JPH071701B2 - Fuel cell assembly - Google Patents

Fuel cell assembly

Info

Publication number
JPH071701B2
JPH071701B2 JP59267283A JP26728384A JPH071701B2 JP H071701 B2 JPH071701 B2 JP H071701B2 JP 59267283 A JP59267283 A JP 59267283A JP 26728384 A JP26728384 A JP 26728384A JP H071701 B2 JPH071701 B2 JP H071701B2
Authority
JP
Japan
Prior art keywords
cooling
fuel cell
tubes
cooling fluid
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59267283A
Other languages
Japanese (ja)
Other versions
JPS60154473A (en
Inventor
リチヤード・デヴイツド・ブロールト
リチヤード・デイーン・ソーヤー
トーマス・エドワード・デマーチエ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPS60154473A publication Critical patent/JPS60154473A/en
Publication of JPH071701B2 publication Critical patent/JPH071701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、燃料電池に係り、更に詳細には燃料電池積重
ね体のための冷却システムに係る。
TECHNICAL FIELD The present invention relates to fuel cells, and more particularly to cooling systems for fuel cell stacks.

発明の背景 燃料電池の如き電気化学的電池は反応ガスを消費して反
応生成物と電力と熱を発生する。この熱は電気化学的反
応の副産物である。この熱を除去し、燃料電池の温度を
それに使用されている材料の特性に適した温度に維持し
て燃料電池の作動性能を確保するため冷却システムが設
けられている。
BACKGROUND OF THE INVENTION Electrochemical cells, such as fuel cells, consume reaction gases to produce reaction products, electricity and heat. This heat is a by-product of the electrochemical reaction. A cooling system is provided to remove this heat and maintain the temperature of the fuel cell at a temperature suitable for the characteristics of the material used therein to ensure the operating performance of the fuel cell.

燃料電池に使用される冷却システムの例は米国特許第4,
245,009号、同第3,969,145号、同第4,233,369号、同第
4,269,642号に示されている。
An example of a cooling system used in a fuel cell is US Pat.
No. 245,009, No. 3,969,145, No. 4,233,369, No.
It is shown in No. 4,269,642.

米国特許第4,233,369号には燃料電池積重ね体を冷却す
べくその内部に配置された冷却器組立体が示されてい
る。この場合一つの供給室からの冷却流体が供給管によ
り冷却器組立体へ供給され、この冷却体は該冷却器組立
体より戻り管を経て前記供給室へ戻されている。前記供
給管には一つの入口ヘッダが接続されており、前記戻り
管には一つの出口ヘッダが接続されている。各冷却器組
立体に於ては複数個の冷却管がその入口ヘッダと出口ヘ
ッダの間に平行に設けられている。かかる冷却器組立体
は冷却管を受ける溝に納められている。
U.S. Pat. No. 4,233,369 shows a cooler assembly disposed therein for cooling a fuel cell stack. In this case, the cooling fluid from one supply chamber is supplied to the cooler assembly by the supply pipe, and the cooling body is returned from the cooler assembly to the supply chamber via the return pipe. One inlet header is connected to the supply pipe, and one outlet header is connected to the return pipe. In each cooler assembly, a plurality of cooling tubes are provided in parallel between their inlet and outlet headers. Such a cooler assembly is housed in a groove that receives a cooling tube.

燃料電池積重ね体の電気的出力は燃料電池の数をふやす
ことによって増大する。このように燃料電池がふやされ
ると、その積重ね体の長さが増大する。燃料電池積重ね
体の長さが増大すると、冷却器組立体のための供給管と
戻り管が長くなる。この供給管と戻り管の長さの増大に
より冷却流体が第一のヘッダと最後のヘッダとの間に流
れる圧力損失が増大する。供給管と戻り管の大きさを適
当に定めることによりこれら両管に於ける全体の圧力損
失をほぼ等しくすることができる。これらの管が長くな
ると各管には異なった流れ特性が生じ、或は領域では圧
力勾配が不均一となり、或はヘッダでは冷却流体の流れ
が不十分となり、又他のヘッダでは冷却流体の流れが過
剰になる。このようなヘッダ間の流れの不均一は流れの
不良分布として認識されている。各冷却部間の流れの不
良分布は各冷却部間の熱負荷の違い、燃料電池性能の違
い、管内に於ける沈積物による流路断面の違い等によっ
ても生ずる。又流れの不良分布は、一つの冷却器の中に
於てもそこに含まれる並列配置された管の間で熱負荷の
相違により生じ、燃料電池の断面方向に於ける燃料密度
の相違を生ずる。
The electrical output of a fuel cell stack is increased by increasing the number of fuel cells. When the fuel cell is thus refined, the length of the stack increases. As the length of the fuel cell stack increases, the supply and return tubes for the cooler assembly increase. This increase in the length of the supply and return pipes increases the pressure loss of the cooling fluid flowing between the first header and the last header. By appropriately sizing the supply and return pipes, the overall pressure loss in these pipes can be made approximately equal. Longer lengths of these tubes result in different flow characteristics in each tube, or inhomogeneous pressure gradients in the region, or insufficient cooling fluid flow in the header, and cooling fluid flow in other headers. Becomes excessive. Such non-uniformity of the flow between the headers is recognized as a defective flow distribution. The defective distribution of the flow between the cooling parts is also caused by the difference in the heat load between the cooling parts, the difference in the fuel cell performance, the difference in the cross section of the flow path due to the deposits in the tubes, and the like. In addition, the poor flow distribution is caused by the difference in heat load between the tubes arranged in parallel even in one cooler, which causes the difference in fuel density in the cross-sectional direction of the fuel cell. .

流れの不良分布の問題を解決する一つの方法は冷却器組
立体に於けるフィールド抵抗を増大することであり、即
ち供給管と戻り管との間の流れ抵抗を第一のヘッダと最
後のヘッダの間の流れ抵抗に於ける差がフィールド抵抗
に比して意味をなさない程度に増大することである。流
れ抵抗を増大するには、例えば管の直径より小さい直径
のオリフィスを設ければ良い。しかし最近の経験によれ
ば、オリフィスは水の如き冷却流体を用いる場合にはそ
の中に溶けている物質がオリフィスの壁に沈着すること
により詰まる傾向にあるという問題を含んでいる。これ
に対する一つの解法は冷却中に溶けている物質や混入し
ている粒子を除去する処理を行うことである。しかし冷
却流体の正常化については経済的或いは物理的な理由か
ら制限が課せられている。
One way to solve the problem of poor flow distribution is to increase the field resistance in the cooler assembly, i.e. the flow resistance between the supply and return pipes is controlled by the first header and the last header. The difference in flow resistance between the two increases insignificantly compared to the field resistance. To increase the flow resistance, for example, an orifice having a diameter smaller than the diameter of the tube may be provided. However, recent experience has included the problem that when using a cooling fluid such as water, the orifice tends to become clogged by the material dissolved therein depositing on the walls of the orifice. One solution to this is to remove any dissolved material or entrained particles during cooling. However, normalization of the cooling fluid is limited for economic or physical reasons.

従って詰りの問題がなくて各冷却器組立体間の流れの不
良分布がなく、かつ燃料電池積重ね体中に生ずる温度変
化も少ない冷却システムが望まれる。
It is therefore desirable to have a cooling system that is free from clogging problems, has no poor distribution of flow between each cooler assembly, and has minimal temperature changes in the fuel cell stack.

発明の要約 本発明によれば、燃料電池組立体のための冷却器組立体
を有する冷却システムは、供給管と戻り管と、これらの
管を互いに接続し冷却流体を導く複数個の管を有し、該
管の各々は順次直列に接続されて当該冷却器組立体を通
って冷却流体を導くための曲りくねった通路を形成する
一組の冷却管よりなっている。
SUMMARY OF THE INVENTION In accordance with the present invention, a cooling system having a cooler assembly for a fuel cell assembly includes a supply pipe and a return pipe, and a plurality of pipes connecting these pipes to each other to conduct a cooling fluid. However, each of the tubes comprises a set of cooling tubes connected in series in series to form a serpentine passage for conducting cooling fluid through the cooler assembly.

本発明の第一の特徴は、燃料電池積重ね体の熱を発生す
る電池より熱を除去するための複数個の冷却器組立体を
有するシステムにある。このシステムは供給管と戻り管
とを有する。本発明の他の一つの特徴は、これらの供給
管と戻り管とを接続する複数個の管にある。各管は該当
する冷却器組立体に配置されている。各管は一組の冷却
管よりなっている。各冷却管は燃料電池積重ね体を横切
って冷却器組立体の一方の側より他方の側へ延びてい
る。これらの管は供給管及び戻り管と連結されており、
互いに直列に接続されて冷却流体のための曲りくねった
通路を形成している。本発明の一つの特徴は、冷却流体
のためのこの曲りくねった通路の性質からくる導管の流
れ抵抗にある。また、冷却システムは二組の管を有して
いる。各組の管は他の組の管の一組の冷却管と交互に配
置された一組の冷却管を有している。
A first feature of the present invention is a system having a plurality of cooler assemblies for removing heat from the fuel cell stack heat generating cells. The system has a supply line and a return line. Another feature of the present invention is a plurality of pipes connecting these supply pipes and return pipes. Each tube is located in the appropriate cooler assembly. Each tube consists of a set of cooling tubes. Each cooling tube extends across the fuel cell stack from one side of the cooler assembly to the other side. These pipes are connected to the supply pipe and the return pipe,
Connected in series with each other to form a tortuous path for the cooling fluid. One feature of the invention is the flow resistance of the conduit resulting from the nature of this tortuous path for the cooling fluid. The cooling system also has two sets of tubes. Each set of tubes has a set of cooling tubes alternating with one set of cooling tubes in the other set of tubes.

本発明の第一の利点は、水の如く溶解したり浮遊してい
る異物質を含む冷却流体を長期間に亙って冷却システム
の故障を生ずることなく使用することのできる冷却シス
テムを提供することである。これは流れの分布を平均化
する冷却管の流れ抵抗特性によって各組の冷却管の間の
冷却流体の好ましからざる不良分布を避けることにより
小さい直径の流れ制御オリフィスを用いることを回避し
たことによっている。一つの実施例に於いては、その利
点は、供給管及び冷却管に接続されたヘッダ及びヘッダ
と管の間の接続をなくし、直列的に接続された管を有す
る単一の導管を用いたことにより得られる構造的信頼性
と簡潔性にある。一つの実施例に於ては、その利点は熱
を発生する燃料電池と冷却器組立体の管の温度勾配及び
熱流に於ける均一性にあり、これは交互に配置され対向
流の関係に流体を流される二つの導管を与えたことによ
り得られるものである。
A first advantage of the present invention is to provide a cooling system capable of using a cooling fluid containing a foreign substance dissolved or suspended like water for a long period of time without causing failure of the cooling system. That is. This is due to the avoidance of the use of smaller diameter flow control orifices to avoid undesired poor distribution of the cooling fluid between each set of cooling tubes due to the flow resistance characteristics of the cooling tubes averaging the flow distribution. . In one embodiment, the advantage is that the header connected to the supply and cooling tubes and the connection between the header and the tube are eliminated and a single conduit with the tubes connected in series is used. It is in structural reliability and conciseness obtained by doing so. In one embodiment, the advantage resides in temperature gradients in the heat-producing fuel cell and cooler assembly tubes and uniformity in heat flow, which are interleaved and fluid flow in a counter-flow relationship. It is obtained by providing two conduits through which

上記の如き特徴及び利点は以下に添付の図を参照して行
われる実施例の説明より明らかとなるであろう。
The above features and advantages will be apparent from the description of the embodiments given below with reference to the accompanying drawings.

発明の実施の最良の態様 第1図は燃料電池積重ね体組立体10の一部を示してい
る。この組立体は燃料電池積重ね体12と4個の反応ガス
マニホルド14,16,18,20を有している。各反応ガスマニ
ホルドは燃料電池積重ね体の4つの面の各々を覆ってい
る。マニホルド14は燃料のための入口マニホルドであ
る。マニホルド16は燃料のための出口マニホルドであ
る。マニホルド18は酸化剤即ち空気のための入口マニホ
ルドである。マニホルド20は酸化剤のための出口マニホ
ルドである。これらのマニホルドは燃料電池積重ね体の
各面に対し複数個のバンド22により密封関係に押し付け
られている。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows a portion of a fuel cell stack assembly 10. The assembly includes a fuel cell stack 12 and four reaction gas manifolds 14,16,18,20. Each reaction gas manifold covers each of the four sides of the fuel cell stack. Manifold 14 is an inlet manifold for fuel. Manifold 16 is an outlet manifold for fuel. Manifold 18 is the inlet manifold for the oxidant or air. Manifold 20 is the outlet manifold for the oxidant. These manifolds are pressed in a sealing relationship by a plurality of bands 22 against each side of the fuel cell stack.

燃料電池積重ね体組立体10は図に示されていない流体供
給源より流体を受ける冷却システム24を有している。こ
の冷却システムは冷却流体を貫通させる手段と、供給管
26と、戻り管28と、その一つが32で示されている如き複
数個の冷却器組立体とを有している。冷却流体のための
複数個の導管が前記供給管と戻り管の間に延びており、
その一つが管32として示されている。これらの管は燃料
電池積重ね体の長さ方向に沿って規則的に隔置されてお
り、それらの供給管に対する接続部が第1図に於て点線
にて示されている。各管は該当する冷却器組立体内に配
置されている。
The fuel cell stack assembly 10 includes a cooling system 24 that receives fluid from a fluid source not shown. This cooling system consists of a means for penetrating the cooling fluid and a supply pipe.
26, a return pipe 28, and a plurality of cooler assemblies, one of which is shown at 32. A plurality of conduits for cooling fluid extend between the supply and return tubes,
One of them is shown as tube 32. These tubes are regularly spaced along the length of the fuel cell stack, and their connections to the supply tubes are shown in dotted lines in FIG. Each tube is located within the appropriate cooler assembly.

第2図は本発明における燃料電池積重ね体組立体10一部
を詳細に示す図である。燃料電池積重ね体は積重ね形状
に集合された複数個の燃料電池34を含んでいる。ガスを
通さない分離板36又は冷却器組立体30が各二つの燃料電
池の間に延在している。各冷却器組立体はガスを通さな
い分離板36′を有しており、これは分離板36と同じもの
であってガスを通さない層を形成するものである。この
実施例に於ては板36,36′は0.84mmの厚みで約50.8cmの
長さと約50.8cmの幅を有してる。
FIG. 2 is a diagram showing in detail a part of the fuel cell stack assembly 10 according to the present invention. The fuel cell stack includes a plurality of fuel cells 34 assembled in a stack. A gas-tight separator plate 36 or cooler assembly 30 extends between each two fuel cells. Each cooler assembly has a gas-tight separator plate 36 ', which is the same as separator plate 36 and forms a gas-tight layer. In this embodiment, the plates 36, 36 'are 0.84 mm thick and have a length of about 50.8 cm and a width of about 50.8 cm.

基本的な燃料電池の構造は本件出願人が所有する米国特
許第4,115,627号に示され且記載されているものと同じ
である。燃料電池34は電解質を保持するための薄いマト
リックス層38を含んでいる。このマトリックス層の一方
の側には負極42が又他方の側には正極44が配置されてい
る。これらの負極と正極の間にあるマトリックス内に燐
酸電解質が含ませられている。陰極基材46を有し、この
基材は約2.03mmの厚みを有し、繊維質の多孔性のもので
あってガスを通すようになっている。この基材はマトリ
ックス層38に面する平らな表面48を有する。この面上に
は薄い触媒層(図には示されていない)が設けられてい
る。この触媒層は好ましくは50.8〜12.7ミクロンの厚み
のものである。この基材は第二の表面52を有する。複数
個のリブ54がこの第二の表面より突出しており、これら
のリブは互いに隔置されてその間に複数個の溝56を与え
ている。これらの溝は燃料電池全体を横切って延在して
おり、燃料入口マニホルド14を燃料出口マニホルド16に
流体的に連通させている。
The basic fuel cell structure is the same as shown and described in U.S. Pat. No. 4,115,627 owned by the applicant. Fuel cell 34 includes a thin matrix layer 38 for retaining the electrolyte. A negative electrode 42 is arranged on one side of the matrix layer and a positive electrode 44 is arranged on the other side. A phosphoric acid electrolyte is contained in the matrix between these negative and positive electrodes. It has a cathode substrate 46, which has a thickness of about 2.03 mm, is fibrous, porous and gas permeable. The substrate has a flat surface 48 facing the matrix layer 38. A thin catalyst layer (not shown) is provided on this surface. The catalyst layer is preferably 50.8 to 12.7 microns thick. The substrate has a second surface 52. A plurality of ribs 54 project from the second surface and are spaced apart from each other to provide a plurality of grooves 56 therebetween. These grooves extend across the entire fuel cell and fluidly connect the fuel inlet manifold 14 to the fuel outlet manifold 16.

正極44はその構造に於ては負極と類似している。この正
極は正極基材58を有する。薄い触媒層がその表面62に設
けられているが、図には示されていない。正極は第二の
表面64を有する。この第二の面からは複数個のリブ66が
突出しており、これらのリブは互いに隔置されてその間
に複数個の溝68を形成している。これらの溝は空気入口
マニホルド18を空気出口マニホルド20と流体的に連結し
ており、先の陰極に於ける燃料を流す溝に対し直角の方
向に延在している。
The positive electrode 44 is similar in structure to the negative electrode. The positive electrode has a positive electrode substrate 58. A thin catalyst layer is provided on its surface 62, which is not shown in the figure. The positive electrode has a second surface 64. A plurality of ribs 66 project from the second surface, and these ribs are spaced apart from each other to form a plurality of grooves 68 therebetween. These grooves fluidly connect the air inlet manifold 18 to the air outlet manifold 20 and extend in a direction perpendicular to the fuel flow grooves in the cathode.

各冷却器組立体30はそれを貫通して延びる複数個の溝72
を有しており、これらの溝は関連する冷却管102,104を
受けるようになっている。
Each cooler assembly 30 has a plurality of grooves 72 extending therethrough.
And these grooves are adapted to receive the associated cooling tubes 102, 104.

冷却システムは第一および第二の供給管88,90と第一及
び第二の戻り管92,94とを有し、第一の供給管88と第一
の戻り管92は、冷却流体が貫通するジグザグ状に曲りく
ねった流路を構成する第一の組の冷却管102によって接
続されている。また、第二の供給管90と第二の戻り管94
も同様に第二の組の冷却管104によって接続されてい
る。
The cooling system has first and second supply pipes 88,90 and first and second return pipes 92,94, through which the cooling fluid penetrates. They are connected by a first set of cooling pipes 102 that form a zigzag winding flow path. Also, the second supply pipe 90 and the second return pipe 94
Are also connected by a second set of cooling tubes 104.

ところで、第一の供給管88は第二の戻り管94に隣接して
配置されており、第一の戻り管92は第二の供給管90に隣
接して配置されている。また、両組の冷却管102,104の
直線部は各冷却組立体30ら設けられた互いに平行な複数
の溝72に交互に収容され、第一の組の冷却管102の直線
部の隣りに第2の組の冷却管104の直線部が配置されて
いる。そして、第一の組の冷却管102の冷却流体入口部
が第一の供給管88に接続され、その冷却流体出口部が第
一の戻り管92に接続されている。同様に第二の組の冷却
管104の冷却流体入口部は、第一の戻り管92に隣接して
配置されている第二の供給管90に接続され、冷却管104
の冷却流体出口部は、第一の供給管88に隣接して配置し
てある第二の戻り管94に接続されている。このようにし
て、第一の組の冷却管102の入口が第二の組の冷却管104
の出口に隣接し、第一の組の冷却管102の出口が第二の
組の冷却管104の入口に隣接している。こうしてこれら
の二つの導管を通って冷却流体が対向流関係に流され
る。
By the way, the first supply pipe 88 is arranged adjacent to the second return pipe 94, and the first return pipe 92 is arranged adjacent to the second supply pipe 90. Further, the straight portions of the cooling pipes 102 and 104 of both sets are alternately housed in a plurality of parallel grooves 72 provided from each cooling assembly 30, and a second portion is provided next to the straight portions of the cooling pipes 102 of the first set. The straight portions of the cooling tubes 104 of the set are arranged. The cooling fluid inlet of the first set of cooling pipes 102 is connected to the first supply pipe 88, and the cooling fluid outlet thereof is connected to the first return pipe 92. Similarly, the cooling fluid inlet portion of the second set of cooling tubes 104 is connected to the second supply tube 90 located adjacent to the first return tube 92 and the cooling tubes 104
The cooling fluid outlet is connected to a second return pipe 94 located adjacent to the first supply pipe 88. In this way, the inlets of the first set of cooling tubes 102 are connected to the second set of cooling tubes 104.
Of the first set of cooling pipes 102 is adjacent to the outlet of the second set of cooling pipes 104. Thus, the cooling fluid flows in counterflow relation through these two conduits.

燃料電池積重ね体組立体12の作動中には、水素(燃料)
と空気(酸化剤)とが燃料電池積重ね体内にて化学的に
結合して電力と熱を発生する。この熱は電池34を通って
冷却器組立体30へ移動する。この実施例に於ては燃料電
池積重ね体は約270個の燃料電池を有し、その5つ置き
に冷却器組立体を有している。冷却流体は供給管88,90
より冷却管102,104を通って戻り管92,94へ向けて流れる
要領にて冷却器組立体を通過する。熱は冷却器組立体内
にてその管を流れる冷却流体へ伝えられる。各冷却管は
互いに並行に配置された他の管との比較に於て所要の流
量の流体を流すに十分な直径を有している。冷却流体の
流量が大きい程又冷却管の表面積が大きい程冷却管の熱
除去容量は大きい。この曲りくねった流路の流れ抵抗特
性は並行に走るより短い管の流れ抵抗特性より遥かに高
い。その結果として導管の入口部より出口部へ至るフィ
ールド圧力降下は供給管に沿った圧力降下よりも高く、
これによって各冷却器組立体が受ける冷却流体の量は均
一に分割されたものとなる。勿論各導管の間に冷却流体
の流量の差はあるが、各導管を通って大量の冷却流体が
流れるので、各冷却器組立体を通る冷却流体の量の間に
好ましからざる不良分布を生ずることは回避される。
During operation of the fuel cell stack assembly 12, hydrogen (fuel)
And air (oxidizer) chemically combine in the fuel cell stack to generate electricity and heat. This heat transfers through the battery 34 to the cooler assembly 30. In this embodiment, the fuel cell stack has about 270 fuel cells, with every fifth of them having a cooler assembly. Cooling fluid is supply pipe 88,90
It passes through the cooler assembly in such a way that it flows through the cooling tubes 102, 104 towards the return tubes 92, 94. Heat is transferred to the cooling fluid flowing through the tubes within the cooler assembly. Each cooling tube has a diameter sufficient to carry the required flow rate of fluid as compared to other tubes placed in parallel with each other. The larger the flow rate of the cooling fluid and the larger the surface area of the cooling pipe, the larger the heat removal capacity of the cooling pipe. The flow resistance characteristics of this tortuous flow path are much higher than the flow resistance characteristics of the shorter tubes running in parallel. As a result, the field pressure drop from the inlet to the outlet of the conduit is higher than the pressure drop along the supply pipe,
This causes the amount of cooling fluid that each cooler assembly receives to be evenly divided. Of course, there is a difference in the flow rate of cooling fluid between each conduit, but the large amount of cooling fluid flowing through each conduit creates an undesirable distribution of defects between the amount of cooling fluid through each cooler assembly. Is avoided.

これらの冷却管は個々に作られた管が一体に接続された
ものより構成されても或いは単一の長い管より構成され
てもよい。いずれの場合にも従来のヘッダとそれらの間
に接続された平行管を有するシステムに比して管の接続
部が大幅に低減される。このことによって接続部に於て
漏洩が生ずるという可能性も大幅に低減される。
These cooling tubes may consist of individually made tubes connected together or may consist of a single long tube. In each case, the tube connections are greatly reduced compared to systems with conventional headers and parallel tubes connected between them. This also greatly reduces the possibility of leakage at the connection.

しかも、冷却システムの運転に於ては、冷却流体は二つ
の異なる管系中を反対方向に流されている。この場合一
つの管系に於ける温度上昇と他方の管系に於ける温度上
昇とは逆の関係にある。このことによって燃料電池積重
ね体中に生ずる温度変化はより小さくなる。
Moreover, in the operation of the cooling system, the cooling fluid is flowing in two different pipe systems in opposite directions. In this case, the temperature rise in one pipe system and the temperature rise in the other pipe system have an inverse relationship. This results in smaller temperature changes in the fuel cell stack.

以上に説明した実施例について本発明の範囲内にて種々
の修正が可能であることは当業者にとって明らかであろ
う。
It will be apparent to those skilled in the art that various modifications can be made to the embodiments described above within the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は一つの燃料電池積重ね組立体の一部を示す斜視
図、第2図は本発明の燃料電池積重ね組立体の一部を拡
大して示す図、第3図は本発明の燃料電池積重ね体の冷
却器組立体を示す概略図である。 10……燃料電池積重ね組立体、12……燃料電池積重ね
体、14,16,18,20……ガスマニホルド、22……バンド、2
4……冷却器組立体、26……供給管、28……戻り管、30
……冷却器組立体、32……導管、34……燃料電池、36…
…ガス不透過性分離板、38……マトリックス層、42……
負極、44……正極、46……負極の基材、48……マトリッ
クス層の表面、52……基材の表面、54……リブ、56……
溝、58……正極の基材、84……正極の面、66……リブ、
68溝、72……溝、88,90……供給管、92,94……戻り管、
102,104……冷却管。
FIG. 1 is a perspective view showing a part of one fuel cell stack assembly, FIG. 2 is an enlarged view showing a part of the fuel cell stack assembly of the present invention, and FIG. 3 is a fuel cell of the present invention. It is a schematic diagram showing a cooler assembly of a stack. 10 …… Fuel cell stack assembly, 12 …… Fuel cell stack, 14,16,18,20 …… Gas manifold, 22 …… Band, 2
4 …… Cooler assembly, 26 …… Supply pipe, 28 …… Return pipe, 30
...... Cooler assembly, 32 …… Conduit, 34 …… Fuel cell, 36…
… Gas impermeable separator, 38 …… Matrix layer, 42 ……
Negative electrode, 44 …… Positive electrode, 46 …… Negative base material, 48 …… Matrix layer surface, 52 …… Base material surface, 54 …… Rib, 56 ……
Grooves, 58 ... Positive electrode base material, 84 ... Positive electrode surface, 66 ... Ribs,
68 groove, 72 …… groove, 88, 90 …… supply pipe, 92, 94 …… return pipe,
102, 104 ... Cooling tubes.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−80677(JP,A) 特開 昭60−7066(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-57-80677 (JP, A) JP-A-60-7066 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の燃料電池を積層して組立てた燃料電
池組立体において、一対の燃料電池の間に配設され、一
端が冷却流体供給管に接続され他端が戻り管に接続され
たジグザグ状の冷却管からなる二組の冷却流体流通装置
を装着した複数個の冷却器組立体を有し、各冷却器組立
体における両組の冷却管はその直線部が互いに平行にか
つ交互に配列され、第一の組の冷却管の冷却流体入口部
と第二の組の冷却管の冷却流体出口部が互いに隣接する
ように配設され、第一の組の冷却管の冷却流体流出口部
と第二の組の冷却管の冷却流体流入口部が互いに隣接す
るように配設され、両組の冷却管では冷却流体が互いに
逆方向に流通するようにしたことを特徴とする、燃料電
池組立体。
1. A fuel cell assembly in which a plurality of fuel cells are stacked and assembled, the fuel cell assembly being disposed between a pair of fuel cells, one end of which is connected to a cooling fluid supply pipe and the other end of which is connected to a return pipe. It has a plurality of cooler assemblies equipped with two sets of cooling fluid flow devices consisting of zigzag cooling tubes, and the straight parts of both sets of cooling tubes in each cooler assembly are parallel to each other and alternate. Arranged so that the cooling fluid inlets of the first set of cooling tubes and the cooling fluid outlets of the second set of cooling tubes are adjacent to each other, and the cooling fluid outlets of the first set of cooling tubes And the cooling fluid inlets of the second set of cooling pipes are arranged adjacent to each other, and the cooling fluids flow in opposite directions in the cooling pipes of both sets. Battery assembly.
JP59267283A 1983-12-23 1984-12-18 Fuel cell assembly Expired - Lifetime JPH071701B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/564,989 US4574112A (en) 1983-12-23 1983-12-23 Cooling system for electrochemical fuel cell
US564989 1983-12-23

Publications (2)

Publication Number Publication Date
JPS60154473A JPS60154473A (en) 1985-08-14
JPH071701B2 true JPH071701B2 (en) 1995-01-11

Family

ID=24256745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267283A Expired - Lifetime JPH071701B2 (en) 1983-12-23 1984-12-18 Fuel cell assembly

Country Status (13)

Country Link
US (1) US4574112A (en)
JP (1) JPH071701B2 (en)
AU (1) AU567758B2 (en)
BE (1) BE901369A (en)
BR (1) BR8406484A (en)
CA (1) CA1230641A (en)
CH (1) CH665732A5 (en)
DE (1) DE3445191C2 (en)
FR (1) FR2557373B1 (en)
GB (1) GB2151840B (en)
IT (1) IT1178783B (en)
NL (1) NL8403733A (en)
SE (1) SE8406444L (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629537A (en) * 1985-05-17 1986-12-16 Hsu Michael S Compact, light-weight, solid-oxide electrochemical converter
JPH0624135B2 (en) * 1985-10-30 1994-03-30 東京電力株式会社 Fuel cell power generation system
JPH0782870B2 (en) * 1985-11-15 1995-09-06 株式会社東芝 Fuel cell cooling water system
US4706737A (en) * 1986-11-20 1987-11-17 International Fuel Cells Corporation Fuel cell coolant inlet manifold and system
JPS6418576U (en) * 1987-07-23 1989-01-30
US4743517A (en) * 1987-08-27 1988-05-10 International Fuel Cells Corporation Fuel cell power plant with increased reactant pressures
JPH07105241B2 (en) * 1987-11-10 1995-11-13 富士電機株式会社 Fuel cell manifold
US4913706A (en) * 1988-09-19 1990-04-03 International Fuel Cells Corporation Method for making a seal structure for an electrochemical cell assembly
EP0406523A1 (en) * 1989-07-07 1991-01-09 Osaka Gas Co., Ltd. Fuel cell
US5206094A (en) * 1990-11-30 1993-04-27 The United States Of America As Represented By The Secretary Of The Air Force Fuel cell evaporative cooler
JP3056829B2 (en) * 1991-06-21 2000-06-26 大阪瓦斯株式会社 Solid oxide fuel cell
WO1994013026A1 (en) * 1992-11-25 1994-06-09 Hsu Michael S Radiant thermal integration with regenerative heating in a high temperature electrochemical converter
US5338622A (en) * 1993-04-12 1994-08-16 Ztek Corporation Thermal control apparatus
CA2185896C (en) * 1994-03-21 2000-06-06 Michael S. Hsu Electrochemical converter having optimal pressure distribution
US5693201A (en) * 1994-08-08 1997-12-02 Ztek Corporation Ultra-high efficiency turbine and fuel cell combination
US5501781A (en) * 1994-08-08 1996-03-26 Ztek Corporation Electrochemical converter having internal thermal integration
ES2145208T3 (en) * 1994-05-20 2000-07-01 Int Fuel Cells Corp COOLING PLATE ASSEMBLY FOR A STACKING OF FUEL CELLS.
US5948221A (en) * 1994-08-08 1999-09-07 Ztek Corporation Pressurized, integrated electrochemical converter energy system
DE4438167C1 (en) * 1994-10-26 1996-03-14 Licentia Gmbh Gas feed system for fuel cell
DE19529880A1 (en) * 1995-08-14 1997-02-20 Bayerische Motoren Werke Ag High energy battery with several single cells
US6054229A (en) * 1996-07-19 2000-04-25 Ztek Corporation System for electric generation, heating, cooling, and ventilation
DE19849491C1 (en) * 1998-10-27 2000-01-05 Daimler Chrysler Ag Temperature controlled electrochemical energy storage unit e.g. a vehicle battery
DE10040792C2 (en) * 2000-08-21 2003-04-10 Proton Motor Fuel Cell Gmbh Polymer electrolyte membrane fuel cell system with cooling medium distribution space and collecting space and with cooling by fluid media
JP4516229B2 (en) * 2001-03-06 2010-08-04 本田技研工業株式会社 Solid polymer cell assembly
DE10133733B4 (en) * 2001-07-11 2006-05-24 Stiebel Eltron Gmbh & Co. Kg Cogeneration system
DE10238235A1 (en) * 2002-08-21 2004-03-04 Daimlerchrysler Ag Electrochemical energy store with heat exchanger structure has channel component between rows of electrochemical cells with adjacent longitudinal heat exchanger channels in adjacent cell rows
US6740440B2 (en) 2002-09-23 2004-05-25 General Motors Corporation Inexpensive dielectric coolant for fuel cell stacks
US20040096715A1 (en) * 2002-11-14 2004-05-20 3M Innovative Properties Company Liquid cooled fuel cell stack
US6820685B1 (en) * 2004-02-26 2004-11-23 Baltimore Aircoil Company, Inc. Densified heat transfer tube bundle
US20070218353A1 (en) * 2005-05-12 2007-09-20 Straubel Jeffrey B System and method for inhibiting the propagation of an exothermic event
US20070009787A1 (en) 2005-05-12 2007-01-11 Straubel Jeffrey B Method and apparatus for mounting, cooling, connecting and protecting batteries
DE102005036299B4 (en) * 2005-08-02 2008-01-24 Siemens Ag cooling arrangement
US8293390B2 (en) * 2007-03-28 2012-10-23 Redflow Pty Ltd Cell stack for a flowing electrolyte battery
US20080311468A1 (en) * 2007-06-18 2008-12-18 Weston Arthur Hermann Optimized cooling tube geometry for intimate thermal contact with cells
US8758924B2 (en) * 2007-06-18 2014-06-24 Tesla Motors, Inc. Extruded and ribbed thermal interface for use with a battery cooling system
US8263250B2 (en) * 2007-06-18 2012-09-11 Tesla Motors, Inc. Liquid cooling manifold with multi-function thermal interface
US20090023056A1 (en) * 2007-07-18 2009-01-22 Tesla Motors, Inc. Battery pack thermal management system
DE202007017390U1 (en) * 2007-12-11 2009-04-16 Autokühler GmbH & Co. KG Heat exchanger device for an electrochemical energy store
DE102008011508A1 (en) * 2008-02-22 2009-08-27 Volkswagen Ag Energy storage e.g. accumulator, has active substrate as storage medium, in which heat dissipation channel is formed, where channel is provided with surface-enlarged structures, which are formed by portion of substrate
DE102008027293A1 (en) * 2008-06-06 2009-12-10 Behr Gmbh & Co. Kg Device for cooling a vehicle battery
KR101112442B1 (en) * 2008-10-14 2012-02-20 주식회사 엘지화학 Battery Module Assembly of Improved Cooling Efficiency
DE102009024579A1 (en) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Cooling medium line connection for achieving very uniform cooling temperatures and high availability, in particular of power machines
DE102010012925A1 (en) * 2010-03-26 2011-09-29 Audi Ag Device for electrical energy storage, in particular for a motor vehicle
JP2014507760A (en) * 2011-01-26 2014-03-27 エルジー ケム. エルティーディ. Cooling member with good assembly efficiency and battery module using the same
FR2982085B1 (en) 2011-10-28 2014-05-16 Commissariat Energie Atomique ELECTROCHEMICAL SYSTEM TYPE ELECTROLYSER OR HIGH TEMPERATURE FUEL CELL WITH ENHANCED THERMAL MANAGEMENT
US9255741B2 (en) 2012-01-26 2016-02-09 Lear Corporation Cooled electric assembly
US10348146B2 (en) * 2012-07-13 2019-07-09 Lcdrives Corp. Liquid cooled high efficiency permanent magnet machine with glycol cooling
US20140015352A1 (en) * 2012-07-13 2014-01-16 Lcdrives Corp. High efficiency permanent magnet machine with concentrated winding and double coils
US10312760B2 (en) * 2012-07-13 2019-06-04 Lcdrives Corp. Liquid cooled high efficiency permanent magnet machine with in slot glycol cooling
US20170162884A1 (en) * 2014-07-17 2017-06-08 FCO Power, Inc. Stack structure for planar solid oxide fuel cell and system for solid oxide fuel cell
FR3024985B1 (en) 2014-08-22 2020-01-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives HIGH TEMPERATURE ELECTROLYSIS OR CO-ELECTROLYSIS PROCESS, PROCESS FOR PRODUCING ELECTRICITY BY SOFC FUEL CELL, INTERCONNECTORS, REACTORS AND RELATED OPERATING METHODS.
FR3028097B1 (en) * 2014-11-05 2019-09-06 Safran Aircraft Engines FUEL CELL HAVING AN IMPROVED COOLING SYSTEM
FR3038916B1 (en) 2015-07-16 2017-07-28 Commissariat Energie Atomique METHODS OF (CO) ELECTROLYSIS OF WATER (SOEC) OR PRODUCTION OF HIGH TEMPERATURE ELECTRICITY WITH INTEGRATED EXCHANGERS AS REACTOR STACK (EHT) OR FUEL CELL (SOFC) )
US9786966B2 (en) * 2015-09-11 2017-10-10 Ford Global Technologies, Llc Cold plate assembly for electrified vehicle battery packs
FR3056230B1 (en) 2016-09-19 2020-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives HIGH-TEMPERATURE WATER REVERSIBLE ELECTROLYSIS SYSTEM COMPRISING A HYDRIDE TANK COUPLED TO THE ELECTROLYSER
JP6690574B2 (en) * 2017-02-17 2020-04-28 トヨタ自動車株式会社 Fuel cell
KR102358425B1 (en) 2018-09-18 2022-02-03 주식회사 엘지에너지솔루션 Battery module
WO2020160052A1 (en) * 2019-01-28 2020-08-06 Utility Global, Inc. Electrochemical reactor systems
US11777126B2 (en) 2019-12-05 2023-10-03 Utility Global, Inc. Methods of making and using an oxide ion conducting membrane
US11628745B2 (en) 2021-02-05 2023-04-18 Beta Air, Llc Apparatus for a ground-based battery management for an electric aircraft

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321334A (en) * 1967-05-23 Fuel cell unit
US754969A (en) * 1903-08-13 1904-03-22 Martin C Burt Storage battery.
FR1529618A (en) * 1967-01-13 1968-06-21 Thomson Houston Comp Francaise Fuel cell improvements
US3554809A (en) * 1967-12-18 1971-01-12 Gen Electric Process and apparatus for distributing fluid inerts with respect to the electrodes of a fuel battery
US3964929A (en) * 1975-07-21 1976-06-22 United Technologies Corporation Fuel cell cooling system with shunt current protection
US4310605A (en) * 1980-09-22 1982-01-12 Engelhard Minerals & Chemicals Corp. Fuel cell system
JPS57138782A (en) * 1981-02-20 1982-08-27 Hitachi Ltd Fuel cell
JPS5897272A (en) * 1981-12-02 1983-06-09 Hitachi Ltd Fuel cell
CA1229376A (en) * 1983-06-02 1987-11-17 John Werth Fuel cell crimp-resistant cooling device with internal support
EP0128023B1 (en) * 1983-06-02 1987-10-21 Engelhard Corporation Cooling assembly for fuel cells

Also Published As

Publication number Publication date
DE3445191C2 (en) 1994-03-17
SE8406444D0 (en) 1984-12-18
NL8403733A (en) 1985-07-16
JPS60154473A (en) 1985-08-14
SE8406444L (en) 1985-06-24
GB2151840B (en) 1987-08-05
CH665732A5 (en) 1988-05-31
BR8406484A (en) 1985-10-15
GB2151840A (en) 1985-07-24
DE3445191A1 (en) 1985-07-04
AU3298784A (en) 1985-06-27
BE901369A (en) 1985-04-16
FR2557373A1 (en) 1985-06-28
FR2557373B1 (en) 1991-11-08
IT8424194A0 (en) 1984-12-21
AU567758B2 (en) 1987-12-03
GB8431270D0 (en) 1985-01-23
CA1230641A (en) 1987-12-22
IT1178783B (en) 1987-09-16
US4574112A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
JPH071701B2 (en) Fuel cell assembly
US4276355A (en) Fuel cell system configurations
US7070874B2 (en) Fuel cell end unit with integrated heat exchanger
EP0063199A2 (en) Fuel cell stack arrangements
US20050048351A1 (en) Fuel cell fluid flow field plates
JPS5924504B2 (en) Fuel cell operation method and fuel cell device
JPS6016705B2 (en) Fuel cell device and its operation method
KR101826186B1 (en) Flow field plate for a fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JPH0950819A (en) Solid polymer electrolyte fuel cell
WO2008041994A1 (en) Fuel cell and flow field plate for the same
JPS63119166A (en) Fuel battery
JPS58145066A (en) Fuel cell
JPS6039773A (en) Layer-built fuel cell
JPS5830074A (en) Fuel cell
JPH07192739A (en) Fuel cell
CN117727989B (en) High performance fuel cell
JPS6273568A (en) Fuel cell
JP2803288B2 (en) Cooling method of phosphoric acid type fuel cell
JP2002260688A (en) Separator of fuel cell
JPH08306370A (en) Laminated phosphoric acid type fuel cell
JPS63155561A (en) Fuel cell
JP2735656B2 (en) Fuel cell stack cooling system
JPH0782874B2 (en) Fuel cell
JPH01302670A (en) Fuel cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term