JPS5882522A - X-ray exposure mask and manufacture thereof - Google Patents
X-ray exposure mask and manufacture thereofInfo
- Publication number
- JPS5882522A JPS5882522A JP56180515A JP18051581A JPS5882522A JP S5882522 A JPS5882522 A JP S5882522A JP 56180515 A JP56180515 A JP 56180515A JP 18051581 A JP18051581 A JP 18051581A JP S5882522 A JPS5882522 A JP S5882522A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- film
- layer
- mask
- transfer pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 20
- 125000006850 spacer group Chemical group 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract 3
- 239000013078 crystal Substances 0.000 claims description 34
- 239000010408 film Substances 0.000 claims description 23
- 230000003014 reinforcing effect Effects 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims 2
- 230000002787 reinforcement Effects 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 206010011224 Cough Diseases 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
- G03F7/70433—Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70783—Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はX線露光マスク及びその製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray exposure mask and a method for manufacturing the same.
X線露光法がそのlk幾を最も発揮し得るのは、1μt
nslt&若しくはそれ以下O線幅を有する極めて微細
なパターンの転写プ臣セスにおいてである。The X-ray exposure method can best demonstrate its lk geometry at 1 μt.
This is the case in the transfer process of extremely fine patterns having a line width of nslt& or less.
そして、X線露光!、スフには、軟X線に対する高コン
トラスト、低熱膨張率、可視光に対する透明性、高平面
度、高ピッチ精度、耐薬品性1等々の諸条件が要求され
ている。And X-ray exposure! The fabric is required to meet various conditions such as high contrast against soft X-rays, low coefficient of thermal expansion, transparency against visible light, high flatness, high pitch precision, and chemical resistance.
従来、上記諸条件を概ね満足する実用的なX線露光マス
クとして、5−N4暎で8i0.膜を挾む3層構造の複
合透明膜をシリコン(以下S1と略す)琳結晶から成る
補強支持梁で支持しておき、その複合透明膜を転写パタ
ーン支持層とする構造(以下、単に3層構造という)の
ものが知られている。ところが上記3層構造のX線露光
マスクに限らず、例えばBドープによる81oP+拡散
層をパターン支持層としたものや81.N4とsio。Conventionally, as a practical X-ray exposure mask that generally satisfies the above conditions, 5-N4 and 8i0. A composite transparent film with a three-layer structure sandwiching the film is supported by reinforcing support beams made of silicon (hereinafter abbreviated as S1) phosphorus crystal, and the composite transparent film serves as a transfer pattern support layer (hereinafter simply referred to as a three-layer structure). structure) is known. However, this is not limited to the X-ray exposure mask with the three-layer structure described above; for example, there may be one in which a B-doped 81oP+ diffusion layer is used as a pattern support layer, or an 81. N4 and sio.
との2層構造のものなど、一般に%S”!結晶から成る
補強支持梁の全面に接着剤によらない積層成長技術を用
いて引張応力を有するパターン支持層を一体化して積層
固着した構造のxmg党マ黒マスク該支持層自体が有す
る張力によって転写マスク全体に反シを生ずる欠点があ
る。この反シは列えば、転写すべきパターンの幾何学的
位置ずれ量を増大させた〕あるいはパターンの転写精f
t−低下させる勢々の悪影響を及ぼす。In general, a two-layer structure such as %S"! has a structure in which a patterned support layer with tensile stress is integrated and fixed on the entire surface of a reinforcing support beam made of crystal using a layered growth technique that does not require adhesives. xmg party black mask There is a drawback that the tension of the support layer itself causes creases in the entire transfer mask.If these creases line up, they increase the amount of geometric positional deviation of the pattern to be transferred. The transcription of f.
t- has a negative influence on those who lower it.
更に複数のX線露光マスクを用いて重ね合せ露光を行う
場合に於ては、各X線露光マスク基板の反)方が互いに
勢しい場合にはそれぞれのマスクで転写したパターン相
互の位置ずれは無視し得る事になるが、実際には互いに
異なった反シ方をするのが普通であp、パターン相互の
位置ずれが重大な影Ilt及ぼす。Furthermore, when overlapping exposure is performed using multiple X-ray exposure masks, if the opposite side of each X-ray exposure mask substrate is stronger than the other, the mutual positional deviation of the patterns transferred with each mask will be reduced. Although this can be ignored, in reality, it is common for the patterns to be reversed in different ways, and the mutual positional deviation of the patterns has a serious effect.
X線露光条件の具体的な一事例として、X線源とX線露
光マスクの間隔が300m、ウェハに転写する最外周部
のパターンとウェハの中心との距離が300■の場合を
考えると、転写パターンの幾何学的位置ずれ量Δは、X
線露光マスクとウェハとの間隔を62m として、Δ−
d/xOとなる。As a specific example of the X-ray exposure conditions, consider a case where the distance between the X-ray source and the X-ray exposure mask is 300 m, and the distance between the outermost pattern to be transferred to the wafer and the center of the wafer is 300 m. The amount of geometric positional deviation Δ of the transferred pattern is
Assuming that the distance between the line exposure mask and the wafer is 62m, Δ-
d/xO.
したがって、転写パターン相互の位置ずれ量を最小線幅
1/1mo微細パターンの重ね合せ露光に最小限必要な
±0.1μm以下mgm!に抑える為には、X11露光
マスクとクエハの間隔を少なくともd±1μmの精度で
実現しなければならない、すなわち、X線露光マスク基
板0[6若しくは局所的歪は、ウェハーの反)t−無視
したとして亀±1μm以下に抑える事が必要になるわけ
である。Therefore, the amount of positional deviation between the transferred patterns is less than ±0.1 μm mgm, which is the minimum required for overlapping exposure of fine patterns with a minimum line width of 1/1 mo! In order to suppress Therefore, it is necessary to suppress the deviation to ±1 μm or less.
しかし従来構造のX線露光マスクに於ては、S1琳結晶
基板で構成される補強支持梁の全表面上に約I X 1
0’ dynes /cd s*の引張応力を有する転
写パターン支持層が形成されているので、あらゆる断面
をとってみたとしても常に該支持層側が凹面になるよう
な反夛を生じておシ1例えば直径50鵬の転写マスクの
場合には全体で約20μm乃至30μmの反9を生じて
お〕、仮に平面度の良いマスクホルダに真空吸着したと
しても所望の平面度を得る事は困難であり九。However, in an X-ray exposure mask with a conventional structure, approximately I
Since the transfer pattern support layer is formed with a tensile stress of 0' dynes/cd s*, no matter how many cross sections are taken, repulsion occurs such that the support layer side always becomes concave. In the case of a transfer mask with a diameter of 50 mm, a total of about 20 μm to 30 μm is generated], and even if vacuum suction is applied to a mask holder with good flatness, it is difficult to obtain the desired flatness. .
一方、ポリエチレンテレフタレート、ボリイ建ド、又は
カプトン等の有機材料から成る薄膜を転写パターン支持
層とするX線露光マスクは、前記従来構造のものに比し
て高い平面度は実現できるが、いずれも吸湿及び周囲の
温度変化による寸法変動が大きい友めに、結果として±
0.1fim¥ji度の目合せ精度を実現する事は極め
て困難である。On the other hand, X-ray exposure masks that use a thin film made of an organic material such as polyethylene terephthalate, polyethylene terephthalate, or Kapton as a transfer pattern support layer can achieve higher flatness than those with the conventional structure; As a result, ±
It is extremely difficult to achieve alignment accuracy of 0.1 degrees.
本第1及び第2の発明の目的は、可視光による高精度目
金せが可能で、平面度に優れてパターンずれが小さく、
熱膨張率が81 と同S*に小さく且つ高チップ密度
を実現できる等々の前記従来技術が解決し得なかつ九各
種の困難を一掃ししか本製造害鳥なX線露光マスク及び
これの製造方法を提供することにある。The objects of the first and second inventions are to enable high-precision metal fitting using visible light, have excellent flatness, and have small pattern deviations;
The present invention has overcome nine problems that the conventional technology could not solve, such as having a coefficient of thermal expansion as low as 81 S* and realizing high chip density, and the present invention has created a harmful X-ray exposure mask and a method for manufacturing the same. It is about providing.
本第1の発明によれば、引張応力を有するX線透過性薄
膜と、鋏薄膜を支持する81率結晶補強支持梁とから成
るxlI露光マスクに於いて、上記補強支持梁上に存在
、する前記X@透過性薄膜の一部分を除去して開口領域
を設け、咳開口領域にSiから成るスペーtを設は九こ
とを特徴とするX線露光マスクが得られる。According to the first invention, in an xlI exposure mask comprising an X-ray transparent thin film having tensile stress and an 81 ratio crystal reinforced support beam supporting the scissors thin film, An X-ray exposure mask is obtained, characterized in that a portion of the X@transparent thin film is removed to provide an opening region, and a space made of Si is provided in the cough opening region.
また本第2の発明によれば、81m1結晶基板のいずれ
か一方の表面上に8!窒化暎又は8i酸化膜のいずれか
一方若しくは両方を被着させ、これらの膜の所望の領域
を蝕刻除去して前記81$結晶基板の表面を露出させる
工程と、咳81薬結晶基板の他の狭面上KX線透過層を
被着させる工程と、該XI!透過層上にX線及び可視光
の両方を吸収する層を所望のパターンに成形配置する工
程と。According to the second invention, 8! on either surface of the 81m1 crystal substrate. A step of depositing either or both of a nitride film or an 8i oxide film, and etching away a desired region of these films to expose the surface of the 81$ crystal substrate; a step of depositing a KX-ray transparent layer on the narrow surface; forming and arranging a layer that absorbs both X-rays and visible light in a desired pattern on the transparent layer;
前記X線透過層の所定の領域を蝕刻除去し前記St単結
晶基板表面の一部を露出させ、この露出した5i 単
結晶基板表面上に81 を選択的にエピタキシャル成
長させる工程と、#J記工程に於いて所望の形状にパタ
ー/化し九81窒化膜又はS!酸化膜のいずれか一方若
しくは両方を保護膜にして前記Si単結晶基板の一部を
蝕刻除去し前記X線透過層を露出させる工程とを含むこ
とを特徴とするxsin光マスクの製造方法が得られる
。A step of etching away a predetermined region of the X-ray transparent layer to expose a part of the surface of the St single crystal substrate, and selectively epitaxially growing 81 on the exposed surface of the 5i single crystal substrate, and step #J. Then pattern it into the desired shape and apply 981 nitride film or S! A method for manufacturing an It will be done.
即ち第1及び第2の発明のX線露光マスク及びその製造
方法は、81$結晶基板茨面に引張応力を有する薄層を
一体化して積層固着するように形成してこの薄層を転写
パターン支持層となし、一部領域の前記B+単結晶基板
を除去して除去領域を転写パターン領域となし、除去せ
ずに残した領域の前記sty結晶基板を前記転写パター
ン支持層の補強支持梁となし、前記補強支持梁上に存す
るべ睡前記転写パターン支持層の前記積層固着に対する
寄与の小さい領域を除去し、8 i QL結晶から成る
該補強支持梁の表面を露出せしめ、この露出した補強支
持梁上に1μmないし10#mの厚さの単結晶8iを選
択エピタキシャル成長法によ〕選択的に成長せしめて線
転写パターン支持層と被加工基板表面との間隔を一定に
保つ為のスペーサとした亀のである。That is, the X-ray exposure mask and the method for manufacturing the same of the first and second inventions include forming a thin layer having tensile stress on the thorny surface of an 81$ crystal substrate so as to be laminated and fixed thereon, and applying this thin layer to a transfer pattern. A part of the B+ single crystal substrate is removed as a support layer, and the removed area is used as a transfer pattern area, and the remaining area of the sty crystal substrate is used as a reinforcing support beam for the transfer pattern support layer. None, a region of the transfer pattern support layer existing on the reinforcing support beam that makes a small contribution to the lamination adhesion is removed to expose the surface of the reinforcing support beam made of 8 i QL crystal, and the exposed reinforcing support beam is removed. A single crystal 8i with a thickness of 1 μm to 10#m was selectively grown on the beam by selective epitaxial growth method to serve as a spacer to maintain a constant distance between the line transfer pattern support layer and the surface of the substrate to be processed. It's a turtle.
以下、この第1及び第2の発明をその実施態様の一例に
ついて図を参照しながら具体的に説明する宅→プ瞥説侵
11番・
第1図から@8図迄の各図は、@l及び第2の発明の一
実施例であるX線露光マスクの一部を取9出して各製造
工程に於ける構造を概念的に示した概略断面図である。Hereinafter, an example of the embodiment of the first and second inventions will be specifically explained with reference to the drawings. 1 and 2 are schematic cross-sectional views conceptually showing the structure in each manufacturing process by taking out a part of an X-ray exposure mask that is an embodiment of the second invention.
先ず、第1図に示すごとく、少なくともいずれか一方の
狭面t−鏡面仕上された(100)面を表面とする厚さ
数百μmないし1IIIffiの19i$結基板1(0
表面上に、熱酸化法によシ厚さ数千A乃至IJimの8
10.@2及び21を形−成し、該810゜膜のいずれ
か一方〜の狭面上にCVD法により100O人乃至数千
AO膜厚を有する8’sNa[II3を形成する。この
表面は必ずしも鏡面である必要は無い。First, as shown in FIG. 1, a 19i$ bonded substrate 1 (0
On the surface, a thermal oxidation method is applied to form a layer with a thickness of several thousand amps to IJim.
10. 2 and 21 are formed, and 8'sNa[II3 having a thickness of 100 to several thousand AO is formed on the narrow surface of either one of the 810° films by CVD. This surface does not necessarily have to be a mirror surface.
次に、通常の光学露光法等によってパターン化して形成
したレジストパターンを保護膜にして。Next, a resist pattern formed by patterning using a normal optical exposure method or the like is used as a protective film.
#8isNa @aの一部をプラズマエツチング法等に
よって蝕刻除去して3′とし、続いて緩衝系弗酸゛によ
る化学蝕刻法等によって該8i0.@2の全て及び2°
の一部を除去して211を残し、後に該Si率結晶基板
の一部を蝕刻除去する為の開口部4を形成した後前記レ
ジストパターンを除去して第2図の状態とする。Part of #8isNa@a is etched away by plasma etching or the like to form 3', and then the 8i0. All of @2 and 2°
After forming an opening 4 for etching away a portion of the Si-content crystal substrate, the resist pattern is removed to obtain the state shown in FIG. 2.
しかる後第3図に示すように、Sin、膜2を除去して
露出させたSi $結晶基板lの鏡面表面上に、たとえ
ばSi 窒化膜、炭化s量、窒化ホウ素。Thereafter, as shown in FIG. 3, the Si nitride film, carbide, and boron nitride, for example, are deposited on the mirror surface of the Si$crystal substrate 1, which is exposed by removing the Si film 2.
及びS1酸化暎のいずれか一つ若しくはこれ等の組み合
せから成る複合膜をCVD法又はプラズマCVD法若し
くはRFスパッタリング法等の方法を用いて形成し、こ
れを転写パターン支持層5とする。この転写パターン支
持層5はX線透過層となっている。and S1 oxide or a combination thereof is formed using a method such as a CVD method, a plasma CVD method, or an RF sputtering method, and this is used as the transfer pattern support layer 5. This transfer pattern support layer 5 is an X-ray transparent layer.
次に第4図に示すように、咳転写パターン支持I−5の
狭面上に、先に形成した開口ll54の領域に対応する
ようにレジスト膜6を例えば通常の光学露光法等により
形成する。この場合、窓4とレジス)116相互の目合
せは、咳開口部4を形成する為に使用する露光マスク及
びレジスト膜6を形成する為に使用する露光マスクの双
方に該81 $結晶基板lに予め設けられた<11 o
>方向を示す2つのファセットに位置合せする事が可能
な様に設は九マークによって行なうと好都合である。Next, as shown in FIG. 4, a resist film 6 is formed on the narrow surface of the cough transfer pattern support I-5 by, for example, a normal optical exposure method so as to correspond to the area of the opening ll54 formed previously. . In this case, the alignment between the window 4 and the resist 116 is determined by using the 81$ crystal substrate l on both the exposure mask used to form the cough opening 4 and the exposure mask used to form the resist film 6. <11 o
The setting is advantageously carried out by means of a nine mark so that it is possible to align the two facets indicating the direction.
次に、該8i $結晶基板lの他方の表面上をレジスト
膜7で覆った後、咳レジスト膜6を保@膜にしてプラズ
マエツチング法等によシ蚊転写ノ(ターン支持層5の−
St蝕刻除去して5′を形成し、前記81 jlL結晶
基板lの表面が露出した開口領域81に設ける。そして
不要となったレジストを剥離して1g5図の状態とする
。Next, after covering the other surface of the 8i $ crystal substrate 1 with a resist film 7, the cough resist film 6 is used as a protective film and the mosquito transfer pattern (turn support layer 5) is removed by plasma etching or the like.
St is removed by etching to form 5', which is provided in the opening region 81 where the surface of the 81jlL crystal substrate l is exposed. Then, the resist that is no longer needed is peeled off to form the state shown in Figure 1g5.
次に@6図に示すように1諌転写)(ターン支持層5I
の表面上に選択メツΦ法若しくはリフトオフ法等々によ
ル、所望の転写パターン9を数千A乃至1#mO厚みを
有する人U若しくはPt等で形成する。この転写パター
ン9はX線及び可視光の両方を吸収する層を形成する。Next, as shown in Figure @6, 1 ink transfer) (turn support layer 5I
A desired transfer pattern 9 is formed on the surface of the substrate by a selective Φ method, a lift-off method, or the like, using U or Pt having a thickness of several thousand Å to 1 mO. This transfer pattern 9 forms a layer that absorbs both X-rays and visible light.
上記の工程に於いては、前記転写パターン支持層51の
開口領域8はレジストで補繰し、該転写パターン9を形
成した後に該レジストを除去して清浄なSム拳結晶表面
を露出させる。In the above process, the opening area 8 of the transfer pattern support layer 51 is filled with a resist, and after the transfer pattern 9 is formed, the resist is removed to expose the clean SM crystal surface.
次に上記試料をSiエピタキシャル装置内にセットしS
iH,C1lソースを用いた減圧(〜80TORR)下
で選択成長を行う、その成長条件は基板温度を〜100
0℃ とし、H,キャリヤーガスを〜100 t/分%
SiH,Cl3 を〜600cc/分として送シ、そ
の成長速度を〜0.5μm/分の条件でSi基板1の8
i結晶表面が露出された開口部8のみに8i結晶を選択
的に1〜10μm成長する。転写パターン支持層51
と転写パターン9にはSi結晶は析出しない。これは原
料ガスにハロゲンを含むために起るもので、j1出され
た琳結晶のSム表面が種結晶となp成長し易くなる。又
減圧下で成長することは成長表面を平滑に行うことがで
きその形状は第7図のlOに示すように選択成長した膜
厚に相当し九厚さが転写パターン支持層51上に横方向
にも成長する。Next, set the above sample in a Si epitaxial device and S
Selective growth is performed under reduced pressure (~80 TORR) using an iH, C1l source, and the growth conditions are such that the substrate temperature is ~100 TORR.
0°C, H, carrier gas ~100 t/min%
SiH, Cl3 was fed at ~600 cc/min, and the growth rate was ~0.5 μm/min.
An 8i crystal is selectively grown to a thickness of 1 to 10 μm only in the opening 8 where the i crystal surface is exposed. Transfer pattern support layer 51
No Si crystals are deposited on the transfer pattern 9. This occurs because the raw material gas contains halogen, and the SM surface of the phosphor crystal extracted from j1 serves as a seed crystal, making p growth easier. Furthermore, growth under reduced pressure allows the growth surface to be smoothed, and its shape corresponds to the thickness of the selectively grown film as shown in FIG. It also grows.
最後に前記重金属パターンをOす/グ等を使用した任意
の治具で保饅し9つ、咳3に塾結晶基板lの所定の領域
を開口部4から飼えばKOH水溶液等の異方性蝕刻液を
用いて蝕刻除去し、3第8図に示す様な該5t4i結晶
基板lの一部で形成される補強支持梁11及び転写パタ
ーン領域11を形成して、所定のX線露光マスクが完成
する。Finally, hold the heavy metal pattern with an arbitrary jig using an O/G, etc., and place a predetermined area of the cram crystal substrate l through the opening 4 to form an anisotropic solution such as a KOH aqueous solution. The reinforcement support beams 11 and the transfer pattern area 11 formed of a part of the 5T4i crystal substrate l as shown in FIG. Complete.
第8図に示す構造に於いては、該転写パターン支持層5
1は自身が持つ引張応力によって緊張す所定の領域を除
去した結果、該補強支持梁との界面の応力が著しく軽減
され、更に該補強支持梁の表面上には琳結晶81から成
るスペーサが選択的に形成されている為、極めて平面度
の良いXStm光マスクを得ることができる。In the structure shown in FIG. 8, the transfer pattern support layer 5
As a result of removing a predetermined area that is strained by the tensile stress of 1, the stress at the interface with the reinforcing support beam is significantly reduced, and furthermore, a spacer made of Rin crystal 81 is selected on the surface of the reinforcing support beam. Since the XStm optical mask is formed in a uniform manner, it is possible to obtain an XStm optical mask with extremely good flatness.
この第8図の実施例では、その中央部のみを取〕出して
示したことからも判るように、殆んど全ての補強支持梁
上において転写パターン支持層を除去しであるので、最
も確実に所期の効果が達成される。しかし、図示したよ
うなマスク中央部に位置する窓の棧に相当する補強支持
梁部では強いて除去せずにおいて4、周囲の窓枠に相当
する部位を除去することによって1反シを充分小さくで
きる場合がある。更に窓枠に相当する周辺部においても
、環状にぐるりと除去すると好都合ではあるが、必ずし
も全周を除去しなくとも充分な場合もある。In the example shown in FIG. 8, as can be seen from the fact that only the central part is shown, the transfer pattern support layer is removed from almost all of the reinforcing support beams, so it is most reliable. The desired effect is achieved. However, the reinforcing support beam part corresponding to the window frame located in the center of the mask as shown in the figure is not forcibly removed, and by removing the part corresponding to the surrounding window frame, the size of the mask can be made sufficiently small. There are cases. Furthermore, although it is convenient to remove the entire periphery of the window frame in an annular manner, it may be sufficient to remove the entire periphery in some cases.
本第1の発明によると積層固着に対する寄与の小さい領
域の転写パターン支持層は補強支持梁と引睡合いマスク
の反シを助長するが、この領域の転写パターン支持層を
除去することによって、マスク全体の反シは著しく軽減
し得る。しかもこの転写パターン支持層を除去した領域
には1選択エピタキシャル成長法により、単結晶SNが
堆積され、X*露光プロセスに於いてウェハと該転写パ
ターン支持層との間隔を均一に維持する為のスペーサと
して用いられる為%XII露光の加工精度が著しく向上
し、更にX1m露光マスクのパターン及びパターン支持
層の汚れや破損が防止できる。According to the first aspect of the present invention, the transfer pattern support layer in the region that makes a small contribution to lamination adhesion promotes the deformation of the reinforcing support beam and the sleeping mask, but by removing the transfer pattern support layer in this region, the mask Overall resistance can be significantly reduced. Furthermore, single crystal SN is deposited in the area where the transfer pattern support layer has been removed by one-selection epitaxial growth, and a spacer is used to maintain a uniform distance between the wafer and the transfer pattern support layer in the X* exposure process. Since it is used as a %XII exposure, the processing accuracy of the %XII exposure is significantly improved, and furthermore, the pattern of the X1m exposure mask and the pattern support layer can be prevented from being contaminated or damaged.
第1図から@8図は本第1及び第2の発明によるXSS
光用マスクの一実施例について製造のプロセスを追りて
示した概略断面図で、その中央部をとヤ出して示したも
のである。
l・・・・・・St琳結晶基板、2.2’・・・・・・
sio、膜、3・・・・・・811N41L 2 ”・
・・・・・2′の一部で形成した補*@s a’・・・
・・・3の一部で形成した補a暎、4・・・・・・21
1及び31でWA′すれis口部、5・・・・・・転写
パターン支持層、6,7・・・・・・レジX)、 5
’・・・・・・5の一部で形成された転写パターン支持
層、8・・・・・・5の一部を除去し九開口領域、9・
・・・・・転写ノ(ターン、10・・・・・・エピタキ
シャルStで形成されるスペーサ 14・・・・・・l
の一部で形成した補強支持梁% 11・・・・・・lの
一部を除去して形成した転写パターン領域。
半1図
半2父
φ
寮′3圀
11Figures 1 to 8 are XSS according to the first and second inventions.
FIG. 2 is a schematic cross-sectional view showing the manufacturing process of an example of a light mask, with the central portion thereof being extruded. l...St phosphorus crystal substrate, 2.2'...
sio, membrane, 3...811N41L 2"・
... Complement formed by a part of 2' *@s a'...
・・・Supplementary name formed from part of 3, 4・・・・・・21
1 and 31, WA' is opening part, 5...transfer pattern support layer, 6, 7...register X), 5
'...Transfer pattern support layer formed by part of 5, 8...9 opening area by removing part of 5, 9.
...Transfer (turn, 10...Spacer formed by epitaxial St) 14...l
Reinforcement support beam formed by a part of % 11...Transfer pattern area formed by removing a part of l. Half 1 Figure Half 2 Father φ Dormitory '3 Kuni 11
Claims (1)
するシリコン琲結晶補強支持采とから成るX線露光マス
クに於いて、上記補強支持梁上に存在するIw記X線透
過性薄膜の一部分を除去して開口領域を設け、該開口領
域にシリコンから成るスペーサを設けたことを特徴とす
るXIII光マスク。 2、シリコン単結晶基板のいずれか一方の表面上にシリ
コン窒化膜又はシリコン酸化膜のいずれか一方若しくは
両方を被着させ、これらの膜の所望の領域を蝕刻除去し
て前記シリコン塔結晶基板の狭面を絡出させる工程と、
該シリコン単結晶基板の他の表面上にX線透過層を被着
させる工程と芦X線透過層上にX線及び可視光の両方を
吸収する層を所望のパターンに成形配置する工程と前記
X線透過層の所定の領域を蝕刻除去し前記シリコン率結
晶基板表面の一部tg出させこの露出したシリコン単結
晶基板11[上にシリコンを選択的にエピタキシャル成
長させる工程と、前記工程に於いて所望の形状にパター
ン化し九シリコン窒化膜又はシリコン酸化膜のいずれか
一方若しくは両方を保@膜にして前記シリコン単結晶基
板の一部を蝕刻除去し前記X線透過層を露出させる工程
とを含むことを特徴とするX線露光マスクの製造方法。[Claims] 1. In an X-ray exposure mask comprising an X-ray transparent thin film having tensile stress and a silicon crystal reinforcing support frame supporting the thin film, Iw present on the reinforcing support beam A XIII optical mask characterized in that a portion of the X-ray transparent thin film is removed to provide an opening region, and a spacer made of silicon is provided in the opening region. 2. A silicon nitride film or a silicon oxide film, or both, is deposited on the surface of either one of the silicon single crystal substrates, and desired areas of these films are removed by etching to form the silicon tower crystal substrate. A process of entangling the narrow side,
a step of depositing an X-ray transparent layer on the other surface of the silicon single crystal substrate; a step of forming and arranging a layer absorbing both X-rays and visible light in a desired pattern on the X-ray transparent layer; A step of selectively epitaxially growing silicon on the exposed silicon single crystal substrate 11 by removing a predetermined region of the X-ray transparent layer by etching and exposing a part of the surface of the silicon monocrystalline substrate 11; patterning into a desired shape and using one or both of a silicon nitride film and a silicon oxide film as a protective film, etching away a part of the silicon single crystal substrate to expose the X-ray transparent layer; A method for manufacturing an X-ray exposure mask, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56180515A JPS5882522A (en) | 1981-11-11 | 1981-11-11 | X-ray exposure mask and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56180515A JPS5882522A (en) | 1981-11-11 | 1981-11-11 | X-ray exposure mask and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5882522A true JPS5882522A (en) | 1983-05-18 |
Family
ID=16084599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56180515A Pending JPS5882522A (en) | 1981-11-11 | 1981-11-11 | X-ray exposure mask and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5882522A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100522725B1 (en) * | 2002-04-04 | 2005-10-20 | 주식회사 디엠에스 | Mask having large area and exposure system having the same |
US7641806B2 (en) | 2003-06-13 | 2010-01-05 | Tokyo Electron Limited | Manufacturing method for membrane member |
JP2015062212A (en) * | 2013-09-23 | 2015-04-02 | ナショナル シンクロトロン ラディエイション リサーチ センターNational Synchrotron Radiation Research Center | X-ray mask structure and manufacturing method therefor |
-
1981
- 1981-11-11 JP JP56180515A patent/JPS5882522A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100522725B1 (en) * | 2002-04-04 | 2005-10-20 | 주식회사 디엠에스 | Mask having large area and exposure system having the same |
US7641806B2 (en) | 2003-06-13 | 2010-01-05 | Tokyo Electron Limited | Manufacturing method for membrane member |
JP2015062212A (en) * | 2013-09-23 | 2015-04-02 | ナショナル シンクロトロン ラディエイション リサーチ センターNational Synchrotron Radiation Research Center | X-ray mask structure and manufacturing method therefor |
US9152036B2 (en) | 2013-09-23 | 2015-10-06 | National Synchrotron Radiation Research Center | X-ray mask structure and method for preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4608326A (en) | Silicon carbide film for X-ray masks and vacuum windows | |
EP2051139B1 (en) | Pellicle and method for manufacturing the same | |
JP4861963B2 (en) | Pellicle and method for manufacturing pellicle | |
EP3667417B1 (en) | Pellicle and method for producing pellicle | |
JPH0243330B2 (en) | ||
JPS5882522A (en) | X-ray exposure mask and manufacture thereof | |
US4971851A (en) | Silicon carbide film for X-ray masks and vacuum windows | |
JPH0345526B2 (en) | ||
JPS641926B2 (en) | ||
EP0424375B1 (en) | Monolithic channeling mask having amorphous/single crystal construction | |
JPH0461490B2 (en) | ||
JP2655543B2 (en) | X-ray mask blanks and X-ray mask structure | |
JPH11307442A (en) | X-ray mask, x-ray mask blank, and their manufacture | |
EP0269692A1 (en) | Monolithic channeling mask | |
JPH07220992A (en) | X-ray exposure mask and x-ray exposure mask blank use for manufacturing the same | |
JP2797190B2 (en) | Manufacturing method of X-ray exposure mask | |
JPS6035819B2 (en) | Method for manufacturing an X-ray exposure mask | |
JP2943217B2 (en) | X-ray exposure mask and method of manufacturing the same | |
JPH02260414A (en) | X-ray exposure mask | |
JP2023142943A (en) | Material for pellicle, pellicle, and method for manufacturing material for pellicle | |
JPH05326378A (en) | Manufacture of x-ray mask structure | |
JPH0322686B2 (en) | ||
JPS595628A (en) | Membrane-mask | |
JPH01102926A (en) | X-ray mask and its manufacture | |
JPS63115332A (en) | Mask for x-ray exposure |