JPS5887859A - Cmos semiconductor integrated circuit - Google Patents

Cmos semiconductor integrated circuit

Info

Publication number
JPS5887859A
JPS5887859A JP56187284A JP18728481A JPS5887859A JP S5887859 A JPS5887859 A JP S5887859A JP 56187284 A JP56187284 A JP 56187284A JP 18728481 A JP18728481 A JP 18728481A JP S5887859 A JPS5887859 A JP S5887859A
Authority
JP
Japan
Prior art keywords
mosfet
channel
channel length
cmos inverter
layout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56187284A
Other languages
Japanese (ja)
Inventor
Masahiko Yoshimoto
雅彦 吉本
Kenji Anami
穴見 健治
Hiroshi Shinohara
尋史 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56187284A priority Critical patent/JPS5887859A/en
Publication of JPS5887859A publication Critical patent/JPS5887859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Abstract

PURPOSE:To enable to obtain a high degree of integration for the titled device by a method wherein the layout for a CMOS inverter is contrived in such a manner that the channel length direction of the MOSFET for load and that of the MOSFET for driving make crossing at a right angle. CONSTITUTION:As the drain and the source of the MOSFET for a p-channel type load are used as p<+> regions 15 and 16 respectively, and the section between these p<+> regions 15 and 16 is used as the channel of the current located between the drain and the source, a layout is made out in such a manner that the channel direction of them will be brought in vertical direction and that the channel length direction of the MOSFET 1 and 2 will be crossed making a right angle. By making out the layout of memory cells as above-mentioned, the built- in MOSFET 1 for load can be formed in an excellent reproducibility even when the channel length of the MOSFET 2 for driving is reduced to a submicron level as the microscopic formation of the cell progresses without depending upon the accuracy of mask-matching, thereby enabling to improve the degree of integration of the CMOS inverter pattern.

Description

【発明の詳細な説明】 この発明はCMOS (Complementary 
Mccal OxideSemiconductor)
半導体集積回路に関し、特に、CMO8回路の高集積度
化を可能にする縦型CMOSインバータのレイアウトに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention is a CMOS (Complementary
Mccal Oxide Semiconductor)
The present invention relates to semiconductor integrated circuits, and particularly to the layout of vertical CMOS inverters that enable higher integration of CMO8 circuits.

従来のこの種の装置としては第1図乃至第3図に示すも
のがあった。第1図はcN4osインバータの回路図、
第2図はそのレイアウト図、第3図はその構造を示す断
面図である。まず第1図に示す如く、CMOSインバー
タは電源端子(3)と接地線(6)との間に直列に、し
かも相補的に連結されるPチャネル型MO8FET(F
ield Effect Transistor) (
11およびNチャネル型MOS F ET [2)と、
入力端子(4)と、出力端子(5)とで構成される。ま
た第2図および第3図において、第111mポリシリコ
ン(11JはPチャネル型MOS F ET t1+と
Nチャネル型MOS FET (21とに対してそれぞ
れ共通のゲート電極として作用し、該第1層ポリシリコ
ン(11)は前記入力端子(4)に連結され、N+拡散
層(12) 、 Q3)と絶縁膜(17)とはそれぞれ
半導体基板(23)上に形成されたNチャンネル型MO
5FET(2)のドレイン、ソース及びゲート絶縁膜を
構十 成し、またP 領域(15) 、 +16+と絶縁膜(
旧とN型領域(14)とは、それぞれPチャンネル型M
OS FET (1+のドレイン、ソース、ゲート絶縁
膜及び基板を構成し、さらに一方の金属配線(1ωは、
コンタク)E)、@を十 介して、P 領域(19とN ’+拡散層(12とを相
互に連結し、また、他方の金属配線(20)は、p +
領域(16)をコンタクト(5)を介して前記電源端子
(3)に連結し、さらに金属配線21+はコンタクト(
28)を介してN+拡散層(131を接地線(6)に連
結し、以」ユの構成によって1ケのCMOSインバータ
を形成している。なお、(社)、(2滲は絶縁膜である
Conventional devices of this type include those shown in FIGS. 1 to 3. Figure 1 is a circuit diagram of a cN4os inverter.
FIG. 2 is a layout diagram thereof, and FIG. 3 is a sectional view showing its structure. First, as shown in FIG.
ield Effect Transistor) (
11 and an N-channel MOS FET [2],
It is composed of an input terminal (4) and an output terminal (5). In addition, in FIGS. 2 and 3, the 111m polysilicon (11J acts as a common gate electrode for the P-channel type MOS FET t1+ and the N-channel type MOS FET (21), respectively, and The silicon (11) is connected to the input terminal (4), and the N+ diffusion layer (12), Q3) and the insulating film (17) are each an N-channel type MO formed on the semiconductor substrate (23).
It constitutes the drain, source and gate insulating films of the 5FET (2), and also the P region (15), +16+ and the insulating film (
The old and N type regions (14) are respectively P channel type M
OS FET (consists of the drain, source, gate insulating film and substrate of 1+, and one metal wiring (1ω is
The P region (19) and the N'+ diffusion layer (12) are interconnected through the contacts) E) and @, and the other metal wiring (20) is connected to the p+
The region (16) is connected to the power terminal (3) via the contact (5), and the metal wiring 21+ is connected to the contact (5).
The N+ diffusion layer (131) is connected to the ground line (6) via the N+ diffusion layer (131), and one CMOS inverter is formed with the following configuration. be.

従来のCMOSインバータは以上のようにPチャネル型
MOS F ET (1)とNチャネル型MOS F 
E−1−(2)とのそれぞれのチャネル長方向が同方向
になるように構成されているので、負荷用MOS 1”
 E−r (1)のチャネル長(第3図における各要素
(15) +16+間の距離)を、駆動用MO8FET
[21のチャネル長(第3図における各要素+12) 
Q、l1間の距離)よりも短かくする必要があり、その
ために、微細化の進展とともに駆動用、 MOS l 
F ET121のチャンネル長がサブミクロンレベルま
で縮小化された時に、負荷用MO8IJ FET(1)
を再現性よくつくりつけることが困難になり、集積度が
向上しないなどの欠点があった。
As mentioned above, conventional CMOS inverters are composed of P-channel type MOS FET (1) and N-channel type MOS FET (1).
Since the channel length directions of E-1-(2) and E-1-(2) are the same, the load MOS 1"
The channel length of E-r (1) (distance between each element (15) +16+ in Figure 3) is determined by the MO8FET for driving.
[Channel length of 21 (each element in Figure 3 + 12)
It is necessary to make the distance between Q and l1 shorter than the distance between Q and l1.
When the channel length of FET121 was reduced to the submicron level, MO8IJ FET (1) for load
The disadvantages were that it became difficult to produce with good reproducibility and the degree of integration did not improve.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、負荷用MOS 型F ETのチャ
ネル長方向と駆動用MO5I FE−rのチャネル長方
向が互に直交するようにCMOSインバータをレイアウ
トすることにより、高集積度化を可能にするCMO8集
積回路を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the CMOS is designed so that the channel length direction of the load MOS type FET and the channel length direction of the drive MO5I FE-r are orthogonal to each other. The purpose of this invention is to provide a CMO8 integrated circuit that enables high integration by arranging inverters.

以下、この発明の一実施例を図について説明する。第4
図は本発明のレイアウトで構成されたCMOSインバー
タのパターン図、第5図は第4図のV−V線断面図、第
6図は第4図のVl−VI線断面図であり、これらの各
図において第2図および第3図と同一番号は同一のもの
をあられしている。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
The figure is a pattern diagram of a CMOS inverter configured with the layout of the present invention, FIG. 5 is a sectional view taken along the line V-V in FIG. 4, and FIG. 6 is a sectional view taken along the line Vl-VI in FIG. 4. In each figure, the same numbers as in FIGS. 2 and 3 refer to the same parts.

また、第4図乃至第6図に示されるCMOSインバータ
の回路は第1図に示されるものと同一である。
Further, the circuits of the CMOS inverters shown in FIGS. 4 to 6 are the same as that shown in FIG. 1.

本発明では、Pチャネル型負荷用MOS FET (1
1のチャネル長方向とNチャネル型部動用MOS F 
ET (2)のチャネル長方向とを互に直交させた点か
従来の構成と異なっている。
In the present invention, a P-channel type load MOS FET (1
1 channel length direction and N channel type partial movement MOS F
The difference from the conventional configuration is that the channel length directions of ET (2) are orthogonal to each other.

すなわち本実施例においては第1層ポリシリコン(11
)を前記各MOS F ET(1) (2)のそれぞれ
に共通のゲート電極とするCMOSインバータにおいて
、該CMOSインバータの駆動素子としての機能を有す
るNチャネル型部動用MOS FET (21のドレイ
ン及びソースはそれぞれN+拡散層(12)及び(13
)であるので、このNチャネル型部動用MOS F E
T+2+のチャネル長方向は第4図および第5図の左右
方向となり、このチャネル長方向に対してCMOSイン
バータの負荷素子としての機能を有するPチャンネル型
負荷用MOS F ET (11のチャネル長方向が直
交するようにレイアウトしたものである。すなわち、P
チャネル型負荷用MOS F ET (1)のドレイン
、及びソースはそれぞれP+領域0句及び(15)であ
り、これら各P+領域(旧09間が当然チャネル(ドレ
インソース間にある電流の通路)となるので、そのチャ
ネル長方向が第4図の上下方向(第6図の左右方向)に
なる如くレイアウトし、前記各MOS F ET il
l +21のチャネル長方向が互いに直交するようにな
したものである。
That is, in this example, the first layer polysilicon (11
) as a common gate electrode for each of the MOS FETs (1) and (2), an N-channel partial MOS FET (21 with drain and source are the N+ diffusion layers (12) and (13), respectively.
), so this N-channel type partial movement MOS F E
The channel length direction of T+2+ is the left-right direction in FIGS. They are laid out so that they are orthogonal, that is, P
The drain and source of channel-type load MOS FET (1) are P+ regions 0 and (15), respectively, and these P+ regions (former 09) are naturally the channel (current path between drain and source). Therefore, the layout is made so that the channel length direction is in the vertical direction in FIG. 4 (the horizontal direction in FIG. 6), and each of the MOS FETs is
The channel length directions of l +21 are orthogonal to each other.

このようにメモリセルをレイアウトすれば、微細化の進
展とともに駆動用MO8I FET(21のチャネル長
がサブミクロンレベルまで縮小化された時でも、マスク
合わせ精度に依存することなく、負荷用Mo5g FE
’r(1)を再現性よくつくりつけることができ、CM
OSインバータの集積度を向上させることができる。
If the memory cell is laid out in this way, even when the channel length of the driving MO8I FET (21) is reduced to the sub-micron level as miniaturization progresses, the load Mo5g FE can be used without depending on mask alignment accuracy.
'r(1) can be created with good reproducibility, and CM
The degree of integration of the OS inverter can be improved.

なお、上記実施例のCMOSインバータでは、Pチャン
ネル型MO8FET(1)がNチャンネル型MO8−F
E’r(2+の上に重なるようにレイアウトされたが、
上下逆にレイアウトされても同様の効果を奏することは
言うまでもない。その場合には、電圧の極性などを逆に
すればよい。また、上記実施例では負荷用MOS F 
ET +1+が駆動用MOS F ET(2+の上に重
なるようにレイアウトされたが、上下逆にレイアウトさ
れても同様の効果を奏する。
Note that in the CMOS inverter of the above embodiment, the P-channel type MO8FET (1) is replaced by the N-channel type MO8-FET.
E'r (It was laid out so that it overlapped with 2+,
It goes without saying that the same effect can be achieved even if the layout is upside down. In that case, the polarity of the voltage may be reversed. In addition, in the above embodiment, the load MOS F
Although the ET +1+ was laid out so as to overlap the driving MOS FET (2+), the same effect can be achieved even if the ET +1+ is laid out upside down.

以上のように、この発明によれば縦型CMOSインバー
タにおける、負荷用MO8FETのチャンネル長方向と
駆動用MO8P’E’lのチャンネル長方向とが互に直
交するようにレイアウトしたので、マスク合わせ精度に
依存することなく縦型CMOSインバータの集積度を向
上させることができる効果がある。
As described above, according to the present invention, the vertical CMOS inverter is laid out so that the channel length direction of the load MO8FET and the channel length direction of the drive MO8P'E'l are orthogonal to each other, so that mask alignment accuracy is achieved. There is an effect that the degree of integration of the vertical CMOS inverter can be improved without depending on the vertical CMOS inverter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCMOSインバータの回路図、第2図は
同レイアウト図、第3図は同断面図、第4図は本発明の
一実施例を示すCMOSインバータのレイアウト図、第
5図は第4図の■−■線矢視断面図、第6図は第4図の
Vl −Vl線断面図である。 (1)・・・・・・第1のMOS FET(2)・・・
・・・第2のMOSFETなお、図中、同一符号は同一
または相当部分を示す。 代理人  葛 野 信 − (7) 手続補正書(自発) ■、小事件表示    特願昭56−187284号2
・ 発明の名称    cMos半導体集積回路3、補
正をする者 事件との関係   特許出願人 (1) 5、補正の対象 明細帯の発明の詳細な説明の11春 6、補正の内容 明細書をつぎのとおり:”+ I”+ 1・ずろ。
FIG. 1 is a circuit diagram of a conventional CMOS inverter, FIG. 2 is a layout diagram thereof, FIG. 3 is a sectional view thereof, FIG. 4 is a layout diagram of a CMOS inverter showing an embodiment of the present invention, and FIG. 5 is a diagram of a conventional CMOS inverter. FIG. 4 is a sectional view taken along the line ■--■, and FIG. 6 is a sectional view taken along the line Vl--Vl in FIG. (1)...First MOS FET (2)...
...Second MOSFET Note that in the drawings, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - (7) Procedural amendment (voluntary) ■, Minor case indication Patent application No. 187284 No. 1984 2
・ Title of the invention: cMos semiconductor integrated circuit 3. Relationship with the person making the amendment: Patent applicant (1) As per: “+I”+1・Zuro.

Claims (2)

【特許請求の範囲】[Claims] (1)相互に相補的でありかつ直列に接続された第1お
よび第2のMOS型電界効果トランジスタ(以下MO8
FETと称す)を備え、前記第1のMOSFETは前記
第2のMOSFETの上に重ねられ、前記各MO8FE
Tのそれぞれのゲート電極を共有するようパターン配置
されたCMOSインバータにおいて、前記第1のMOS
、lFETのチャネル方向と前記第2のMOSFETの
チャンネル方向とが直交するようにレイアウトされたこ
とを特徴とするCMO5半導体集積回路。
(1) First and second MOS field effect transistors (hereinafter MO8) that are complementary to each other and connected in series.
FET), the first MOSFET is stacked on top of the second MOSFET, and each MOSFET
In the CMOS inverter patterned to share gate electrodes of each of the first MOS
, a CMO5 semiconductor integrated circuit, characterized in that the channel direction of the lFET and the channel direction of the second MOSFET are laid out so as to be orthogonal to each other.
(2)前記第1のMOSFETはCMOSインバータの
負荷素子として、前記第2のMOSFETはCMOSイ
ンバータの駆動素子としての機能を有することを特徴と
する特許請求の範囲第1項記載のCMOS半導体集積回
路。
(2) The CMOS semiconductor integrated circuit according to claim 1, wherein the first MOSFET has a function as a load element of a CMOS inverter, and the second MOSFET has a function as a driving element of the CMOS inverter. .
JP56187284A 1981-11-19 1981-11-19 Cmos semiconductor integrated circuit Pending JPS5887859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187284A JPS5887859A (en) 1981-11-19 1981-11-19 Cmos semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187284A JPS5887859A (en) 1981-11-19 1981-11-19 Cmos semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS5887859A true JPS5887859A (en) 1983-05-25

Family

ID=16203298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187284A Pending JPS5887859A (en) 1981-11-19 1981-11-19 Cmos semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5887859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315398A2 (en) * 1987-10-31 1989-05-10 Nec Corporation Stacked metal-insulator semiconductor device
US4916504A (en) * 1983-10-24 1990-04-10 Kabushiki Kaisha Toshiba Three-dimensional CMOS inverter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916504A (en) * 1983-10-24 1990-04-10 Kabushiki Kaisha Toshiba Three-dimensional CMOS inverter
EP0315398A2 (en) * 1987-10-31 1989-05-10 Nec Corporation Stacked metal-insulator semiconductor device

Similar Documents

Publication Publication Date Title
JP3038939B2 (en) Semiconductor device
JPH03114256A (en) Semiconductor storage device
US3639813A (en) Complementary enhancement and depletion mosfets with common gate and channel region, the depletion mosfet also being a jfet
JPS6043693B2 (en) drive circuit
TW478075B (en) Semiconductor device
JPS5887859A (en) Cmos semiconductor integrated circuit
JP2676888B2 (en) Semiconductor device
JPH04267551A (en) Thin film transistor
JPS61144875A (en) Mos integrated circuit
JPH0680799B2 (en) Complementary MOS integrated circuit
JP3248791B2 (en) Semiconductor device
EP0272753B1 (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
US5663587A (en) Field effect transistor of high breakdown voltage type having stable electrical characteristics
JPS58116760A (en) Complementary mos semiconductor device
JP4144248B2 (en) Semiconductor device
JPH03108766A (en) High breakdown strength transistor
JP2874706B2 (en) Semiconductor storage device
JPS5939061A (en) Semiconductor device
JPS6489366A (en) Semiconductor device
JP3071819B2 (en) Insulated gate type semiconductor device
JPS5916421B2 (en) SOS CMOS inverter
JPH09283640A (en) Static semiconductor memory device
JPH03104158A (en) Cmos type semiconductor device
JPH0258839A (en) Semiconductor device and manufacture thereof
JPH02310961A (en) Semiconductor device