydrogen grinding and getter produced therefrom
US4079523A (en) Iron-titanium-mischmetal alloys for hydrogen storage
KR101214939B1 (en) Grain refiner of magnesium alloys and method for grain refining, method for manufacturing of magnesium alloys using the same, and magnesium alloys prepared thereby
JPH0517293B2 (en)
US3883346A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
US3637370A (en) Production of ferrovanadium alloys
JPS5946294B2 (en) Method for manufacturing hydrogen storage material
JP4956826B2 (en) Method for melting high vapor pressure metal-containing alloys
US3318683A (en) Refractory metal powders
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
US2361925A (en) Preparation of manganese products
JP2003277847A (en) Method for manufacturing hydrogen storage alloy
RU2535104C1 (en) METHOD OF SYNTHESIS OF NdNi5 INTERMETALLIC COMPOUND POWDER IN MOLTEN SALTS
JPS619533A (en) Manufacture of rare earth metal
RU2181784C1 (en) Metallothermic process for extracting rare-earth metals from their fluorides for producing alloys and charge for performing such process
JPS60228651A (en) Hydrogen storage substance and increase of storage capacity
JPS6256939B2 (en)
JP2003147472A (en) Hydrogen storage magnesium alloy
JPH0578715A (en) Production of alloy powder containing pare-earth metal
JPS648063B2 (en)
RU2102495C1 (en) Metallothermal reaction mixture
JPH0681011A (en) Production of alloy powder
DE3043360C2 (en) Process for the powder metallurgical production of magnesium alloys
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS5841334B2 (en) Quaternary hydrogen storage alloy