JPH0782870B2 - Fuel cell cooling water system - Google Patents

Fuel cell cooling water system

Info

Publication number
JPH0782870B2
JPH0782870B2 JP60254931A JP25493185A JPH0782870B2 JP H0782870 B2 JPH0782870 B2 JP H0782870B2 JP 60254931 A JP60254931 A JP 60254931A JP 25493185 A JP25493185 A JP 25493185A JP H0782870 B2 JPH0782870 B2 JP H0782870B2
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
cooling
loop
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60254931A
Other languages
Japanese (ja)
Other versions
JPS62115672A (en
Inventor
俊彦 竹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60254931A priority Critical patent/JPH0782870B2/en
Publication of JPS62115672A publication Critical patent/JPS62115672A/en
Publication of JPH0782870B2 publication Critical patent/JPH0782870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電池反応温度を水を用いて冷却する燃料電池に
係り、特に長寿命化を図り得るようにした、燃料電池冷
却水システムに関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a fuel cell in which a cell reaction temperature is cooled with water, and more particularly to a fuel cell cooling water system capable of achieving a long life.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、公害要因が少なくエネルギー変換効率が高い発電
装置として、燃料電池の実用化が大きな期待を集めてお
り、官民による燃料電池の開発が強力に推進されてきて
いる。この燃料電池は通常、電解質を含浸したマトリッ
クスを挟んで一対の多孔質電極を配置するとともに、一
方の電極の背面に水素等の燃料を接触させ、また他方の
電極の背面に酸素等の酸化剤を接触させ、このとき起こ
る電気化学的反応を利用して、上記電極間から電気エネ
ルギーを取り出すようにしたものであり、前記燃料と酸
化剤が供給されている限り高い変換効率で電気エネルギ
ーを取り出すことができるものである。
In recent years, the practical application of fuel cells has attracted great expectations as a power generator with few pollution factors and high energy conversion efficiency, and the development of fuel cells by the public and private sectors has been strongly promoted. In this fuel cell, usually, a pair of porous electrodes are arranged with an electrolyte-impregnated matrix sandwiched between them, a fuel such as hydrogen is brought into contact with the back surface of one electrode, and an oxidant such as oxygen is attached to the back surface of the other electrode. Are brought into contact with each other, and the electrochemical reaction that takes place at this time is utilized to extract the electric energy from between the electrodes. As long as the fuel and the oxidant are supplied, the electric energy is taken out with a high conversion efficiency. Is something that can be done.

発電時燃料電池において発生する熱の冷却方式には水冷
却方式と空気冷却方式とがある。第8図は燃料電池プラ
ントの電池冷却水システムを表わしたフロー図である。
電池冷却水システムは燃料電池本体1、気水分離器2、
冷却水循環ポンプ3、水貯蔵タンク4、水処理装置5、
しゃ断弁6、しゃ断弁7、ドレン弁8及び後述の絶縁チ
ューブ9から成る。冷却水は気水分離器2、冷却水循環
ポンプ3、燃料電池本体1、さらに気水分離器2を結ぶ
冷却水ループ内を循環する。冷却水の一部は水貯蔵タン
ク4を経て水処理装置5へ送られ、水質を向上した後再
び冷却水ループへ戻る。
There are a water cooling method and an air cooling method as cooling methods for heat generated in the fuel cell during power generation. FIG. 8 is a flow chart showing a cell cooling water system of a fuel cell plant.
The battery cooling water system consists of the fuel cell body 1, the steam separator 2,
Cooling water circulation pump 3, water storage tank 4, water treatment device 5,
It comprises a shutoff valve 6, a shutoff valve 7, a drain valve 8 and an insulating tube 9 described later. The cooling water circulates in the water / water separator 2, the cooling water circulation pump 3, the fuel cell body 1, and the cooling water loop connecting the water / water separator 2. A part of the cooling water is sent to the water treatment device 5 through the water storage tank 4 to improve the water quality, and then returns to the cooling water loop again.

水冷却方式は冷却水系がコンパクトになり廃熱の利用が
容易という特長を持っているが、以下に述べる燃料電池
特有の問題も持っている。第9図は燃料電池本体1の構
成例を斜視図にて示したものである。第9図において燃
料電池の単電池10数枚毎に冷却板11が入れられている。
冷却板11内にはほそい冷却管12が埋め込まれている。各
冷却板11の間には直列に積層された単電池10による電位
差があるため、絶縁チューブ9により電気的に絶縁され
ている。第10図は絶縁チューブ9周辺の詳細を断面図に
て表わしたものである。絶縁チューブ9の両端の絶縁継
手13の間には、電位差があるためリーク電流による電食
が起こる。冷却水中に金属イオン、たとえば鉄イオンあ
るいは銅イオンが数10PPB以上含まれていると、絶縁継
手13に金属化合物が付着し、この付着物14により冷却水
の流路がせばれられ目詰まりが生ずる。この目詰まりは
徐々に進行し冷却水流量が徐々に減少し、電池の冷却が
十分に行なわれなくなる。さらに発電を継続すると電池
温度は徐々に上昇し、やがて電池温度制御不能となる。
電池温度が上昇すると電池触媒の劣化、電池電解質の蒸
発による電池寿命の短縮、燃料と空気のクロスオーバに
よる電極の焼損が発生し発電不能となる。
The water cooling system has a feature that the cooling water system is compact and waste heat can be easily used, but it also has the following problems peculiar to fuel cells. FIG. 9 is a perspective view showing a structural example of the fuel cell body 1. In FIG. 9, a cooling plate 11 is inserted for every several 10 unit cells of the fuel cell.
A thin cooling pipe 12 is embedded in the cooling plate 11. Since there is a potential difference between the cooling plates 11 due to the cells 10 stacked in series, they are electrically insulated by the insulating tube 9. FIG. 10 is a sectional view showing details around the insulating tube 9. Since there is a potential difference between the insulating joints 13 on both ends of the insulating tube 9, electrolytic corrosion due to leak current occurs. If the cooling water contains metal ions, such as iron ions or copper ions, of several tens of PPB or more, the metal compound adheres to the insulating joint 13, and the deposit 14 clogging the flow path of the cooling water to cause clogging. . This clogging gradually progresses, the flow rate of the cooling water gradually decreases, and the battery is not cooled sufficiently. When the power generation is further continued, the battery temperature gradually rises, and eventually the battery temperature cannot be controlled.
When the battery temperature rises, the battery catalyst deteriorates, the battery life is shortened due to evaporation of the battery electrolyte, and the electrode burns out due to the crossover of fuel and air, making it impossible to generate electricity.

かかる目詰まりを防止するために、電池冷却水には電導
度0.4μ/cm以下、濁度10PPB以下という高い水質が要
求される。また徐々に進行する目詰まりの有効な除去方
法が望まれている。
In order to prevent such clogging, the battery cooling water is required to have a high water quality with an electric conductivity of 0.4 μ / cm or less and a turbidity of 10 PPB or less. There is also a demand for an effective method of removing clogging that gradually progresses.

〔発明の目的〕[Object of the Invention]

本発明は上記のような問題を解消するために成されたも
ので、その目的は前述の付着物を除去し電池冷却管の目
詰まりを防止することにより、燃料電池の長寿命化及び
発電設備としての信頼性向上を図り得る燃料電池冷却水
システムを提供することである。
The present invention has been made to solve the above problems, and an object thereof is to extend the life of a fuel cell and a power generation facility by removing the above-mentioned deposits and preventing clogging of a cell cooling pipe. It is to provide a fuel cell cooling water system capable of improving reliability as a fuel cell.

〔発明の概要〕[Outline of Invention]

上記目的を達するため本発明の燃料電池冷却水システム
は、燃料電池本体の上流及び下流に盲板が入るようにフ
ランジを設置することにより燃料電池本体を他の機器と
しゃ断可能とし、また上記フランジよりも燃料電池本体
側に化学洗浄装置と接続用のフランジを設置して燃料電
池本体を容易に化学洗浄できるようにしたことを特徴と
する。
In order to achieve the above object, the fuel cell cooling water system of the present invention enables the fuel cell main body to be cut off from other devices by installing a flange so that a blind plate is inserted upstream and downstream of the fuel cell main body. It is characterized in that a chemical cleaning device and a flange for connection are installed on the side of the fuel cell main body so that the fuel cell main body can be easily chemically cleaned.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を図面を参照して詳細に説明す
る。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に適用する電池冷却水システムを示した
フロー図である。図において第1のフランジ16(以下、
単にフランジ16という),第2のフランジ18(以下、単
にフランジ18という)及び第1の盲板17(以下、単に盲
板17という),第2の盲板19(以下、単に盲板19とい
う)が第8図の電池冷却水システムに対して新設した配
管及び機器である。
FIG. 1 is a flow chart showing a battery cooling water system applied to the present invention. In the figure, the first flange 16 (hereinafter,
The flange 16), the second flange 18 (hereinafter simply referred to as the flange 18), the first blind plate 17 (hereinafter simply referred to as the blind plate 17), the second blind plate 19 (hereinafter simply referred to as the blind plate 19) ) Is piping and equipment newly installed for the battery cooling water system in FIG.

第2図は通常発電時の電池冷却水システムの冷却水の流
れを示したものである。図においてフランジ16には盲板
17のかわりに第1のスペーサ20が入れられており冷却水
が流れる様になっている。冷却水は燃料電池本体1を図
の下から上へ向かって流れている。冷却水の一部は水貯
蔵タンク4を経て水処理装置5へ送られ、水質を向上し
た後再び冷却水ループへ戻る。
FIG. 2 shows the flow of cooling water of the battery cooling water system during normal power generation. Blind plate on flange 16 in the figure
Instead of 17, a first spacer 20 is inserted so that cooling water can flow. The cooling water flows through the fuel cell body 1 from the bottom to the top of the figure. A part of the cooling water is sent to the water treatment device 5 through the water storage tank 4 to improve the water quality, and then returns to the cooling water loop again.

第3図は発電停止時、燃料電池本体1を化学洗浄する時
の冷却水の流れを示した例である。図においてフランジ
18には盲板19のかわりに第2のスペーサ21が入っており
化学洗浄剤が流れる様になっている。化学洗浄装置は化
学洗浄剤タンク22、化学洗浄ポンプ23、しゃ断弁24,25,
26,27、バイパスライン28,29からなる。第3図のように
しゃ断弁26,27を開、しゃ断弁24,25を閉とすることによ
り、化学洗浄剤は燃料電池本体1を通常発電時と同じ向
きに流れる。
FIG. 3 is an example showing the flow of cooling water when the fuel cell main body 1 is chemically cleaned when power generation is stopped. In the figure flange
In place of the blind plate 19, the second spacer 21 is contained in 18 so that the chemical cleaning agent can flow. The chemical cleaning device includes a chemical cleaning agent tank 22, a chemical cleaning pump 23, shutoff valves 24, 25,
26,27 and bypass lines 28,29. By opening the shutoff valves 26 and 27 and closing the shutoff valves 24 and 25 as shown in FIG. 3, the chemical cleaning agent flows through the fuel cell main body 1 in the same direction as during normal power generation.

第4図はしゃ断弁24,25を開、しゃ断弁26,27を閉とした
もので化学洗浄剤は燃料電池本体1を図の上から下へ、
すなわち第9図の電池冷却管12を逆洗する向きに流れ
る。
In Fig. 4, the shut-off valves 24 and 25 are opened and the shut-off valves 26 and 27 are closed. The chemical cleaning agent is the fuel cell body 1 from the top to the bottom of the figure.
That is, it flows in the direction of backwashing the battery cooling pipe 12 in FIG.

以下に燃料電池冷却管の目詰まりについて行なった実験
にもとづき、第10図の付着物14について述べる。まず第
1に付着物14の付着力は付着物14の先端程弱く、冷却水
の流れにより力が加わると付着物14の先端部周辺は離脱
する。第2に付着物14の形状は冷却水の流れ方向に関係
がある。第10図は図の左から右へ冷却水が流れる場合で
あるが、上流側はなだらかな傾斜であるのに対し、先端
部より下流側は急な傾斜で冷却水のながれ方向に対し垂
直に近い。故に冷却水の流れる向きにより付着物14に加
わる力は異なり、第10図においては冷却水が左から右へ
流れる場合よりも右から左へ流れる場合の方が付着物14
に加わる力が大きくなる。従って流れを逆にする、すな
わち逆洗により付着物14のすべてあるいは一部が除去さ
れることが判明した。
The deposit 14 shown in FIG. 10 will be described below based on an experiment conducted on the clogging of the fuel cell cooling pipe. First, the adhesion force of the adhering matter 14 is weaker toward the tip of the adhering matter 14, and when the force is applied by the flow of the cooling water, the periphery of the adhering matter 14 is separated. Secondly, the shape of the deposit 14 is related to the flow direction of the cooling water. Figure 10 shows the case where the cooling water flows from the left to the right in the figure.The upstream side has a gentle slope, while the downstream side from the tip has a steep slope and is perpendicular to the flow direction of the cooling water. near. Therefore, the force applied to the deposit 14 differs depending on the flow direction of the cooling water, and in FIG. 10, the deposit 14 flows more from the right to the left than when the cooling water flows from the left to the right.
The force applied to is increased. Therefore, it was found that the flow was reversed, that is, backwashing removed all or part of the deposit 14.

本発明の電池冷却水システムにおいて、ある期間発電を
行なった後にプラントを停止し、第3図及び第4図に示
した様に電池の冷却管12を化学洗浄剤の流れの方向を交
互に変えて化学洗浄することにより付着物14は有効に除
去される。以後定期的に電池冷却水システムの化学洗浄
を実施することにより、付着物14による目詰まりは長期
にわたって防止される。
In the battery cooling water system of the present invention, the plant is stopped after generating power for a certain period of time, and the cooling pipe 12 of the battery is alternately changed in direction of the flow of the chemical cleaning agent as shown in FIGS. 3 and 4. The deposit 14 is effectively removed by the chemical cleaning by using. Thereafter, by periodically performing chemical cleaning of the battery cooling water system, the clogging due to the deposit 14 can be prevented for a long period of time.

また第10図に示したたい積物15は電食により崩れた腐食
生成物等である。図において左から右へ冷却水が流れる
場合は、冷却水が滞留しやすい個所に第10図の様にたい
積する。このたい積物15が絶縁チューブ9にたい積する
と絶縁が劣化する恐れがある。この問題も前述の逆洗に
よりたい積物15が舞い上げられて絶縁チューブ9部から
除去され絶縁劣化が防止される。
Further, the deposit 15 shown in FIG. 10 is a corrosion product or the like broken down by electrolytic corrosion. When the cooling water flows from left to right in the figure, it is piled up at the place where the cooling water tends to stay, as shown in Fig. 10. If the deposit 15 is deposited on the insulating tube 9, the insulation may deteriorate. This problem also causes the sediment 15 to be lifted up by the above-mentioned backwashing and removed from the insulating tube 9 portion to prevent insulation deterioration.

尚、本発明は上記実施例に限定されるものではなく、例
えば第5図に示すように第3のフランジ30及び盲板31を
追加することにより、第3図及び第4図と同様に化学洗
浄装置を接続し燃料電池本体1をバイパスして冷却水ル
ープを化学洗浄することができる。この化学洗浄はプラ
ント建設後のスタートアップ時及び電池冷却水システム
の工事後に行なうと有効である。また第6図に示すよう
にフランジ18の前にしゃ断弁32を追加することにより、
燃料電池本体1内の冷却水をドレンせずに化学洗浄装置
と接続が可能となる。第7図も第6図と同様にフランジ
18,30にしゃ断弁32,33を追加したものであり電池冷却水
をドレンせずに化学洗浄装置と連続が可能となる。
Incidentally, the present invention is not limited to the above-mentioned embodiment, and for example, by adding a third flange 30 and a blind plate 31 as shown in FIG. 5, chemicals similar to those in FIGS. 3 and 4 can be obtained. The cooling water loop can be chemically cleaned by connecting a cleaning device and bypassing the fuel cell body 1. It is effective to carry out this chemical cleaning at the start-up after construction of the plant and after construction of the battery cooling water system. Further, as shown in FIG. 6, by adding a shutoff valve 32 in front of the flange 18,
It is possible to connect to the chemical cleaning device without draining the cooling water in the fuel cell body 1. FIG. 7 also shows a flange as in FIG.
The shutoff valves 32 and 33 are added to 18,30 and it is possible to continue with the chemical cleaning device without draining the battery cooling water.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば電池冷却水システム
と化学洗浄装置を容易に接続でき、燃料電池本体を逆洗
あるいは正洗しながら化学洗浄するため電池冷却管への
付着物を有効に除去可能となり目詰まりを防止すること
ができる。またプラント建設後のスタートアップ時や電
池冷却水システムの工事後等、電池冷却水システムを燃
料電池本体としゃ断し水質の低い水を燃料電池本体に通
すことなく化学洗浄可能である。また逆洗により絶縁チ
ューブにたい積し絶縁劣化を起こす恐れのあるたい積物
が除去され絶縁劣化が防止される。
As described above, according to the present invention, the cell cooling water system and the chemical cleaning device can be easily connected, and the chemical cleaning is performed while backwashing or normal cleaning the fuel cell body, so that the deposits on the cell cooling pipe are effectively removed. It becomes possible and can prevent clogging. Further, at the time of start-up after the construction of the plant or after the construction of the battery cooling water system, the battery cooling water system can be chemically cleaned without shutting off the water of low quality from the fuel cell main body by cutting it off from the fuel cell main body. In addition, backwashing removes deposits that may be deposited on the insulating tube and cause insulation deterioration, thus preventing insulation deterioration.

故に本発明の燃料電池冷却システムにより電池冷却管の
目詰まりが防止され、燃料電池の長寿命化及び発電設備
としての信頼性を向上させることができる。
Therefore, the fuel cell cooling system of the present invention can prevent clogging of the cell cooling pipes, prolong the life of the fuel cell and improve the reliability of the power generation equipment.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すフロー図、第2図は発
電時の電池冷却水の流れ方向を示すフロー図、第3図及
び第4図は化学洗浄装置と接続し燃料電池本体を化学洗
浄中のフロー図、第5図、第6図及び第7図は本発明の
他の実施例を示すフロー図、第8図は従来の燃料電池プ
ラントの電池冷却水システムを表わしたフロー図、第9
図は燃料電池本体の一構成例を示した斜視図、第10図は
絶縁チューブ周辺の詳細を示した断面図である。 1……燃料電池本体、2……気水分離器 3……冷却水循環ポンプ、4……水貯蔵タンク 5……水処理装置、6……しゃ断弁 7……しゃ断弁、8……ドレン弁 9……絶縁チューブ、10……単電池 11……冷却板、12……冷却管 13……絶縁継手、14……付着物 15……たい積物、16……フランジ 17……盲板、18……フランジ 19……盲板、20……スペーサ 21……スペーサ、22……化学洗浄剤タンク 23……化学洗浄ポンプ、24……しゃ断弁 25……しゃ断弁、26……しゃ断弁 27……しゃ断弁、28……バイパスライン 29……バイパスライン、30……フランジ 31……盲板、32……バルブ 33……バルブ
FIG. 1 is a flow chart showing an embodiment of the present invention, FIG. 2 is a flow chart showing the flow direction of cell cooling water at the time of power generation, and FIGS. 3 and 4 are fuel cell main bodies connected to a chemical cleaning device. FIG. 5, FIG. 6, FIG. 6 and FIG. 7 are flow charts showing another embodiment of the present invention during chemical cleaning, and FIG. 8 is a flow showing a cell cooling water system of a conventional fuel cell plant. Figure, No. 9
FIG. 10 is a perspective view showing one structural example of the fuel cell main body, and FIG. 10 is a sectional view showing details around the insulating tube. 1 ... Fuel cell main body, 2 ... Steam separator 3 ... Cooling water circulation pump, 4 ... Water storage tank 5 ... Water treatment device, 6 ... Shut-off valve 7 ... Shut-off valve, 8 ... Drain valve 9 ... Insulation tube, 10 ... Single cell 11 ... Cooling plate, 12 ... Cooling tube 13 ... Insulation joint, 14 ... Adhesion 15 ... Deposit, 16 ... Flange 17 ... Blind plate, 18 …… Flange 19 …… Blank plate, 20 …… Spacer 21 …… Spacer, 22 …… Chemical cleaning agent tank 23 …… Chemical cleaning pump, 24 …… Cutoff valve 25 …… Cutoff valve, 26 …… Cutoff valve 27 …… … Shut-off valve, 28… Bypass line 29… Bypass line, 30… Flange 31… Blind plate, 32… Valve 33… Valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃料電池本体の冷却板に形成された冷却管
と、この冷却管と絶縁チューブを介して接続され前記冷
却管に冷却水を循環させるための冷却水ループと、この
冷却水ループに設けられ前記冷却管からの冷却水に含ま
れる気体を分離する気水分離器と、前記冷却水ループに
設けられ前記冷却管を介した前記冷却水ループに前記冷
却水を循環させる循環水ポンプと、前記冷却水の一部を
水貯蔵タンクを経て水処理装置へ送り水質を向上させた
後再び前記冷却水ループに戻す水処理ループとを備えた
燃料電池冷却水システムにおいて、前記気水分離器と前
記燃料電池本体との間及び前記循環水ポンプと前記燃料
電池本体との間の前記冷却水ループに設けられた第1の
フランジと、前記第1のフランジと前記燃料電池本体と
の間の前記冷却水ループから分岐して設けられ化学洗浄
剤を正洗方向逆洗方向を切替えて流すための化学洗浄装
置が接続された第2のフランジと、前記燃料電池本体の
通常発電時には前記第1のフランジに連結されて前記冷
却水ループを連通させるための第1のスペーサと、前記
燃料電池本体の化学洗浄時には前記第1のフランジに連
結されて前記冷却水ループを遮断するための第1の盲板
と、前記燃料電池本体の通常発電時には前記第2のフラ
ンジに連結されて前記冷却水ループを遮断させるための
第2の盲板と、前記燃料電池本体の化学洗浄時には第2
のフランジに連結されて前記冷却水ループを連通するた
めの第2のスペーサとを備えたことを特徴とする燃料電
池冷却水システム。
1. A cooling pipe formed on a cooling plate of a fuel cell main body, a cooling water loop connected to the cooling pipe via an insulating tube for circulating cooling water to the cooling pipe, and the cooling water loop. A water-water separator provided in the cooling pipe for separating gas contained in the cooling water, and a circulating water pump provided in the cooling water loop for circulating the cooling water in the cooling water loop via the cooling pipe. And a water treatment loop that sends a part of the cooling water to a water treatment device through a water storage tank to improve the water quality and then returns the water treatment loop to the cooling water loop. A first flange provided in the cooling water loop between the container and the fuel cell main body and between the circulating water pump and the fuel cell main body, and between the first flange and the fuel cell main body Of the cooling water Second flange connected to a chemical cleaning device for branching the chemical cleaning agent between the normal cleaning direction and the reverse cleaning direction, and the first flange during normal power generation of the fuel cell main body. And a first spacer for connecting the cooling water loop to each other and a first blind plate for disconnecting the cooling water loop connected to the first flange during chemical cleaning of the fuel cell body. A second blind plate that is connected to the second flange to shut off the cooling water loop during normal power generation of the fuel cell main body; and a second blind plate during chemical cleaning of the fuel cell main body.
And a second spacer connected to the flange for communicating the cooling water loop with each other.
【請求項2】燃料電池本体の冷却板に形成された冷却管
と、この冷却管と絶縁チューブを介して接続され前記冷
却管に冷却水を循環させるための冷却水ループと、この
冷却水ループに設けられ前記冷却管からの冷却水に含ま
れる気体を分離する気水分離器と、前記冷却水ループに
設けられ前記冷却管を介した前記冷却水ループに前記冷
却水を循環させる循環水ポンプと、前記冷却水の一部を
水貯蔵タンクを経て水処理装置へ送り水質を向上させた
後再び前記冷却水ループに戻す水処理ループとを備えた
燃料電池冷却水システムにおいて、前記気水分離器と前
記燃料電池本体との間及び前記循環水ポンプと前記燃料
電池本体との間の前記冷却水ループに設けられた第1の
フランジと、前記第1のフランジと前記燃料電池本体と
の間の前記冷却水ループから分岐して設けられ化学洗浄
剤を正洗方向逆洗方向を切替えて流すための化学洗浄装
置が接続された第2のフランジと、前記燃料電池本体の
通常発電時には前記第1のフランジに連結されて前記冷
却水ループを連通させるための第1のスペーサと、前記
燃料電池本体の化学洗浄時には前記第1のフランジに連
結されて前記冷却水ループを遮断するための第1の盲板
と、前記燃料電池本体の通常発電時には前記第2のフラ
ンジに連結されて前記冷却水ループを遮断させるための
第2の盲板と、前記燃料電池本体の化学洗浄時には第2
のフランジに連結されて前記冷却水ループを連通するた
めの第2のスペーサと、前記第2のフランジの前記燃料
電池本体側に設けられ前記第2のスペーサ及び第2の盲
板の連結作業の際に閉させる遮断弁とを備えたことを特
徴とする燃料電池冷却水システム。
2. A cooling pipe formed on a cooling plate of a fuel cell main body, a cooling water loop connected to the cooling pipe via an insulating tube for circulating cooling water to the cooling pipe, and the cooling water loop. A water-water separator provided in the cooling pipe for separating gas contained in the cooling water, and a circulating water pump provided in the cooling water loop for circulating the cooling water in the cooling water loop via the cooling pipe. And a water treatment loop that sends a part of the cooling water to a water treatment device through a water storage tank to improve the water quality and then returns the water treatment loop to the cooling water loop. A first flange provided in the cooling water loop between the container and the fuel cell main body and between the circulating water pump and the fuel cell main body, and between the first flange and the fuel cell main body Of the cooling water Second flange connected to a chemical cleaning device for branching the chemical cleaning agent between the normal cleaning direction and the reverse cleaning direction, and the first flange during normal power generation of the fuel cell main body. And a first spacer for connecting the cooling water loop to each other and a first blind plate for disconnecting the cooling water loop connected to the first flange during chemical cleaning of the fuel cell body. A second blind plate that is connected to the second flange to shut off the cooling water loop during normal power generation of the fuel cell main body; and a second blind plate during chemical cleaning of the fuel cell main body.
A second spacer connected to the flange for communicating the cooling water loop, and a second spacer provided on the fuel cell body side of the second flange and a second blind plate for connecting work. A fuel cell cooling water system, comprising: a shutoff valve that is closed at the time.
JP60254931A 1985-11-15 1985-11-15 Fuel cell cooling water system Expired - Lifetime JPH0782870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60254931A JPH0782870B2 (en) 1985-11-15 1985-11-15 Fuel cell cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60254931A JPH0782870B2 (en) 1985-11-15 1985-11-15 Fuel cell cooling water system

Publications (2)

Publication Number Publication Date
JPS62115672A JPS62115672A (en) 1987-05-27
JPH0782870B2 true JPH0782870B2 (en) 1995-09-06

Family

ID=17271844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60254931A Expired - Lifetime JPH0782870B2 (en) 1985-11-15 1985-11-15 Fuel cell cooling water system

Country Status (1)

Country Link
JP (1) JPH0782870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770324B2 (en) * 1986-03-19 1995-07-31 東京電力株式会社 Fuel cell system
JP2002272154A (en) * 2001-03-09 2002-09-20 Jimbo Electric Co Ltd Motor operation controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574112A (en) * 1983-12-23 1986-03-04 United Technologies Corporation Cooling system for electrochemical fuel cell

Also Published As

Publication number Publication date
JPS62115672A (en) 1987-05-27

Similar Documents

Publication Publication Date Title
JP2005531916A (en) Battery-accelerated quick start of a frozen fuel cell
KR940010444A (en) Membrane flow cell battery
JP4920137B2 (en) Operation method of polymer electrolyte fuel cell
JPH0782870B2 (en) Fuel cell cooling water system
CA2465929A1 (en) Fuel cell power generator
US20230378482A1 (en) Methods and systems for pretreating bipolar plate and use thereof in redox flow battery
JP2000260455A (en) Deterioration restoring process for fuel cell
JPS62110265A (en) Cooling water system for fuel cell
JPH0770324B2 (en) Fuel cell system
JP2003123795A (en) Molten carbonate fuel cell
KR100778480B1 (en) Heat storaging apparatus of fuel cell system
JP2005324584A (en) Intermediate and high pressure hydrogen supply method and its device
JP2003109642A (en) Water-treatment device
JPH0629036A (en) Heat collection system of fuel cell power-generation device
CN103361660A (en) Method for pre-treating stainless steel bipolar plate of proton exchange membrane fuel cell
JPS62217569A (en) Fuel cell plant water treatment system
JP2003277963A (en) Apparatus and method for manufacturing high-pressure hydrogen
JPS61253771A (en) Fuel cell system
JPS62264567A (en) Fuel cell cooling water system
JP5286851B2 (en) Fuel cell power generator
JPS6266581A (en) Fuel cell
JPS6244800Y2 (en)
JPH0750614B2 (en) Fuel cell
JP3507658B2 (en) Phosphoric acid type fuel cell power generator and exhaust heat recovery method in phosphoric acid type fuel cell
JPH05251107A (en) Fuel cell