JPS5880272A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS5880272A
JPS5880272A JP56178625A JP17862581A JPS5880272A JP S5880272 A JPS5880272 A JP S5880272A JP 56178625 A JP56178625 A JP 56178625A JP 17862581 A JP17862581 A JP 17862581A JP S5880272 A JPS5880272 A JP S5880272A
Authority
JP
Japan
Prior art keywords
outlet
gas
grooves
supply
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56178625A
Other languages
Japanese (ja)
Other versions
JPS6160545B2 (en
Inventor
Masao Kumeta
粂田 政男
Kensho Matsuoka
松岡 憲昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56178625A priority Critical patent/JPS5880272A/en
Publication of JPS5880272A publication Critical patent/JPS5880272A/en
Publication of JPS6160545B2 publication Critical patent/JPS6160545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a uniform electrode reaction and improve cooling capability of a cell by applying backpressure to each of gas supply grooves by reducing the number of outlet grooves of a reaction gas than the number of supply grooves of a gas separating plate in a matrix type fuel cell. CONSTITUTION:In a cell stack S constructed by stacking matually a unit cell 1 and a gas separating plate 4, supply grooves 2, 3 of hydrogen and air are interconnected through outlet grooves 2', 3' which have the reduced number than the number of supply grooves, via interconnecting cutting grooves 11. Thus, the cross section of an outlet passage is narrowed than that of an inlet passage so that the backpressure is applying to each supply groove from the outlet side. Concentration drop of reaction gas from the inlet side to the outlet side is compensated by increase of the reaction gas diffusion from the back of a gas electrode due to increase of the backpressure. Therefore, the electrode reaction is made practically uniform. Since manifold pipes are not narrowed, the amount of cooling air passing through a cooling plate 6 is increased and cooling efficiency is improved.

Description

【発明の詳細な説明】 本発明はマトリックスfJ燃料電池に係シ,特にガス分
離板を改良して電極反応の均一化な図ると角に電池の?
&a能を向上丁ることt#目的と丁る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a matrix fJ fuel cell, and in particular, to improve the gas separation plate to make the electrode reaction uniform.
&a To improve one's ability and one's purpose.

仁の櫨竃池は第1図に水子ように、水素極,空気極及び
これら極間に介在Tる電解液保持マ}5ツクス(いづれ
も図示せず】よシなる単位セル(1)と、両面に互Vc
5F.錯丁る方向に水素供給溝(2)及び空気供給溝(
3》を配列した炭素質ガス分離板(47とを交互に積重
し,且!1〜4七ル毎に空気通路《5)を有する冷却板
(句を介在させて電池スタック(83 &構成する。
As shown in Figure 1, Jin's Hajido Pond consists of a hydrogen electrode, an air electrode, and an electrolyte retention matrix interposed between these electrodes (none of which are shown). and mutual Vc on both sides.
5F. Hydrogen supply groove (2) and air supply groove (
Carbonaceous gas separation plates (47) arranged with carbonaceous gas separation plates (47) arranged in do.

電池スタック(町の対向lIIIlには.@2−に水子
ように、夫々水素供給用の一対のマニホルド(7)+7
)及び空気供給用の一対のマニホルド18)+83が取
付けられ,これらマニホルドを介して水素及び空気が夫
々のガス供給溝(2)及び(3ノに送られ.*解液保持
マトリックスな介して電池反応にあづかる。同時に供給
突気は冷却板[6)の空気通路(5)に流れて電池の冷
却を行う。
The battery stack (on the opposite side of the town is a pair of manifolds (7) and 7 for hydrogen supply, respectively.@2- and Mizuko-like)
) and a pair of air supply manifolds 18) +83 are installed, and hydrogen and air are sent to the respective gas supply grooves (2) and (3) through these manifolds. At the same time, the supplied air flows into the air passage (5) of the cooling plate [6] to cool the battery.

さて電池に供給される水素は.d淋メタノールや天然ガ
スを改質したものであるため、約20路程度の炭酸ガス
を含んでおり、その流量は反応必要量の12〜15倍程
度で倍径。
Now, what about the hydrogen supplied to the battery? Since it is a reformed product of methanol or natural gas, it contains about 20 volumes of carbon dioxide gas, and its flow rate is about 12 to 15 times the amount required for the reaction.

一方電池に供給される空気も反応ガスとしての0麿以外
に1$量のNaを含んでおシ、1!1g空冷方式を用−
九場合、その流量は反応必#瞳の約10倍径度でその大
部分70〜75略は冷却板(61の空気通路(5)を流
れる。
On the other hand, the air supplied to the battery also contains 1$ of Na in addition to the reactant gas, and 1!1g is used in the air cooling system.
In the case of 9, the flow rate is about 10 times the diameter of the reaction pupil, and most of it flows through the air passage (5) of the cooling plate (61).

このような水素及び空気を電池に供給子れば1各供給溝
(2)及び【3ノよ如水素極及び空気極に拡散して反応
するが、この反応によシ供給ガスの有効成分(1m及び
0麿〕の分圧(濃度)は各供給溝の人口(IIt為ら出
口側に同りて低’FTる。従りて電極反応は入口側と出
口側で不均一となり、電極特性を省化さゼるーふ因とな
ってい友。
If such hydrogen and air are supplied to the battery, they will diffuse into each supply groove (2) and the hydrogen electrode and air electrode and react, but this reaction will cause the effective components ( The partial pressure (concentration) at 1 m and 0 m is the same at the exit side because the population (IIt) of each supply groove is low. Therefore, the electrode reaction becomes non-uniform between the inlet and outlet sides, and the electrode characteristics It is a friend who has become a saving grace.

従来これを防止するため各出口側マニホルド(7)(8
)の導出管(9)及び−を各入口側マニホルド(7)及
び(8)の導入管(9J及び叫よシ細径(21!気用の
場合断面積で約1ろ)シ、各出口側マニホルド内の圧力
を増大して、各供給溝の出口側から背圧を加え1反応ガ
スの濃度低下をこの圧力増大従りてガス極背面からの拡
散性向上によりて補償Tる方法がとbれていた。
Conventionally, to prevent this, each outlet side manifold (7) (8
) to the inlet pipes (9) and (8) of the manifolds (7) and (8), respectively, to the inlet pipes (9J and small diameter (approx. One method is to increase the pressure in the side manifold and apply back pressure from the outlet side of each supply groove to compensate for the decrease in the concentration of the reactant gas by increasing the pressure and improving the diffusivity from the back side of the gas. It was broken.

この方法によれば、供給ガスの円滑な流れを阻害すると
角に流量が低下し、特に空気の場合冷却板に流れる冷却
空気量の減少によシ、電池の冷却が充分に行われな−と
いう間層があった。
According to this method, if the smooth flow of the supply gas is obstructed, the flow rate decreases at the corners, and in the case of air, the amount of cooling air flowing to the cooling plate decreases, making it impossible to cool the battery sufficiently. There was an interlayer.

本発明はこのような間層点をガス分離板の供給#lを改
良Tることによシ解決Tるもので、以下図にり一で説明
する。
The present invention solves such interlayer points by improving the supply #l of the gas separation plate, and will be explained below with reference to the drawings.

第3図に示すガス分離板(匂は、従来のものと同線に両
面に互に5!錯Tるよう各供給#1(2バ3Jを配列し
ているが、これら供給溝は出口近傍に連通切欠部U&有
し、この切欠11tlを介して供給溝数よシ少1に一出
口溝一及び(埴に連通させて−る。この出口溝数は供給
溝数の4〜1/4が遥蟲で1hシ。
The gas separation plate shown in Fig. 3 has each supply #1 (2 bars 3J) arranged in the same line as the conventional one, with 5! It has a communicating notch U&, and through this notch 11tl, it communicates with one outlet groove 1 and one (1) smaller than the number of supply grooves.The number of outlet grooves is 4 to 1/4 of the number of supply grooves. It's Harukamushi for 1h.

このようにして出口IIjl路断面を八日1m11通路
断面によL’C*6エ、5え、           
 )従りて供給溝数よ〕少ない出口溝によシ、出口鉤か
ら各供給溝に圧力(背圧]がか−るので1反応ガスの入
口側から出口側に至る濃度低下はこの背圧上昇によるガ
ス極背面からの反応ガスの拡散性同上によりて補償され
、 i++ut反応を入口側から出口mK算りて略均−
化Tることができる。
In this way, the cross section of exit IIjl is changed to the cross section of 8 days 1 m11 passage L'C*6e, 5e,
) Therefore, pressure (back pressure) is applied to each supply groove from the outlet hook to the outlet grooves, which are smaller than the number of supply grooves, so the concentration drop from the inlet side to the outlet side of the reactant gas is due to this back pressure. Compensated by the diffusivity of the reaction gas from the back surface of the gas pole due to the rise, the i++ut reaction is calculated from the inlet side to the outlet mK and is approximately equal to -
can be converted.

又本方式ではガス分離板t4Jのガス供給溝の改良で背
圧を得□るようにしているので、従来のように出口マニ
ホルド(7)及び(聞の導出管(萌及びutiを絞る必
要なく円滑なガス流が得られ、特に冷却板163を通過
する冷却空気量が増大して冷却効果をも向上する。
In addition, in this system, the back pressure is obtained by improving the gas supply groove of the gas separation plate t4J, so there is no need to throttle the outlet manifold (7) and the outlet pipe (meg and uti) as in the conventional method. A smooth gas flow is obtained, and in particular, the amount of cooling air passing through the cooling plate 163 is increased, thereby improving the cooling effect.

第4図に示す他実施例は、各反応ガス供給溝(2)(3
Jの入口側及び前記の各出口溝(ita5はガス分離板
4Jの周辺を残してシンネル状に形成した場合でる)1
このガス分離板(蜀に密接する各ガス極周辺部が、各ガ
ス供給溝(2)及び[37の人口並びに出口溝(6及び
(31に喰込んで出へ口の通路断面積を減少させたシ、
ガス極周辺部を破損させたりするかそれがなくなるとい
う付加的効果が得られる。
In another embodiment shown in FIG. 4, each reaction gas supply groove (2) (3
The inlet side of J and each of the above-mentioned outlet grooves (ita5 is formed when the periphery of the gas separation plate 4J is left in the form of a thinner) 1
This gas separation plate (the peripheral part of each gas electrode that is in close contact with Shu) cuts into each gas supply groove (2) and the population of [37] and the outlet groove (6 and (31) to reduce the passage cross-sectional area of the outlet. Tashi,
An additional effect is obtained that the peripheral part of the gas electrode is not damaged or destroyed.

以上の如く本発明によれと、電池への供給ガスとして夫
々Cotを含む改質水素及び空気を用いる場合、多数の
ガス供給溝には、出口近傍でこれらを互に連−する切欠
部な介して、供給、溝数よシ少な一出口溝な形成した4
ので、このガスー路断面な絞る出口溝によ〕ガス供給溝
に背圧が加はるので従来のようにマニホルドの出口側を
絞る必要がな(な〉、電極!L応な入口角から出口側に
亘りて略均−化し得ると共に冷却空気の円##な流れに
ょ〉冷却能を向上し得るなど、電池特性の改讐に資する
ものである。
As described above, according to the present invention, when reformed hydrogen and air each containing Cot are used as gases to be supplied to a battery, a large number of gas supply grooves have cutouts that interconnect them near the outlet. Then, the number of grooves is smaller than the number of grooves formed.
Therefore, back pressure is applied to the gas supply groove by the outlet groove that narrows the cross section of the gas path, so there is no need to throttle the outlet side of the manifold as in the conventional case. This contributes to improving the characteristics of the battery, such as making it possible to substantially equalize the flow of cooling air across the sides and improving the cooling capacity of the cooling air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする電池スタックの斜面図、第
2@は向上完成電池の平1図、第3図は本発明によ)改
良されたガス分離板の斜面図、第4図は崗じ(他実施例
によるガス分#IIi板の斜面図である。 8−電池スタック、1一単位セル、2.1・・水素及び
空気の供給溝、4・−ガス分離板、6−・・冷却板、(
5−空気通路) 、 7 、7’−・・水素供給用マニ
ホルド、8.8−空気供給用マニホルド。
Fig. 1 is a perspective view of a battery stack to which the present invention is applied, Fig. 2 is a flat view of an improved completed battery, Fig. 3 is a perspective view of a gas separation plate improved according to the present invention, and Fig. 4 8-Battery stack, 1-unit cell, 2.1. Hydrogen and air supply groove, 4.-Gas separation plate, 6- ...Cooling plate, (
5-Air passage), 7, 7'--Hydrogen supply manifold, 8.8-Air supply manifold.

Claims (1)

【特許請求の範囲】 ■ 単位セルとガス分離板とを交互に積置してなる電池
スタックであって、1紀ガス分離板に形設された斧数の
vL応ガス供給虜は、出口近傍でこれら供給溝を互に連
通する切欠部と削記供給溝数よシ少ない出口溝とを有し
5sUe出口溝によ)出口側の反応ガス通路断l槍を絞
って各ガス供給溝に背圧を加え、IrII記供給溝の人
口側から出口−に至る反応ガスの分圧低下1kM償せし
めたことを特徴とTる燃料電池。 ■ 約ti!、反応ガス供給溝の人口側及び1IiJ記
出口溝は、―J記ガス分離板をトンネル状にjK通して
形成されていることを特徴とする特許 囲@1槙紀載の燃料電池。 @  liJ記亀池電池ックには数セル毎に?v1却空
気通路を竹する冷却板を介在皇嬢てなるーJ記特許講求
の範囲第1Jj1及び第2項記載の燃料電池。
[Scope of Claims] ■ A battery stack in which unit cells and gas separation plates are stacked alternately, in which a number of vL gas supply capacitors formed in the primary gas separation plates are arranged near the outlet. The reactant gas passage on the outlet side (by the 5sUe outlet groove) has a notch that communicates these supply grooves with each other and an outlet groove that is smaller than the number of supply grooves. A fuel cell characterized in that pressure is applied to compensate for a partial pressure drop of 1 kM in the reactant gas from the population side of the IrII supply groove to the outlet. ■ About ti! , the fuel cell described in Patent Enclosure @ 1 Makiki, characterized in that the artificial side of the reaction gas supply groove and the 1IiJ outlet groove are formed by passing the -J gas separation plate in a tunnel shape. @liJ-Kameike Every few cells in the battery rack? v1 The fuel cell according to paragraphs 1 and 2 of the scope of the patent application, in which a cooling plate for cooling air passages is interposed.
JP56178625A 1981-11-07 1981-11-07 Fuel cell Granted JPS5880272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56178625A JPS5880272A (en) 1981-11-07 1981-11-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56178625A JPS5880272A (en) 1981-11-07 1981-11-07 Fuel cell

Publications (2)

Publication Number Publication Date
JPS5880272A true JPS5880272A (en) 1983-05-14
JPS6160545B2 JPS6160545B2 (en) 1986-12-22

Family

ID=16051717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56178625A Granted JPS5880272A (en) 1981-11-07 1981-11-07 Fuel cell

Country Status (1)

Country Link
JP (1) JPS5880272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527862A (en) * 1998-10-07 2002-08-27 プラグ パワー インコーポレイテッド Fuel cell assembly system that promotes fluid supply and design flexibility
JP2008047299A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527862A (en) * 1998-10-07 2002-08-27 プラグ パワー インコーポレイテッド Fuel cell assembly system that promotes fluid supply and design flexibility
JP2008047299A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Fuel cell

Also Published As

Publication number Publication date
JPS6160545B2 (en) 1986-12-22

Similar Documents

Publication Publication Date Title
JPH071701B2 (en) Fuel cell assembly
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JP2000195529A5 (en)
JPS624833B2 (en)
JPH041469B2 (en)
JPH04355061A (en) Fuel cell
JPH03276569A (en) Fuel cell
JPS62264564A (en) Stacked fuel cell
JPS5880272A (en) Fuel cell
JPH0992322A (en) Fuel cell stack
JPS58145066A (en) Fuel cell
JPS58166658A (en) Fuel cell
JP3266927B2 (en) Solid oxide fuel cell
JPS6160544B2 (en)
JP2803288B2 (en) Cooling method of phosphoric acid type fuel cell
JPS5830074A (en) Fuel cell
JPS624834B2 (en)
JPH0249640Y2 (en)
JPH0142935Y2 (en)
JPH01151163A (en) Fuel cell
JPH037886Y2 (en)
JPH10223240A (en) Fuel cell
JPH0656769B2 (en) Fuel cell power generation system
JPS57191963A (en) Matrix-type fuel cell