JPH05326378A - Manufacture of x-ray mask structure - Google Patents

Manufacture of x-ray mask structure

Info

Publication number
JPH05326378A
JPH05326378A JP15266892A JP15266892A JPH05326378A JP H05326378 A JPH05326378 A JP H05326378A JP 15266892 A JP15266892 A JP 15266892A JP 15266892 A JP15266892 A JP 15266892A JP H05326378 A JPH05326378 A JP H05326378A
Authority
JP
Japan
Prior art keywords
ray
ray mask
film
temperature
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15266892A
Other languages
Japanese (ja)
Other versions
JP2768595B2 (en
Inventor
Shu Kashida
周 樫田
Akihiko Nagata
愛彦 永田
Hitoshi Noguchi
仁 野口
Yoshihiro Kubota
芳宏 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP15266892A priority Critical patent/JP2768595B2/en
Publication of JPH05326378A publication Critical patent/JPH05326378A/en
Application granted granted Critical
Publication of JP2768595B2 publication Critical patent/JP2768595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent a fluctuation in the film stress of an X-ray transmitting film when an X-ray mask substrate is bonded to an X-ray mask reinforcement body. CONSTITUTION:In a method of manufacturing an X-ray mask structure which is formed by bonding an X-ray mask substrate 2 composed of a silicon wafer to an X-ray mask reinforcement body 4 composed of a silicon plate, a face which is opposite to the face, on which an X-ray transmitting face 1 has been formed, of the X-ray mask substrate 2 is bonded to the X-ray mask reinforcement body 4 at the film formation temperature or lower or the annealing temperature or lower of the X-ray transmitting film 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線マスク構造体の製造
方法、特には反りや歪がなく、高精度なリソグラフィー
が可能なX線リソグラフィー用マスク構造体の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an X-ray mask structure, and more particularly to a method of manufacturing a mask structure for X-ray lithography which is free from warpage and distortion and which enables highly accurate lithography.

【0002】[0002]

【従来の技術】半導体デバイスにおけるリソグラフィー
技術については、パターン形成の微細化に伴なってX線
リソグラフィー技術が有望視されており、このX線リソ
グラフィーに用いられるマスクについては図1に示した
ように、X線透過膜1の保持枠としてのX線マスク基板
2、このX線透過膜1の上に所望のパターン形状に形成
されているX線吸収体3およびこの保持枠を補強するた
めの補強体4とからなるものが使用されている。
2. Description of the Related Art Regarding the lithography technique for semiconductor devices, the X-ray lithography technique is regarded as promising along with the miniaturization of pattern formation. The mask used in this X-ray lithography is as shown in FIG. An X-ray mask substrate 2 as a holding frame for the X-ray transparent film 1, an X-ray absorber 3 formed in a desired pattern on the X-ray transparent film 1, and reinforcement for reinforcing the holding frame. The one consisting of the body 4 is used.

【0003】このX線透過膜は一般的には窒化ほう素
(BN)、窒化けい素(Si3N4 )、炭化けい素(SiC )な
どのようにX線吸収係数の小さい軽金属からなる、厚さ
が10μm以下の無機物の薄膜状のものとされており、X
線吸収体3は金(Au)、タングステン(W)、タンタル
(Ta)などのようにX線吸収の大きい重金属の無機物か
らなるものとされているが、このX線透過膜1について
は薄膜状の形態を維持するために5×106 〜5×109
イン/cm2の引張応力を有するものとすることが必須要件
とされており、このX線透過膜1はX線吸収体3を支持
することからX線吸収体支持体(膜)あるいはX線透過
用メンブレンとも呼ばれている。
This X-ray transparent film is generally made of a light metal having a small X-ray absorption coefficient, such as boron nitride (BN), silicon nitride (Si 3 N 4 ) and silicon carbide (SiC). Inorganic thin film with a thickness of 10 μm or less, X
The X-ray absorbing film 3 is made of a heavy metal such as gold (Au), tungsten (W), tantalum (Ta), etc. that absorbs a large amount of X-rays. In order to maintain the morphology, it is essential to have a tensile stress of 5 × 10 6 to 5 × 10 9 dynes / cm 2 , and this X-ray transmission film 1 has an X-ray absorber 3 Since it supports, it is also called an X-ray absorber support (membrane) or an X-ray transmission membrane.

【0004】また、このX線透過膜保持枠2は表面が平
坦で、しかも鏡面であり、アルカリ液による異方性エッ
チングが可能なものとすることから通常はシリコンウエ
ハーが用いられており、これには直径が2インチ〜4イ
ンチで厚さが 300〜2,000 μmのものが用いられてい
る。このX線リソグラフィー用マスクはこのシリコンウ
エハーの鏡面にX線透過膜1を成膜し、その膜上にX線
吸収体3を形成したのち、シリコンウエハーの反対面か
らアルカリエッチングを行なってX線透過膜1をメンブ
レン状態とすることによって作られ、この場合、メンブ
レン6の周囲に相当する未エッチング領域がX線透過膜
保持枠2となるが、X線吸収体3の形成はX線透過膜の
メンブレン形成後に行なってもよい。
The X-ray permeable film holding frame 2 has a flat surface and is a mirror surface, and since it can be anisotropically etched with an alkaline solution, a silicon wafer is usually used. Has a diameter of 2 to 4 inches and a thickness of 300 to 2,000 μm. In this X-ray lithography mask, an X-ray transmission film 1 is formed on the mirror surface of this silicon wafer, an X-ray absorber 3 is formed on the film, and then alkali etching is performed from the opposite surface of the silicon wafer to perform X-ray lithography. The X-ray permeable membrane is formed by making the permeable membrane 1 into a membrane state. In this case, the unetched region corresponding to the periphery of the membrane 6 becomes the X-ray permeable membrane holding frame 2, but the X-ray absorber 3 is formed by the X-ray permeable membrane. It may be performed after forming the membrane.

【0005】このX線透過膜の保持枠2としてのシリコ
ンウエハーは割れ易く、強度も不充分であることから、
この保持枠はその周囲を補強体4で補強する必要があ
る。この補強体としては一般的なシリコンウエハーと比
較的熱膨張係数が等しい、ほうけい酸ガラス(商品名パ
イレックスガラス)が用いられるが、この保持枠2と補
強体4は通常接着剤を用いて固定する方法で結合されて
いる。
Since the silicon wafer as the holding frame 2 for the X-ray permeable film is easily broken and has insufficient strength,
It is necessary to reinforce the periphery of the holding frame with the reinforcing body 4. Borosilicate glass (trade name Pyrex glass), which has a thermal expansion coefficient relatively equal to that of a general silicon wafer, is used as the reinforcing body, and the holding frame 2 and the reinforcing body 4 are usually fixed by using an adhesive. Are combined in a way that

【0006】しかし、保持枠と補強体を接着剤を介して
接着する場合に、保持枠と補強体とを剥離を起こさない
程度の接着強度で接着するには接着強度の大きいエポキ
シ系の接着剤を用いても接着剤層の厚みを30〜100 μm
とする必要がある。その結果、接着後の保持枠と補強体
との平行度をX線マスクとして要求されるマスクの平行
度である数μm以下とすることができないという不利が
ある。また、保持枠材料としてのシリコンウエハーと補
強体としてのほうけい酸ガラスは熱膨張率が異なり、シ
リコンウエハーが 2.4×106 であるのに対しほうけい酸
ガラスは 3.5×106 であるために温度変化によって歪が
発生し易いという不利がある。
However, when the holding frame and the reinforcing body are bonded to each other via an adhesive, an epoxy adhesive having a large adhesive strength is required to bond the holding frame and the reinforcing body with an adhesive strength that does not cause peeling. The adhesive layer thickness of 30-100 μm
And need to. As a result, there is a disadvantage in that the parallelism between the holding frame and the reinforcing body after adhesion cannot be set to a level not more than several μm, which is the parallelism of the mask required as an X-ray mask. In addition, the thermal expansion coefficient of the silicon wafer as the holding frame material and that of the borosilicate glass as the reinforcement are different.Since the silicon wafer is 2.4 × 10 6 , the borosilicate glass is 3.5 × 10 6. Disadvantage that strain easily occurs due to temperature change.

【0007】そのため、これについては補強体としての
ほうけい酸ガラスを保持枠と同じ材料であるシリコン単
結晶板とし、保持枠としてのシリコンウエハー補強体と
してのシリコン単結晶を高温下での熱処理で直接接合す
るという方法が提案されている(特開平2-162714号公報
参照)が、この場合には実用に耐える接着強度を得るた
めには 900℃以上、好ましくは 1,000℃以上の高温度で
30分以上、好ましくは1時間以上熱処理を行なう必要が
あるために、X線透過膜およびその表面に形成している
X線吸収体の内部応力が変化し、パターンの歪や破損だ
けでなく、X線透過膜の破壊が引き起こされるという不
利がある。
Therefore, regarding this, a borosilicate glass as a reinforcing body is used as a silicon single crystal plate which is the same material as the holding frame, and a silicon single crystal as a silicon wafer as a holding frame is subjected to heat treatment at high temperature. A method of direct bonding has been proposed (see Japanese Patent Laid-Open No. 2-162714), but in this case, in order to obtain an adhesive strength that can withstand practical use, it is necessary to maintain a high temperature of 900 ° C or higher, preferably 1,000 ° C or higher.
Since it is necessary to perform heat treatment for 30 minutes or more, preferably 1 hour or more, the internal stress of the X-ray transparent film and the X-ray absorber formed on the surface changes, and not only the pattern distortion and damage, It has the disadvantage that the X-ray permeable membrane is destroyed.

【0008】また、この場合には保持枠としてのシリコ
ンウエハーと補強体となる中央部をくり抜いたシリコン
単結晶板を、予じめ熱処理により接合したのちにX線透
過膜およびX線吸収体を接合する方法も考えられるけれ
ども、それでも高温下での長時間の熱処理を行なうと接
合体に反りが発生し易く、シリコンウエハーの表面が荒
れ易いという不利があり、これにはまた高温下での熱処
理のための装置が必要とされるという欠点もある。
Further, in this case, a silicon wafer serving as a holding frame and a silicon single crystal plate having a hollowed central portion serving as a reinforcing body are joined by preheat treatment, and then the X-ray transmitting film and the X-ray absorber are attached. Although a method of bonding can be considered, it is still disadvantageous that the bonded body is likely to warp and the surface of the silicon wafer is easily roughened when the heat treatment is performed at a high temperature for a long time. There is also the disadvantage that a device for

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明者らは
X線透過膜保持枠とX線透過膜、X線吸収体および保持
枠を補強する補強体とからなるX線マスク構造体におい
て、シリコン単結晶製のX線透過膜保持枠とシリコン単
結晶製の補強体とを、酸化シリコン膜を介して接合する
という方法を提案しており(特開平3-219207号公報参
照)、これによれば比較的低い温下で接合できるという
有利性が与えられるけれども、これには予じめX線透過
膜を形成したX線マスク基板(通常はシリコンウエハー
が用いられる)と、X線マスク補強体とを酸化シリコン
を介して接合するときの温度が、X線透過膜を形成する
ときの温度より高いとX線透過膜の膜応用が変動すると
いう問題が生ずるし、一般的に無機薄膜を成膜時の温度
より高い温度下にさらすと、アニール効果によって膜応
力が引張応力側に変動する傾向がある。
Therefore, the present inventors have proposed an X-ray mask structure comprising an X-ray transmissive film holding frame, an X-ray transmissive film, an X-ray absorber and a reinforcing member for reinforcing the holding frame, A method has been proposed in which an X-ray transparent film holding frame made of silicon single crystal and a silicon single crystal reinforcing body are bonded via a silicon oxide film (see Japanese Patent Laid-Open No. 3-219207). According to the above, the advantage that bonding can be performed at a relatively low temperature is given, but for this, an X-ray mask substrate (usually a silicon wafer is used) having a pre-formed X-ray transparent film is formed, and X-ray mask reinforcement is used. If the temperature at which the body is bonded via silicon oxide is higher than the temperature at which the X-ray transparent film is formed, there arises a problem that the film application of the X-ray transparent film fluctuates. Exposed to a temperature higher than that during film formation If tend to fluctuate stress side tensile film stress by annealing effect.

【0010】また、X線透過膜のメンブレンを得るため
には、前記したように膜応力として5×108 〜5×109
dyne/cm2の引張応力を維持していることが不可欠である
ことから、次工程である接合工程でX線透過膜の膜応力
が所望応力の範囲外に変動すればメンブレンを得ること
ができなくなる。なお、これについてはX線マスク基板
とX線マスク補強体とを接合したのちにX線透過膜を形
成する方法も考えられるけれども、この場合にはX線マ
スク基板のそり量を測定することが困難であることか
ら、このそり量から応力を求めることができず、成膜し
たX線透過膜の応力を正確に測定できないという問題点
もある。
Further, in order to obtain an X-ray permeable membrane, the film stress is 5 × 10 8 to 5 × 10 9 as described above.
Since maintaining a tensile stress of dyne / cm 2 is essential, a membrane can be obtained if the film stress of the X-ray transparent film fluctuates outside the desired stress range in the next bonding step. Disappear. Although a method of forming an X-ray transparent film after joining the X-ray mask substrate and the X-ray mask reinforcing body can be considered for this, in this case, the amount of warpage of the X-ray mask substrate can be measured. Since it is difficult, the stress cannot be obtained from the warp amount, and the stress of the formed X-ray transparent film cannot be accurately measured.

【0011】[0011]

【課題を解決するための手段】本発明はこのような不
利、欠点を解決したX線マスク構造体の製造方法に関す
るものであり、これはシリコンウエハーからなるX線マ
スク基板とシリコン板からなるX線マスク補強体をと接
合して得られるX線マスク構造体の製造方法において、
X線マスク基板のX線透過膜を成形した面の反対面とX
線マスク補強材とを、X線透過膜の成膜温度以下もしく
はアニール温度以下の温度で接合することを特徴とする
ものである。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing an X-ray mask structure which solves the above disadvantages and drawbacks, and it is an X-ray mask substrate made of a silicon wafer and an X made of a silicon plate. In a method of manufacturing an X-ray mask structure obtained by joining a line mask reinforcement with
The X-ray mask substrate and the surface opposite to the surface on which the X-ray transparent film is formed
It is characterized in that the line mask reinforcing material is bonded at a temperature not higher than the film forming temperature of the X-ray transparent film or not higher than the annealing temperature.

【0012】すなわち、本発明者らはX線マスク基板と
X線マスク補強体とを接合してなるX線マスク構造体に
おけるX線透過膜の膜応力が接合時の熱処理で変動する
のを防止する方法について種々検討した結果、X線マス
ク基板のX線透過膜を形成した面の反対面とX線マスク
補強剤とを、X線透過膜の成膜温下以下またはアニール
温度以下の温度で接合すると、X線透過膜の応力が変動
しなくなるということを見出して本発明を完成させた。
以下にこれをさらに詳述する。
That is, the inventors of the present invention prevent the film stress of the X-ray transparent film in the X-ray mask structure obtained by bonding the X-ray mask substrate and the X-ray mask reinforcing member from changing due to the heat treatment at the time of bonding. As a result of various studies on the method, the surface of the X-ray mask substrate opposite to the surface on which the X-ray transparent film is formed and the X-ray mask reinforcing agent are kept at a temperature below the deposition temperature of the X-ray transparent film or below the annealing temperature. The present invention has been completed by finding that the stress of the X-ray transparent film does not fluctuate when bonded.
This will be described in more detail below.

【0013】[0013]

【作用】本発明はX線マスク構造体の製造方法に関する
もので、これはX線マスク基板とX線マスク補強体とを
接合するX線マスク構造体の製造方法において、X線マ
スク基板のX線透過膜を形成した面の反対面とX線マス
ク補強剤とを、X線透過膜の成膜温度以下もしくはアニ
ール温度以下の温度で接合することを特徴とするもので
あり、これによればX線透過膜の応力が変動しないの
で、メンブレンの歩留りが向上するという有利性が与え
られる。
The present invention relates to a method for manufacturing an X-ray mask structure, which is an X-ray mask structure manufacturing method for bonding an X-ray mask substrate and an X-ray mask reinforcing member. According to this, the surface opposite to the surface on which the X-ray transmission film is formed and the X-ray mask reinforcing agent are bonded at a temperature not higher than the film formation temperature of the X-ray transmission film or not higher than the annealing temperature. Since the stress of the X-ray transparent film does not change, the yield of the membrane is improved.

【0014】本発明のX線マスク構造体はX線マスク基
板とX線マスク補強体とを接合して作られるものであ
る。本発明のX線マスク構造体を構成するX線透過膜保
持枠としてのX線マスク基板はシリコン単結晶からなる
シリコンウエハーからなるものとされる。このものはそ
の大きさや厚みに特に制限はないが、一般的に直径が2
〜4インチのものとされ、この厚みはそれが 2,000μm
以上となると後工程でのバックエッチング時に長時間を
要するので 300〜2,000 μmのものとすることがよい
が、これはアルカリエッチングを行なうことから結晶方
位が(100) のものとすることがよい。
The X-ray mask structure of the present invention is made by joining an X-ray mask substrate and an X-ray mask reinforcement. The X-ray mask substrate as the X-ray transparent film holding frame constituting the X-ray mask structure of the present invention is made of a silicon wafer made of a silicon single crystal. There is no particular limitation on the size or thickness of this product, but in general, the diameter is 2
~ 4 inches, this thickness is 2,000 μm
In the above case, it takes a long time to carry out back etching in a later step, so that the thickness is preferably 300 to 2,000 μm, but it is preferable that the crystal orientation is (100) because alkali etching is performed.

【0015】また、このものはその表面にX線透過膜を
形成するものであるし、このX線透過膜は平滑で膜厚の
均一なものとすることが必要とされるので、鏡面である
ものとすることが必要とされるが、この反対面もこの面
に後述する酸化シリコン膜を薄く均一に形成するという
ことからは鏡面としておくことが望ましい。
Further, this has a X-ray transmission film formed on its surface, and since this X-ray transmission film needs to be smooth and have a uniform film thickness, it is a mirror surface. However, it is desirable that the opposite surface is also a mirror surface because the silicon oxide film described later is thinly and uniformly formed on this surface.

【0016】また、本発明のX線マスク構造体を構成す
るX線マスク補強体はシリコン単結晶板からなるものと
されるが、このものは前記したX線マスク基板よりもサ
イズの大きいものとすることが必要とされることから一
般には5〜8インチの丸状または四角形状のものとさ
れ、厚みは3〜10mm好ましくは5〜7mmのものとされ
る。なお、この補強体としてのシリコン単結晶の表面は
それが荒れていると後述する酸化シリコン膜を厚くする
必要が生じ、その結果歪みが発生し易くなるので、鏡面
仕上げとすることがよい。
Further, the X-ray mask reinforcement constituting the X-ray mask structure of the present invention is made of a silicon single crystal plate, which is larger in size than the X-ray mask substrate described above. Therefore, it is generally in the shape of a circle or square having a size of 5 to 8 inches, and has a thickness of 3 to 10 mm, preferably 5 to 7 mm. If the surface of the silicon single crystal as the reinforcing member is rough, it will be necessary to thicken the silicon oxide film described later, and as a result, distortion is likely to occur, so mirror finishing is preferable.

【0017】なお、この補強体はX線透過膜のメンブレ
ンが形成される領域より広い領域を予じめくり抜いてお
く必要があり、このくり抜く領域の形状は丸状でも四角
状でもよいが、一般にX線透過膜のメンブレンサイズが
直径20〜30mmの円形または1辺が20〜30mmの四角状であ
ることから、これらのサイズより大きくものとする必要
があり、したがってこれは例えば直径40mmの円状か、1
辺が40mmの四角状のものとすればよい。
It is necessary that this reinforcing member has a larger area than the area where the membrane of the X-ray permeable membrane is formed, and this hollowed area may have a round shape or a square shape. Since the membrane size of the X-ray permeable membrane is a circle with a diameter of 20 to 30 mm or a square shape with one side of 20 to 30 mm, it is necessary to make it larger than these sizes. Or 1
It should be a square with a side of 40 mm.

【0018】本発明のX線マスク構造体はこのシリコン
ウエハーからなるX線マスク基板とシリコン単結板から
なるX線マスク補強体とを接合したものであり、このシ
リコン面とシリコン面とを熱により接合するためには
1,000℃以上の温度が必要であるが、これについてはシ
リコン面とシリコン面の間に酸化シリコン膜(SiO2膜)
を介在させるとこれらは 300〜 400℃以上という温度下
で接合させることができるので、これには酸化シリコン
膜を介在させることがよい。
The X-ray mask structure of the present invention is one in which an X-ray mask substrate made of this silicon wafer and an X-ray mask reinforcement made of a silicon single-bonded plate are joined, and the silicon surface and the silicon surface are heated. To join by
A temperature of 1,000 ° C or higher is required, but for this, a silicon oxide film (SiO 2 film) is placed between the silicon surfaces.
Since they can be joined at a temperature of 300 to 400 ° C. or higher, it is preferable to interpose a silicon oxide film.

【0019】この酸化シリコン膜はX線マスク基板側、
X線マスク補強体側のいずれに設置してもよく、これは
その両方に設置してもよいがX線マスク基板はできるだ
け熱処理を避けることが望ましいので、この酸化シリコ
ン膜はX線マスク補強体としてのシリコン単結晶板側の
みに設置してこれを加熱することがよい。
This silicon oxide film is formed on the X-ray mask substrate side,
The silicon oxide film may be installed on either side of the X-ray mask reinforcement, but it may be installed on both sides. However, since it is desirable to avoid heat treatment of the X-ray mask substrate as much as possible, this silicon oxide film is used as an X-ray mask reinforcement. It is advisable to install it only on the silicon single crystal plate side and heat this.

【0020】この酸化シリコン膜の形成はX線マスク基
板またはX線マスク補強体のシリコン面を酸素の存在下
で 800℃以上の温度に加熱して酸化する方法、あるいは
このシリコン面に公知のCVD法、スパッター法でSiO2
膜を形成すればよいが、この酸化シリコン膜の厚さは10
〜10,000Å、好ましくは 100〜5,000 Åとすればよい。
This silicon oxide film is formed by heating the silicon surface of the X-ray mask substrate or the X-ray mask reinforcement to a temperature of 800 ° C. or higher in the presence of oxygen to oxidize it, or by a known CVD method for this silicon surface. Method, sputtering method SiO 2
A film may be formed, but the thickness of this silicon oxide film is 10
〜10,000Å, preferably 100〜5,000 Å.

【0021】本発明によるX線マスク構造体の製造方法
は前記したように、X線マスク基板のX線透過膜を成形
面の反対面とX線マスク補強体とを、X線透過膜の成膜
温度以下もしくはアニール温度以下の温度で接合するも
のであるが、X線透過膜の成膜温度はCVD法を用いた
場合は 1,000〜1,500 ℃であり、スパッター法を用いた
場合には 200〜1,000 ℃とされる。スパッター法では比
較的低温で成膜するが、その後膜の成膜応力を一定の値
にコントロールするために一定の温度でアニール処理す
るので、アニール温度以下の温度で行なうことが必要と
なる。
As described above, the method of manufacturing the X-ray mask structure according to the present invention comprises forming the X-ray transparent film of the X-ray mask substrate, the surface opposite to the molding surface, and the X-ray mask reinforcing member to form the X-ray transparent film. Although the bonding is performed at a temperature below the film temperature or below the annealing temperature, the film forming temperature of the X-ray transparent film is 1,000 to 1,500 ° C. when the CVD method is used, and 200 to when the sputtering method is used. 1,000 ℃ In the sputter method, the film is formed at a relatively low temperature, but since the film is annealed at a constant temperature in order to control the film forming stress to a constant value, it is necessary to perform it at a temperature equal to or lower than the annealing temperature.

【0022】すなわち、このX線マスク基板に成膜され
るX線透過膜がCVD法で成膜した膜であるときには
1,000℃以下、例えば 600〜800 ℃の接合温度とすれば
よいが、スパッター法の場合には 200℃以下の温度で圧
縮状態で膜を成膜したのち、800 ℃以下でアニール処理
されるが、本発明の方法ではこの場合の接合温度はこの
アニール温度以下で行なうことから、所望の引張応力を
調整したのち、800 ℃以下、例えば 600℃という温度で
接合する。
That is, when the X-ray transparent film formed on the X-ray mask substrate is a film formed by the CVD method,
The bonding temperature may be 1,000 ° C or lower, for example, 600 to 800 ° C. In the case of the sputtering method, a film is formed in a compressed state at a temperature of 200 ° C or lower and then annealed at 800 ° C or lower. In the method of the present invention, the joining temperature in this case is lower than the annealing temperature. Therefore, after adjusting the desired tensile stress, the joining is performed at a temperature of 800 ° C. or lower, for example, 600 ° C.

【0023】本発明によるX線マスク構造体の製造方法
におけるX線マスク基板とX線マスク補強体との接合は
これらの双方またはいずれかに上記した酸化シリコン膜
を形成したのち、これらを所定の位置に重ね合わせ、ず
れないように固定したのち、所定の温度下で1時間〜20
時間、好ましくは3時間〜8時間、真空下または常圧下
で加熱処理すればよい。
In the method of manufacturing an X-ray mask structure according to the present invention, the X-ray mask substrate and the X-ray mask reinforcement are bonded to each other by forming the above-mentioned silicon oxide film on them and / or by applying a predetermined amount of them. After stacking them in the same position and fixing them so that they will not shift, at a specified temperature for 1 hour to 20
The heat treatment may be performed under vacuum or normal pressure for 3 hours to 8 hours.

【0024】[0024]

【実施例】つぎに本発明の実施例、比較例をあげるが、
例中における接着性、メンブレン化適性は以下の基準に
よる判定結果を示したものである。 (接着性)引張試験機で保持枠用シリコンウエハーと補
強体としてのシリコン単結晶の間に10kgの引張り強度を
与え、剥離しない場合を「良好」とし、剥離した場合を
「不良」とした。 (メンブレン化適正)X線透過膜保持枠の接合面にアル
カリエッチング保護膜(BN膜)を設け、メンブレン領域
となる部分のBNを除去し、露出したシリコン面を、アル
カリエッチングしてメンブレン化するとき、良好なメン
ブレンの得られたものをメンブレン化適正良好とし、そ
うでないものはメンブレン化不良とする。
EXAMPLES Examples and comparative examples of the present invention will be given below.
The adhesiveness and suitability for membrane formation in the examples are the results of judgment based on the following criteria. (Adhesiveness) Tensile strength of 10 kg was applied between the silicon wafer for the holding frame and the silicon single crystal as the reinforcing member by a tensile tester, and the case of not peeling was defined as “good”, and the case of peeling was defined as “poor”. (Appropriate for membrane formation) An alkali etching protective film (BN film) is provided on the joint surface of the X-ray transparent film holding frame, BN in the portion that becomes the membrane region is removed, and the exposed silicon surface is alkali-etched to become a membrane. At this time, those having good membranes are regarded as good for proper membrane formation, and those not having good membranes are regarded as poor membrane formation.

【0025】実施例1〜12 X線透過膜保持枠となる直径3インチ、厚さ 600μmの
結晶方位が(100) である、両面研摩したシリコンウエハ
ーからなるX線マスク基板に、表1に示した成膜方法で
厚さ 1.0μmのSiC 、Si3N4 またはSiCNx からなるX線
透過膜を成膜した。
Examples 1 to 12 X-ray mask substrates made of double-side polished silicon wafers having a diameter of 3 inches and a thickness of 600 μm and a crystal orientation of (100) to be used as a frame for holding an X-ray transparent film are shown in Table 1. An X-ray transparent film made of SiC, Si 3 N 4 or SiCN x having a thickness of 1.0 μm was formed by the above film forming method.

【0026】ついで結晶方位が(100) で、一辺が 100m
m、厚さが5mmである両面研摩した正方形のシリコン単
結晶の中央部に直径55mmの穴を設けたX線マスク補強体
を作り、この補強体を1気圧の酸素雰囲気下に 1,000℃
で2時間酸化処理して、その研摩面に厚さ 1,000Åの酸
化シリコン膜を形成した。
Next, the crystal orientation is (100) and one side is 100 m.
We made an X-ray mask reinforcement with a 55 mm diameter hole in the center of a double-sided, square-shaped silicon single crystal with a thickness of 5 mm and a temperature of 1,000 ° C in an oxygen atmosphere of 1 atm.
The surface was oxidized for 2 hours to form a 1,000 Å thick silicon oxide film on the polished surface.

【0027】つぎに上記したX線透過膜保持枠としての
シリコンウエハーと上記により酸化シリコン膜を設けた
X線マスク補強体としてのシリコン単結晶とを、シリコ
ンウエハーのX線透過膜形成面の反対面である研摩面と
補強体の酸化シリコン膜とが重なるように重ね合わせ、
真空下に表1に示した接合温度で3時間圧着処理してシ
リコンウエハーと補強体としてのシリコン単結晶との接
合体を作り、この接合体の接着性をしらべたところ、表
2に示したとおりの結果が得られた。
Next, the silicon wafer serving as the X-ray transparent film holding frame and the silicon single crystal serving as the X-ray mask reinforcing member provided with the silicon oxide film are opposite to the X-ray transparent film forming surface of the silicon wafer. Superposed so that the polished surface, which is the surface, and the silicon oxide film of the reinforcing body overlap,
A bonding body of a silicon wafer and a silicon single crystal as a reinforcing body was produced by pressure bonding under vacuum at the bonding temperature shown in Table 1 for 3 hours, and the adhesiveness of this bonding body was examined. The following results were obtained.

【0028】また、この接合体についてはそのX線透過
膜保持枠の接合面にプラズマCVD法で、アルカリエッ
チング保護膜としてのBN膜を厚さ 0.5μmに形成させ、
メンブレン領域となる一辺25mmの四角形部分のBN膜をCF
4/O2混合ガスによってドライエッチングで除去したの
ち、露出したシリコン面をアルカリエッチングで除去し
て、このときのメンブレン化適正をしらべたところ、表
2に示したとおりの結果が得られた。
With respect to this bonded body, a BN film as an alkali etching protective film was formed to a thickness of 0.5 μm on the bonded surface of the X-ray transparent film holding frame by plasma CVD.
CF the BN film in the square area of 25 mm on each side that becomes the membrane area.
After removing by dry etching with a 4 / O 2 mixed gas, the exposed silicon surface was removed by alkali etching, and the suitability for membrane formation at this time was examined. The results shown in Table 2 were obtained.

【0029】比較例1〜4 実施例で使用したものと同一のシリコンウエハーからな
るX線マスク基板に表1に示した成膜方法、成膜条件で
厚さ 1.0μmのSi3N4 、SiC からなるX線透過膜を成膜
し、これに実施例と同じようにして得た酸化シリコン膜
を形成したX線マスク補強体を実施例と同じように重ね
合わせ、真空下に表1に示した接合温度で3時間圧着処
理して接合体を作り、この接合体の接着性およびメンブ
レン化適正をしらべたところ、表2に示したとおりの結
果が得られた。
Comparative Examples 1 to 4 On an X-ray mask substrate made of the same silicon wafer as that used in the examples, the film forming method and the film forming conditions shown in Table 1 were set to 1.0 μm thick Si 3 N 4 , SiC. An X-ray mask reinforcement having a silicon oxide film obtained in the same manner as in the example was superposed thereon in the same manner as in the example, and shown in Table 1 under vacuum. When a bonded body was produced by performing pressure bonding treatment at the bonding temperature for 3 hours, and the adhesiveness and membrane-forming suitability of this bonded body were examined, the results shown in Table 2 were obtained.

【0030】[0030]

【表1】 [Table 1]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明はX線マスク構造体の製造方法に
関するものであり、これは前記したようにX線マスク基
板とX線マスク補強体とを接合させてなるX線マスク構
造体の製造方法において、X線マスク基板のX線透過膜
を成形した面の反対面とX線マスク補強体とを、X線透
過膜の成膜温度以下もしくはアニール温度以下の温度下
で接合することを特徴とするものであり、これによれば
X線透過膜の応力が変動しなくなるし、メンブレン化適
正も向上するという有利性が与えられる。
The present invention relates to a method of manufacturing an X-ray mask structure, which is, as described above, manufactured by bonding an X-ray mask substrate and an X-ray mask reinforcement. In the method, the surface of the X-ray mask substrate opposite to the surface on which the X-ray transmission film is formed and the X-ray mask reinforcement are bonded at a temperature not higher than the film formation temperature of the X-ray transmission film or not higher than the annealing temperature. This provides the advantage that the stress of the X-ray transparent film does not fluctuate and the suitability for membrane formation is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 X線マスク構造体の縦断面要図を示したもの
である。
FIG. 1 is a vertical cross-sectional view of an X-ray mask structure.

【符号の説明】[Explanation of symbols]

1…X線透過膜、 2…X線透過膜保持枠、3…X線
吸収体、 4…X線マスク補強体、5…BN膜、
6…メンブレン、7…酸化シリコン膜。
1 ... X-ray transparent film, 2 ... X-ray transparent film holding frame, 3 ... X-ray absorber, 4 ... X-ray mask reinforcement, 5 ... BN film,
6 ... Membrane, 7 ... Silicon oxide film.

フロントページの続き (72)発明者 久保田 芳宏 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内Front page continued (72) Inventor Yoshihiro Kubota 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリコンウエーハからなるX線マスク基板
とシリコン板からなるX線マスク補強体とを接合させて
なるX線マスク構造体の製造方法において、X線マスク
基板のX線透過膜を成形した面の反対面とX線マスク補
強体とを、X線透過膜の成膜温度以下もしくはアニール
温度以下の温度下で接合することを特徴とするX線マス
ク構造体の製造方法。
1. A method of manufacturing an X-ray mask structure, which comprises bonding an X-ray mask substrate made of a silicon wafer and an X-ray mask reinforcement made of a silicon plate, to form an X-ray transparent film of the X-ray mask substrate. A method for manufacturing an X-ray mask structure, characterized in that the opposite surface of the surface and the X-ray mask reinforcement are bonded at a temperature not higher than the film formation temperature of the X-ray transparent film or not higher than the annealing temperature.
【請求項2】X線マスク基板とX線マスク補強体とを酸
化シリコン膜を介して接合する請求項1に記載したX線
マスク構造体の製造方法。
2. The method of manufacturing an X-ray mask structure according to claim 1, wherein the X-ray mask substrate and the X-ray mask reinforcing member are bonded together via a silicon oxide film.
【請求項3】酸化シリコン膜がX線マスク補強体に成膜
されてなるものである請求項2に記載したX線マスク構
造体の製造方法。
3. The method of manufacturing an X-ray mask structure according to claim 2, wherein the silicon oxide film is formed on the X-ray mask reinforcing body.
JP15266892A 1992-05-20 1992-05-20 Method of manufacturing X-ray mask structure Expired - Fee Related JP2768595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15266892A JP2768595B2 (en) 1992-05-20 1992-05-20 Method of manufacturing X-ray mask structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15266892A JP2768595B2 (en) 1992-05-20 1992-05-20 Method of manufacturing X-ray mask structure

Publications (2)

Publication Number Publication Date
JPH05326378A true JPH05326378A (en) 1993-12-10
JP2768595B2 JP2768595B2 (en) 1998-06-25

Family

ID=15545491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15266892A Expired - Fee Related JP2768595B2 (en) 1992-05-20 1992-05-20 Method of manufacturing X-ray mask structure

Country Status (1)

Country Link
JP (1) JP2768595B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509041A (en) * 1994-06-30 1996-04-16 Motorola, Inc. X-ray lithography method for irradiating an object to form a pattern thereon
JPH0992610A (en) * 1995-09-28 1997-04-04 Nec Corp Charged beam writing system
JP2007258650A (en) * 2006-03-27 2007-10-04 Toppan Printing Co Ltd Transfer mask blank, transfer mask and pattern exposure method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137718A (en) * 1990-09-28 1992-05-12 Toshiba Corp Manufacture of x-ray mask

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137718A (en) * 1990-09-28 1992-05-12 Toshiba Corp Manufacture of x-ray mask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509041A (en) * 1994-06-30 1996-04-16 Motorola, Inc. X-ray lithography method for irradiating an object to form a pattern thereon
JPH0992610A (en) * 1995-09-28 1997-04-04 Nec Corp Charged beam writing system
JP2007258650A (en) * 2006-03-27 2007-10-04 Toppan Printing Co Ltd Transfer mask blank, transfer mask and pattern exposure method

Also Published As

Publication number Publication date
JP2768595B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US4632871A (en) Anodic bonding method and apparatus for X-ray masks
US5291536A (en) X-ray mask, method for fabricating the same, and pattern formation method
JP2634714B2 (en) Method of manufacturing X-ray mask structure
JPS62149132A (en) Manufacture of mask for x-ray photolithography and structureobtained as the result of the manufacture
JPH0963912A (en) Manufacture of joined substrate
JPS6050970A (en) Semiconductor pressure converter
JPH05326378A (en) Manufacture of x-ray mask structure
JPH0992602A (en) Mask structure and production thereof
JP3194822B2 (en) Manufacturing method of composite substrate material
US4671850A (en) Mask using polyimide to support a patterned x-ray opaque layer
JP2655543B2 (en) X-ray mask blanks and X-ray mask structure
JPS641926B2 (en)
JPH01309327A (en) Mask for x-ray exposure
JPH01125930A (en) X-ray mask
JP2008186995A (en) Exposure mask blanks, exposure mask, and method of manufacturing the same
JP2797190B2 (en) Manufacturing method of X-ray exposure mask
JPH09219351A (en) Mask structure, method and apparatus for exposure using the structure, and manufacture of device
JPS62216325A (en) Manufacture of x-ray mask
JP3195328B2 (en) X-ray mask and method of manufacturing X-ray mask
JP2001110715A (en) Mask for x-ray exposure
JPS5935428A (en) Mask for x-ray
JP3255372B2 (en) X-ray mask material and method of manufacturing the same
JP2983365B2 (en) X-ray exposure mask and method of manufacturing the same
JPH0521334B2 (en)
JPH0744137B2 (en) X-ray exposure mask for step and repeat method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110410

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees