JPS5885569A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5885569A
JPS5885569A JP18339681A JP18339681A JPS5885569A JP S5885569 A JPS5885569 A JP S5885569A JP 18339681 A JP18339681 A JP 18339681A JP 18339681 A JP18339681 A JP 18339681A JP S5885569 A JPS5885569 A JP S5885569A
Authority
JP
Japan
Prior art keywords
mask
gate electrode
wiring pattern
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18339681A
Other languages
Japanese (ja)
Other versions
JPS6354227B2 (en
Inventor
Koichiro Kotani
小谷 紘一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18339681A priority Critical patent/JPS5885569A/en
Publication of JPS5885569A publication Critical patent/JPS5885569A/en
Publication of JPS6354227B2 publication Critical patent/JPS6354227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To suppress the growing speed of an insulating film on a gate electrode by forming an insulating film after removing the part, to which ions of the gate electrode is implanted. CONSTITUTION:An N type active layer 3 is formed on a semi-insulating GaAs substrate 1, and a conductor film 4 made of high melting point metal silicide is then formed. A mask 5 is formed, a gate electrode 6 and wiring pattern 7 of the first layer are formed. After the mask 5 is removed, the etching is again performed, thereby shaping the sectional shape. With the electrode 6 and a mask 8 as masks a source high density region 9 and a drain high density region 10 are formed, the mask 8 is removed, the electrode 6 and the pattern 7 are etched, and electodes 11, 12 are then formed. An interlayer insulating film 13 is formed, the conductor film of the second layer is formed, the prescribed patterning is performed, thereby obtaining the wiring pattern 16 of the second layer.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明はゲート電極をマスクとしてイオン注入を行う電
界効呆トランジスタを含む半導体装置の該ゲート電極の
処理に関す。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to processing of a gate electrode of a semiconductor device including a field effect transistor in which ions are implanted using the gate electrode as a mask.

(2)技術の背景 半導体装置特に集積回路において、トランジスタ、ダイ
オード等の′電極もしくは引出′電極間全接続する配線
パターンは、しはしは一部の電極と同−導体膜から形成
され、又これらの−の配線が他の!!l[′、紛と交叉
することがしばしば必をとされるが、この場合にはその
電極配線パターンは通常二層以上の導体膜を用いて形成
される。
(2) Background of the technology In semiconductor devices, especially integrated circuits, the wiring pattern that connects all the 'electrodes or lead-out' electrodes of transistors, diodes, etc. is formed from the same conductive film as some of the electrodes, or These − wiring are other! ! It is often necessary to intersect the conductor film l[', but in this case, the electrode wiring pattern is usually formed using two or more layers of conductive films.

すなわちまず第一層の導体膜に所要のバターニングを施
して電極配線パターンの第一層を形成し、その上に例え
ば二酸化シリコン(Sin2)を窒化シリコン(Sis
N+)等よりなる絶縁膜を形成した後にこれに所要の開
口を設け、次いで第二層の導体膜を設け、所要のパター
ニングを施して電極配線パターンの第二層を形成するこ
とによシ、前記絶縁膜により交叉する配線相互間が絶縁
され、所要の接続が前記絶縁膜の開口においてなされる
電極配線パターンが形成される。
That is, first, the first layer of the conductor film is subjected to the required patterning to form the first layer of the electrode wiring pattern, and then, for example, silicon dioxide (Sin2) and silicon nitride (Sis) are deposited on top of the first layer of the electrode wiring pattern.
After forming an insulating film made of N+), etc., a required opening is formed in this, a second layer of conductive film is provided, and the required patterning is performed to form the second layer of the electrode wiring pattern. An electrode wiring pattern is formed in which intersecting wiring lines are insulated by the insulating film and required connections are made through openings in the insulating film.

(3)従来技術と問題点 前記の如く電極配線パターンを交叉させる場合において
、第一ノーの電極配線によりその上に形ルにされた絶縁
膜に段差を生じ、第二層の配線パターンは一般にはこの
段差を横断する形状となるから、段差のエッヂ部分で第
二層の配線パターンの断線を生じ易い。この断線に対す
る対策として、伯−米樹脂膜コート法と呼ばれるその凹
凸部分を絶縁膜で埋め込んで段差をなくす丈高温熱処理
を施すことによってその形状を清らかにする方法等が実
施されている。
(3) Prior art and problems When the electrode wiring patterns intersect as described above, the first electrode wiring causes a step in the insulating film formed on top of it, and the second layer wiring pattern generally Since the shape crosses this step, the second layer wiring pattern is likely to be disconnected at the edge of the step. As a countermeasure against this disconnection, a method called the Braun-American resin film coating method has been implemented, in which the irregularities are buried with an insulating film and a long high temperature heat treatment is applied to eliminate the steps, thereby making the shape clear.

これらの既に知られている高温熱処理を含む方法は、高
温熱処理に比較的に耐え得るシリコン(Si)を半導体
材料とする場合には容易に活用できるが、?1jえはガ
リウム離床(GaAs)等の化合物半尋体材利による半
導体装置の製造工程においては、結晶特性の劣化を起生
させることなり450℃程度以上の高温熱処理を長時m
1施すことは非常に困麹であるために前記方法に代る新
しい製造方法が必要とされる。
These already known methods involving high-temperature heat treatment can be easily utilized when the semiconductor material is silicon (Si), which can relatively withstand high-temperature heat treatment, but? 1j In the manufacturing process of semiconductor devices using compound semicircular materials such as gallium ablation (GaAs), high-temperature heat treatment at temperatures of about 450°C or higher is required for long periods of time, which may cause deterioration of crystal properties.
Since it is very difficult to apply koji, a new manufacturing method is needed to replace the above method.

しかるに、例えはGaAs半導体を用いて電界幼釆トラ
ンジスタを言む集積回路を製造する工程において、ゲー
ト化°、体ヲマスクとして注入する不純物をStとし、
第−廓の軍、極配線パターン上に設ける杷解膜を5in
2によって形ル又する場合に、ケート電極にイオン注入
の結呆生じた過剰のStが存在するときには、その面上
の5iOzの成長速度が正常の場合より犬となり、段差
が拡大され、更にその段差の肩が脹うむために、この段
差部分において、第二層の導体膜が充分に成長せず、或
いはバターニングが施し得ない等の障害を招く場合もあ
り、第二層の配線パターンの信頼度を著しく低下せしめ
る。
However, for example, in the process of manufacturing an integrated circuit called an electric field infant transistor using a GaAs semiconductor, the impurity implanted as a gate and body mask is St.
5-inch diaphragm film installed on the polar wiring pattern
In the case of form 2, when there is an excess of St resulting from ion implantation on the gate electrode, the growth rate of 5iOz on that surface is faster than normal, the step is enlarged, and the Because the shoulder of the step bulges, the second layer conductor film may not grow sufficiently at this step, or it may not be possible to perform patterning, which may result in problems such as the reliability of the second layer wiring pattern. significantly lowers the level of

(4)発明の目的 本発明はゲート電極をマスクとしてイオン注入全行う電
界効果トランジスタを含む半導体装置の製造方法におい
て、該イオン注入後の該ケート電極上の絶縁膜の成長速
度を低下せしめることを目的とする。
(4) Purpose of the Invention The present invention provides a method for manufacturing a semiconductor device including a field effect transistor in which all ion implantation is performed using the gate electrode as a mask, in which the growth rate of an insulating film on the gate electrode after the ion implantation is reduced. purpose.

(5)発明の構成 本発明の前H[:目的は、該ケート電極の該イオンを注
入された部分を除去することによシ達成される。
(5) Structure of the Invention The object of the present invention is achieved by removing the ion-implanted portion of the cathode electrode.

(6)%明の実施例 以−トに本発明を実施例により1面を参照して具体的に
説明する。
(6)% EXAMPLES The present invention will now be described in detail by way of examples with reference to the first page.

=3= 第1図乃至第9図はGaAs集積回路における本発明の
第一の実施例、第10図乃至第14図Fi第一の実施例
を部分的に変更した第二の実施例、第15図乃至17図
は第二の実施例を部分的に変更した第三の実施例を示す
kyr而図面あり、各図を通じて同−将月は同一対象部
分を示す。
=3= Figs. 1 to 9 show a first embodiment of the present invention in a GaAs integrated circuit, Figs. 10 to 14 show a second embodiment partially modified from the first embodiment, and Figs. Figures 15 to 17 are diagrams showing a third embodiment that is a partial modification of the second embodiment, and the same target portions are shown in each figure.

第1図に示す如く、半絶縁性GaAs−M−機1上に、
5i02によシマスフ2を設け、Si等の選択的イオン
注入を行った後に、温度700℃乃至900℃機農の酸
素を含捷ない雰H1気甲で15分間程友の熱処理を施し
てn@性層3を形成する。
As shown in FIG. 1, on a semi-insulating GaAs-M-machine 1,
5i02 was provided with a strip 2, and after selectively implanting ions such as Si, heat treatment was performed for 15 minutes in an oxygen-free atmosphere H1 at a temperature of 700°C to 900°C. A sexual layer 3 is formed.

次に第2図に示す如く、前記選択的イオン注入に用いた
マスク2を除去し基板10ケ衣面にゲート′喝極及び第
一層配線材料となる蘭融点金属珪化物例えばチタン/タ
ングステン・シリサイドよシなる導体膜4を厚さ600
nm程度にCVD法等により形成する。
Next, as shown in FIG. 2, the mask 2 used for the selective ion implantation is removed, and a gate electrode and a low melting point metal silicide, such as titanium/tungsten, which will be the first layer wiring material, are deposited on the surface of the substrate 10. The conductor film 4 made of silicide has a thickness of 600 mm.
It is formed by a CVD method or the like to a thickness of about nm.

次に第3図に示す如く、前記導体膜4にバターニングを
行うためのマスク5 k S io 2 等K ヨi化
hνすA。
Next, as shown in FIG. 3, a mask 5 for patterning the conductor film 4 is used.

4− 次に第4図に示す如く、前記導体膜4に対すル炭化水素
の弗素を主とするフルオルクロル置換体例えば四弗化炭
素(CF4)を主成分とするエラチャントラ用いたりア
クティブイオン−エツチングにより、ゲート電極6及び
第一層の配線パターン7を形成する。
4- Next, as shown in FIG. 4, the conductive film 4 is etched by using an elachantra containing fluorine-based hydrochloride substituted with carbon tetrafluoride (CF4) or by active ion etching. , a gate electrode 6 and a first layer wiring pattern 7 are formed.

グー)電極にマスクとしてソース領域及びドレイン領域
を形成するための不純物注入を行うセルフアライメント
(sea alignment )法kim用するり)
合には、ゲート電極の側端面が基板面に対して垂1mに
形成されることが理想である。
Self-alignment (sea alignment) method for implanting impurities to form source and drain regions on electrodes as a mask
In this case, it is ideal that the side end surfaces of the gate electrode be formed perpendicularly to the substrate surface by 1 m.

しかしながら実際に得られるケート′電極の断面は、ウ
ェットエツチングよりは良好であるドライエツチングに
よる場合であっても、上が狭い台フレとなる。この様な
断面形状のゲートをマスクとして不純物注入を行った眉
1合には、不純物の一抑が透過したマスク効果の不完全
な無職が意図した不純物注入領域に連続して形成され、
ソース高娘度領域及びドレイン高娘度領域が不明確にほ
かされ、半導体装置完成後においてケ−ト耐電圧の低下
をもたらす。
However, the cross section of the actually obtained Kate' electrode has a narrow flat top even when dry etching is used, which is better than wet etching. In the first row of eyebrows where impurity implantation was performed using a gate with such a cross-sectional shape as a mask, an incomplete mask effect in which a portion of the impurity was transmitted was formed continuously in the intended impurity implantation region.
The source high-density region and the drain high-density region are not defined clearly, resulting in a reduction in the gate withstand voltage after the semiconductor device is completed.

この問題に対処する第一の手段として、前記エツチング
U 111面エツチングの可及的少いガス圧力条件等を
選択する。
As a first means of dealing with this problem, the gas pressure conditions for etching the etched U 111 surface are selected as low as possible.

次に第5図に示す如く、前記マスク5を除去した後に重
ねて前記ゲート電極6及び配線パターン7のエツチング
を実施して、その断面形状を整形する。この断面形状の
整形は、ゲート電極6の側端面の裾の前記マスク効果の
不完全な領域を除去乃至削減するとともに、配線パター
ン7及びケート′Φ、砂6の上端面と両側端面とによっ
て形成されるエツジ部分の尖り乃至は角を除去して丸み
をおびた滑らかな形状とするものである。
Next, as shown in FIG. 5, after removing the mask 5, the gate electrode 6 and the wiring pattern 7 are etched to shape their cross-sectional shape. This shaping of the cross-sectional shape removes or reduces the incomplete area of the mask effect at the foot of the side end face of the gate electrode 6, and also removes or reduces the area where the mask effect is incomplete at the bottom of the side end face of the gate electrode 6. This method removes sharp edges or corners to create a rounded and smooth shape.

このエツチングは前のパターン形成のエツチングと同和
にリアクティブイオン・エツチングによったが、必要に
応じガス圧力条件等を調彰する。
This etching was carried out by reactive ion etching in the same way as the etching for the previous pattern formation, but the gas pressure conditions etc. were adjusted as necessary.

次に第6図に示す如く、ソース及びドレイン用高bE度
1氏抵抗化領域の形成を行う0すなわち、レジストを塗
布し、イオン注入を行う範囲に開口を設りるパターニン
グを施してマスク8を形成したイ枳・に、ゲート電極6
及び該マスク8をマスクとして、Si等の選択的イオン
注入を行い、前記と同様の熱処理を施して、キャリア濃
MCが表面で3 X IQI7 (m−3程度のソース
高濃度領域9及びドレイン高濃度領域10が形成される
Next, as shown in FIG. 6, a high bE degree 1 degree resistance region for the source and drain is formed. In other words, a resist is applied, patterning is performed to provide an opening in the area where ions are to be implanted, and a mask 8 is formed. A gate electrode 6 is formed on the
Then, using the mask 8 as a mask, selective ion implantation of Si or the like is performed, and the same heat treatment as described above is performed, so that the carrier-concentrated MC is on the surface with a source high concentration region 9 and a drain high concentration of about 3×IQI7 (m−3). A concentrated region 10 is formed.

次に第7図に示す如く、マスク8を除去した後にゲート
電極6及び配線パターン7のエツチングを実施し、その
後ソース高濃度領域9及びドレイン4m度領域lOにオ
ーミック接触する電@L11及び12を形成する。
Next, as shown in FIG. 7, after removing the mask 8, the gate electrode 6 and the wiring pattern 7 are etched, and then the electrodes @L11 and 12 which are in ohmic contact with the high concentration source region 9 and the drain 4m region 10 are etched. Form.

このイオン注入後にゲート電&6に施すエツチングは、
前記イオン注入の結果化じた過剰のStが存在する部分
を除去するもので本発明の特徴を構成する。すなわち、
該ゲート電極6上にCVD法による5in2水によって
絶縁膜を設けるとき、該ケート電極6に前b]シの過剰
のStが存在するときには、その面上のSin、の成長
速度が正常の場合より大となり、段差が拡大され、7− 更にその段差の肩が脹らむことを防止するものである。
The etching applied to the gate electrode &6 after this ion implantation is as follows:
A feature of the present invention is to remove the portion where excess St resulting from the ion implantation is present. That is,
When an insulating film is provided on the gate electrode 6 using 5 in 2 water by CVD method, when excess St exists on the gate electrode 6, the growth rate of Sin on the surface is faster than in the normal case. This prevents the shoulder of the step from bulging as the step becomes larger and the step becomes larger.

更にこのエツチングは該ゲート電極6の上端面と両側端
面によって形成されるエッチ部分の尖り乃至は角を除去
し、丸みをおびた消らかな形状とする効果を併せ有する
。特に本実施例の如く?一層の配線パターン7について
も同様にエツチングを行うときにはこの配侍パターン7
ル イン電極12媒、例えは蒸着によシ金・ケルマニウム・
金により構成する。
Furthermore, this etching has the effect of removing sharp edges or corners of the etched portion formed by the upper end surface and both side end surfaces of the gate electrode 6, and giving it a rounded, smooth shape. Especially like this example? When etching a single layer wiring pattern 7 in the same way, this wiring pattern 7 is etched.
Ruin electrode 12 medium, for example gold, kermanium,
Consists of money.

次に第8図に示す如く、鳩間絶籾族13を設はる。この
I曽間杷縁族13は例えばCVD法による5in2によ
シ厚さ600nm程区とする0本実カー−例においては
以上説明した如く、ケート電極6及び自1ねパターン7
のエツジ部分が丸みをおひだ滑らかな形状に整形され、
ケート電極6の通油なSiが存在する部分が除去されて
いるために、この1曽Ii:lI絶縁股13はケート寛
憚6或8− いは自e線パターン7上の段差部分においても滑らかな
形状となる。
Next, as shown in FIG. 8, Hatoma Zetsumozoku 13 is established. This I Soma loquat family 13 is made of, for example, a 5-in2 film made by CVD method and has a thickness of about 600 nm.
The edges are rounded and shaped into a smooth shape,
Since the portion of the gate electrode 6 where oil-permeable Si is present is removed, this IsoIi:lI insulating crotch 13 can be removed even in the step part on the gate electrode 6 or 8- or the self-e line pattern 7. It becomes a smooth shape.

次に第9図に示す如く、前b[:層間絶縁膜13に所要
の開口、例え[14及び15をリングラフィ法により設
けた後、第二層の導体膜を形成し、所要のパターニング
を実施して第二層の配線パターン16を得る。この第二
)曽の自[:紳パターン16の形成は第4図を径照して
説明した第−増の配勝パターン7の形成方法に準じて実
施することかTj]能であって、更に第二層の配線パタ
ーンを設けるなど、第二層の配線パターン16の!p形
を必鞍とする場合には、第二層の配線パターン16杉成
のだめのマスク除去波に矩ねて第5図を参照して説明し
たエツチングを実施する。
Next, as shown in FIG. 9, after forming required openings, e.g. 14 and 15, in the interlayer insulating film 13 by phosphorography, a second layer of conductive film is formed and the required patterning is performed. Then, a second layer wiring pattern 16 is obtained. The formation of this second) pattern 16 can be carried out in accordance with the method of forming the second-increase winning pattern 7 described with reference to FIG. Furthermore, the wiring pattern 16 of the second layer, such as providing a second layer wiring pattern! If p-type is required, the etching described with reference to FIG. 5 is carried out after the second layer wiring pattern 16 is removed from the mask.

以上説明した彫−の実施例を部分的に焦更した第二の実
施例について、第10図乃至第14図を径照して駅、明
する。
A second embodiment, which is a partial modification of the above-described embodiment, will be explained with reference to FIGS. 10 to 14.

ム」、−の実施例について第4図全会照して説明したケ
ート電極6及び第−鳩の配籾パターン7の形成後、ゲー
トlJτ欅6のマスク5を除去し2、第一層の配線パタ
ーン7のマスク5についテハ少くともその一部ヲ残蓋す
る。この状態のウェハについて第10図にボす如く、前
記第一の実施例と同様のケート電極6の断面形状のを形
を行う。この際配線パターン7は殆んどエツチングされ
ない。
After the formation of the gate electrode 6 and the paddy distribution pattern 7 of the first layer described with reference to FIG. 4, the mask 5 of the gate lJ At least a portion of the mask 5 of pattern 7 is left over. With respect to the wafer in this state, as shown in FIG. 10, the cross-sectional shape of the gate electrode 6 is shaped in the same manner as in the first embodiment. At this time, the wiring pattern 7 is hardly etched.

次に第11図に示す如く、レジストを塗布しイオン仕入
を杓う鉛、囲に開口を設けるバターニングを加1してマ
スク8i形成した後に、ケート電極6及びi5、マスク
8をマスクとして、Si等の選択的イオン注入を行い、
前i[:と同体の熱処理を施して1キャリア娘度が表■
で3×10晴m11程度のソース尚礎度狽域9及びドレ
イン畠み度領域10が形成される。
Next, as shown in FIG. 11, after applying a resist and applying lead to remove ions and buttering to form an opening in the surrounding area to form a mask 8i, the gate electrodes 6 and i5 and the mask 8 are used as a mask. , perform selective ion implantation of Si, etc.
After heat treatment with previous i [:, 1 carrier daughter degree is shown ■
As a result, a source roughness region 9 and a drain roughness region 10 of about 3×10 m11 are formed.

次に第12図に示す如く、イオン注入のマスク8及び配
線パターン7のエツチング・マスク5を除去した彼に、
ケート市、恰6及び配線パターン7のエツチングを実施
し、その俊ソース電極11及びドレイン電極12を形成
する。
Next, as shown in FIG. 12, after removing the ion implantation mask 8 and the etching mask 5 of the wiring pattern 7,
Etching is performed on the substrate and wiring pattern 7 to form a source electrode 11 and a drain electrode 12 thereon.

ここで行われるエツチングの効果は、ゲート電極6につ
いては第一の実施例の場合と]川じく、@配イオン注入
の粕来生じた過剰のSiが存在する部分を除去して、そ
の上に形成される5in2膜の成長連層を抑制すること
及びそのエツジ部分を丸みをおびた澹らがな形状とする
ことにある。
The effect of the etching performed here is that for the gate electrode 6, it is similar to that of the first embodiment; it removes the portion where excess Si, which was caused by the residue of the coordination ion implantation, is present, and then The objective is to suppress the growth of successive layers of the 5in2 film formed in the 5in2 film, and to make the edges of the film into a rounded and ragged shape.

他方配置14パターン7については、そのエツジ部分を
丸みをおびた滑らかな形状とする効果を与える。本実施
例においては第10図を参照して説明したエツチング処
理による配線パターン7のB+面積の減少が殆んどなく
、今回のエツチング後理後においても第一の実施例に比
較して大きい断面積の、側端面かや\傾斜した配線パタ
ーン7が得られる。
On the other hand, the pattern 7 in the arrangement 14 has the effect of making its edges rounded and smooth. In this example, there is almost no decrease in the B+ area of the wiring pattern 7 due to the etching process explained with reference to FIG. A wiring pattern 7 whose area is inclined at the side end surface is obtained.

次いで第13図及び第14図に示す如く、第一の実施例
と同様に絶縁膜13.第二層の配線パターン16の形成
を行う。
Next, as shown in FIGS. 13 and 14, the insulating film 13. A second layer wiring pattern 16 is formed.

史に第二の実施例を部分的に変更した第三の実施例につ
いて、第15図乃至第17図を参照−11= して説明する。
A third embodiment, which is a partial modification of the second embodiment, will be described with reference to FIGS. 15 to 17.

第二の実施例について第11図を参照して説明した畠i
凝度ソース(ii’+域9及びドレイン高濃度領域10
の形成後、第15図に示す如くイオン7王人のマスク8
を除ツ、・シ、自じ組パターン7のエツチング・マスク
5は残1鍵して、ケート電極6及び配線パターン7のエ
ツチングを実施し、その後ンース電椿11及びドレイン
電極12を形成する。
Hatake i who explained the second embodiment with reference to FIG.
Condensation source (ii'+ region 9 and drain high concentration region 10
After the formation of ion 7 king's mask 8 as shown in FIG.
The remaining etching mask 5 of the self-assembled pattern 7 is used to etch the gate electrode 6 and the wiring pattern 7, and then the base electrode 11 and the drain electrode 12 are formed.

ここで行われるエツチングの効果はケート電極6につい
ては前記画笑施例と同様であるが、本実施例のイオン注
入後のエツチングは、配線パターン7の仰]端面が基板
1に対して顔料し、エツジ部分が鈍角となる様ガス圧力
前の条件を設定しで行われる。この様に配線パターン7
のエツチングをマスク5を残して実施することにより、
エツチング後のその断聞檀が第二の実施例より史に大き
く、配線抵抗の上昇が抑制される0 次いでiJ+16図及び第17図にハ・す如くマス12
− り5の除去、PR膜13、第二層の配線パターン16の
形rMを行う。
The effect of the etching performed here is the same as in the above-mentioned embodiment for the gate electrode 6, but the etching after ion implantation in this embodiment is such that the upper end surface of the wiring pattern 7 is coated with pigment against the substrate 1. This is done by setting the conditions before the gas pressure so that the edge part becomes an obtuse angle. Wiring pattern 7 like this
By performing the etching while leaving the mask 5,
The pattern after etching is larger than that of the second embodiment, and the increase in wiring resistance is suppressed.
- Remove the layer 5, shape the PR film 13, and form the second layer wiring pattern 16.

(7)発明の効果 本発明は以上N9明した如く、ケート電極な・マスクと
してイオン注入を行う電界効果トランジスタを含む半纏
体製ら−の製造工程において、該ケート電極の該イオン
が注入された部分を除去した仮に絶縁膜を形成すること
により、該ゲート電極上の該絶縁膜の成長途屓を抑制し
て基板上の他の音15分と同等も(7〈はそれ以下とし
、かつ該絶縁膜に生ずる段差を滑らかとして、該絶縁膜
上に形成される電極配線パターンの第二層について断線
等の障害を排F’;+5する効果を有し、同目的に対す
る従来技術の如く高温度の熱処理を必要としない優れた
特長を有する。
(7) Effects of the Invention As explained above, the present invention provides that the ions of the gate electrode are implanted in the manufacturing process of a semi-integrated device including a field effect transistor which performs ion implantation as a gate electrode or mask. By forming an insulating film with the portion removed, the gradual growth of the insulating film on the gate electrode can be suppressed, and the noise on the substrate can be equivalent to 15 minutes (7〈 is less than that, and It has the effect of smoothing the steps that occur in the insulating film and eliminating failures such as disconnections in the second layer of the electrode wiring pattern formed on the insulating film, and has the effect of eliminating problems such as disconnections at high temperatures unlike the conventional technology for the same purpose. It has the excellent feature of not requiring heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至詔9図は本発明の一実施例、第10図乃至第
141ンJは11uの実施例、第15図乃至第171シ
]ね、不発ψJの更に他の実施例を示す断面図である。 性層、4に酌体膜、5げマスタ、6げケート軍、恰。 7trl配、糾パターン、8はマスク、9けソース高濃
度領域、10にドレイン高献度領域、11にソース型棒
、12けドレイン知、極、13は絶縁膜、14は開口、
15にυトjロ、16は第二層の配線パターンを示す。 15− 295− 手続補正書(自発) 1.事件の表示 昭和56年特許願第183396号 3 補正をする者 事件との関係     特許出願人 住所 神奈川県用崎市中原区1−71−田中1015番
地(522)名称富士通株式会社 4、代  理  人     住所 ス・11奈川県川
崎市中原区−1−小田中1015番地711話川崎(0
44) 777−1111 (内線2630)5 補正
命令の11イ」  な  し 昭和    年    月    1゜6 補正しより
増Ill目−るづd明の数   な  し明細曹の第5
頁第17行目「CVD法等により級身・号子る。」とあ
るのを「スパッタ法もしくはVD汰等により形成する。 」と補正する。
FIGS. 1 to 9 are cross-sectional views showing one embodiment of the present invention, FIGS. 10 to 141 are embodiments of 11u, and FIGS. It is a diagram. Sex layer, 4th layer, 5th gemaster, 6th gecate army, etc. 7trl arrangement, solid pattern, 8 is a mask, 9 is a source high concentration region, 10 is a drain high concentration region, 11 is a source type rod, 12 is a drain electrode, a pole, 13 is an insulating film, 14 is an opening,
15 shows the wiring pattern, and 16 shows the wiring pattern of the second layer. 15-295- Procedural amendment (voluntary) 1. Display of the case 1983 Patent Application No. 183396 3 Person making the amendment Relationship with the case Patent applicant address 1-71-Tanaka 1015 (522), Nakahara-ku, Yozaki City, Kanagawa Prefecture Name Fujitsu Corporation 4, Agent Address: 1015-1-Odanaka, Nakahara-ku, Kawasaki City, Nagawa Prefecture, 711 Kawasaki (0
44) 777-1111 (Extension 2630) 5 Amendment Order No. 11 A None Showa Year Month 1゜6 Amended and Increased Number of Items Ill-D Light None No. 5 of Particulars
On the 17th line of the page, the phrase "The grade and name are formed by CVD method, etc." is corrected to "It is formed by sputtering method, VD method, etc.".

Claims (1)

【特許請求の範囲】[Claims] ゲート電極ヲマスクとしてイオン注入を行う1デ界効果
トランジスタを含む半導体装置の製造方法において、該
ゲート電極の該イオンを注入された部分を除去すること
を特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device including a one field effect transistor in which ions are implanted using a gate electrode as a mask, the method comprising removing a portion of the gate electrode into which the ions have been implanted.
JP18339681A 1981-11-16 1981-11-16 Manufacture of semiconductor device Granted JPS5885569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18339681A JPS5885569A (en) 1981-11-16 1981-11-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18339681A JPS5885569A (en) 1981-11-16 1981-11-16 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5885569A true JPS5885569A (en) 1983-05-21
JPS6354227B2 JPS6354227B2 (en) 1988-10-27

Family

ID=16135040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18339681A Granted JPS5885569A (en) 1981-11-16 1981-11-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5885569A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498234U (en) * 1991-01-22 1992-08-25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125777A (en) * 1977-04-08 1978-11-02 Nec Corp Manufacture for field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125777A (en) * 1977-04-08 1978-11-02 Nec Corp Manufacture for field effect transistor

Also Published As

Publication number Publication date
JPS6354227B2 (en) 1988-10-27

Similar Documents

Publication Publication Date Title
JPH0282629A (en) Self-aligning gallium arsenide (gaas) field effect transistor making use of multilayer resist
JPS5941870A (en) Manufacture of semiconductor device
US4514893A (en) Fabrication of FETs
JPS5885569A (en) Manufacture of semiconductor device
JPS58201362A (en) Manufacture of semiconductor device
JPS6047738B2 (en) Contact formation method for semiconductor devices
JPS5896769A (en) Manufacture of semiconductor element
KR910001191B1 (en) A manufacturing method in a semiconductor device
JPS6243341B2 (en)
JPS58116751A (en) Manufacture of semiconductor device
JPS5885567A (en) Manufacture of semiconductor device
KR0151190B1 (en) Transistor
JPS5885568A (en) Manufacture of semiconductor device
JPS59121978A (en) Manufacture of semiconductor device
JPS6341063A (en) Manufacture of mos integrated circuit
JPS60147116A (en) Pattern forming method
JPS60110163A (en) Manufacture of mos transistor
JPH01109765A (en) Semiconductor device and manufacture thereof
JPS58106847A (en) Manufacture of semiconductor device
JPS6050961A (en) Manufacture of semiconductor device
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPS6086871A (en) Manufacture of field effect transistor
JPS6170764A (en) Gaas field-effect transistor
JPS59126628A (en) Manufacture of semiconductor device
JPS63169765A (en) Manufacture of semiconductor device