JP2005324584A - Intermediate and high pressure hydrogen supply method and its device - Google Patents

Intermediate and high pressure hydrogen supply method and its device Download PDF

Info

Publication number
JP2005324584A
JP2005324584A JP2004142361A JP2004142361A JP2005324584A JP 2005324584 A JP2005324584 A JP 2005324584A JP 2004142361 A JP2004142361 A JP 2004142361A JP 2004142361 A JP2004142361 A JP 2004142361A JP 2005324584 A JP2005324584 A JP 2005324584A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
pressure hydrogen
solid polymer
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004142361A
Other languages
Japanese (ja)
Inventor
Masato Kita
真佐人 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004142361A priority Critical patent/JP2005324584A/en
Publication of JP2005324584A publication Critical patent/JP2005324584A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate and high pressure hydrogen supply device that is small and can supply high pressure hydrogen and intermediate pressure hydrogen with one facility without waste. <P>SOLUTION: The intermediate and high pressure hydrogen supply device 10 essentially comprises a solid polymer water electrolysis device 20 that can extract intermediate pressure hydrogen by electrolyzing water, pressurizes the hydrogen, can obtain high pressure hydrogen, and hence plays a role as a compressor, and a storage tank 41 capable of storing the intermediate pressure hydrogen manufactured by the solid polymer water electrolysis device 20. Since the solid polymer water electrolysis device for generating the hydrogen works as a compressor for pressurizing the intermediate pressure hydrogen to the high pressure hydrogen, the intermediate pressure hydrogen and the high pressure hydrogen can be supplied with one device without waste. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車載タンクに水素ガスを供給する中圧及び高圧水素供給技術に関する。   The present invention relates to a medium-pressure and high-pressure hydrogen supply technology for supplying hydrogen gas to a vehicle-mounted tank.

燃料電池を搭載した車両が普及するに連れて、燃料としての燃料ガスを供給するシステムが重要となる。そのための水素ガス供給方法及び装置が提案されている。(例えば、特許文献1参照。)。
特開2002−373230公報(図6)
As vehicles equipped with fuel cells become widespread, a system for supplying fuel gas as fuel becomes important. For this purpose, a hydrogen gas supply method and apparatus have been proposed. (For example, refer to Patent Document 1).
JP 2002-373230 A (FIG. 6)

特許文献1を次図に基づいて説明する。
図8は従来の技術の基本原理を説明する図であり、水素サービスステーションに水素製造装置Hk、水素貯蔵装置St及び水素充填装置Isを備え、水素自動車J2へ水素ガスを供給する水素ガス供給システムが開示されている。
Patent document 1 is demonstrated based on the following figure.
FIG. 8 is a diagram for explaining the basic principle of the prior art, in which a hydrogen service station is provided with a hydrogen production device Hk, a hydrogen storage device St, and a hydrogen filling device Is, and supplies a hydrogen gas to the hydrogen automobile J2. Is disclosed.

ところで、特許文献1のシステムは、複数の水素車両に水素を供給する水素サービスステーションであって、それ相応の大きさの水素ガス発生装置、貯蔵タンク及び充填装置を常備し、常時、充填サービスが行える態勢を整える必要がある。   By the way, the system of Patent Document 1 is a hydrogen service station that supplies hydrogen to a plurality of hydrogen vehicles, and has a hydrogen gas generator, a storage tank, and a filling device of a corresponding size. You need to be ready to do it.

この様な本格的な水素サービスステーションには次に述べる欠点がある。
先ず、大きな水素ガス発生装置、貯蔵タンク及び充填装置からなるため設備が大型化し、設備コストが嵩む。家庭や小規模事業所の駐車場の隅に配置するには大きさの点で難がある。
Such a full-scale hydrogen service station has the following drawbacks.
First, since it consists of a large hydrogen gas generator, a storage tank, and a filling device, the equipment becomes large and equipment costs increase. It is difficult to place it in the corner of a parking lot at home or small business.

次に、充填装置を必ず通すため、高圧水素を供給するには適しているが、中圧水素を供給するには設備過剰となり、運転費用が嵩む。
ここで中圧水素とは15〜25MPa程度であり、高圧水素とは30〜40MPa程度をいう。高圧水素を製造するには、その加圧工程で大きなエネルギーが必要であり、リーク等により、効率も低下する。予定走行距離が短ければ、多量の水素を積載する必要がないため水素の圧力も中圧で十分である。
エネルギーの有効活用を考えると、高圧水素と中圧水素とを必要に応じて製造でき、且つ1つの設備で供給できることが望まれる。
Next, it is suitable for supplying high-pressure hydrogen because it always passes through a filling device, but it is excessive in equipment for supplying medium-pressure hydrogen, which increases operating costs.
Here, the medium pressure hydrogen is about 15 to 25 MPa, and the high pressure hydrogen is about 30 to 40 MPa. In order to produce high-pressure hydrogen, a large amount of energy is required in the pressurizing process, and the efficiency is also reduced due to leakage or the like. If the planned mileage is short, it is not necessary to load a large amount of hydrogen, so the medium pressure is sufficient for the hydrogen pressure.
Considering the effective use of energy, it is desired that high-pressure hydrogen and medium-pressure hydrogen can be produced as needed and can be supplied by one facility.

本発明は、小型で且つ高圧水素と中圧水素とを無駄なく1つの設備で供給できることができる中圧及び高圧水素供給装置を提供することを課題とする。   An object of the present invention is to provide a medium-pressure and high-pressure hydrogen supply device that is small in size and can supply high-pressure hydrogen and medium-pressure hydrogen with a single facility without waste.

請求項1に係る発明は、固体高分子型水電解装置で水を電気分解することで中圧の水素を製造する工程と、この水素を貯蔵タンクに溜める工程と、溜めた水素を前記貯蔵タンクから直接的に車両へ供給し、必要時に貯蔵タンクに溜めた水素を前記固体高分子型水電解装置を用いて加圧しながら、高圧の水素を車両へ供給する工程とからなることを特徴とする。   The invention according to claim 1 is a process for producing medium-pressure hydrogen by electrolyzing water with a solid polymer water electrolyzer, a process for storing this hydrogen in a storage tank, and the stored hydrogen for the storage tank. And supplying the high-pressure hydrogen to the vehicle while pressurizing the hydrogen stored in the storage tank when necessary using the solid polymer water electrolyzer. .

請求項2に係る発明は、水を電気分解して中圧の水素を取出すことのできるとともに水素を加圧し、高圧の水素を得るコンプレッサの役割を果たす固体高分子型水電解装置と、この固体高分子型水電解装置で製造した中圧の水素を溜めることのできる貯蔵タンクと、この貯蔵タンクから前記固体高分子型水電解装置の入口へ中圧の水素を戻すリターン流路を含む管路と、この管路に介設した複数のバルブと、管路の末端に設けた中・高水素吐出口とからなることを特徴とする。   According to a second aspect of the present invention, there is provided a solid polymer water electrolyzer that can electrolyze water and take out medium-pressure hydrogen, pressurize the hydrogen, and act as a compressor to obtain high-pressure hydrogen, and the solid A storage tank capable of storing medium-pressure hydrogen produced by a polymer-type water electrolysis apparatus, and a pipe line including a return flow path for returning medium-pressure hydrogen from the storage tank to the inlet of the solid polymer-type water electrolysis apparatus And a plurality of valves interposed in the pipe line, and a middle / high hydrogen discharge port provided at the end of the pipe line.

請求項1に係る発明では、水素を貯蔵タンクから直接的に車両へ供給することで中圧水素を車載タンクへ充填することができ、また、必要時に貯蔵タンクに溜めた中圧の水素を固体高分子型水電解装置を用いて加圧しながら、高圧の水素を車両へ供給することで高圧水素を車載タンクへ充填することができる。   In the invention according to claim 1, by supplying hydrogen directly from the storage tank to the vehicle, the medium-pressure hydrogen can be filled into the vehicle-mounted tank, and when necessary, the medium-pressure hydrogen stored in the storage tank is solid. The high-pressure hydrogen can be filled into the vehicle-mounted tank by supplying high-pressure hydrogen to the vehicle while applying pressure using the polymer water electrolysis apparatus.

したがって、予定走行距離が短いなどの理由で少なめに水素を充填する場合は中圧水素を充填し、十分な量の水素を充填する必要があれば高圧水素を充填する。
水素供給装置を必要に応じて、運転することができ、無駄にエネルギーを使うことがないため、本格的な水素サービスステーションに比較して運転費用を大幅に削減することができる。
Therefore, when filling a little hydrogen for reasons such as a short planned traveling distance, it is filled with medium-pressure hydrogen, and when it is necessary to fill a sufficient amount of hydrogen, high-pressure hydrogen is filled.
Since the hydrogen supply device can be operated as required and energy is not wasted, operation costs can be greatly reduced compared to a full-scale hydrogen service station.

請求項2に係る発明では、水素を発生させる固体高分子型水電解装置で、中圧水素を高圧水素に昇圧するコンプレッサを兼ねさせることで、1つの装置で中圧水素と高圧水素を無駄なく供給することができ、機器の統合化を達成し、水素供給装置の小型化を図ることができる。   In the invention according to claim 2, the solid polymer water electrolysis apparatus for generating hydrogen serves as a compressor for increasing the pressure of the medium pressure hydrogen to the pressure of the high pressure hydrogen, so that the medium pressure hydrogen and the high pressure hydrogen can be saved in one apparatus. It is possible to supply, achieve integration of equipment, and reduce the size of the hydrogen supply device.

また、昇圧にピストン式コンプレッサやルーツ式コンプレッサを使用する場合、流体中に金属粉などの異物が混じっていると、ピストンの破損やルーツの摩耗を招くので異物を除去する必要がある。
この点、固体高分子型水電解装置は、機械的接触部分がないため機械的摩耗を心配する必要がない。
In addition, when a piston compressor or a roots compressor is used for boosting, if foreign matter such as metal powder is mixed in the fluid, the piston is damaged or the roots are worn, so it is necessary to remove the foreign matter.
In this respect, the polymer electrolyte water electrolysis apparatus does not have to worry about mechanical wear because there is no mechanical contact portion.

さらには、ルーツ式コンプレッサなどの機械式圧縮機では騒音が発生し、運転のためのエネルギーロスも大きい。
この点、固体高分子型水電解装置は、機械的接触部分がないため静かであり、効率が高く、エネルギーロスは小さい。
したがって、固体高分子型水電解装置をコンプレッサに流用することは、多数の利点がある。
Furthermore, a mechanical compressor such as a Roots compressor generates noise and has a large energy loss for operation.
In this respect, the solid polymer type water electrolysis apparatus is quiet because there is no mechanical contact portion, has high efficiency, and has low energy loss.
Therefore, diverting the polymer electrolyte water electrolyzer to the compressor has many advantages.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る中圧及び高圧水素供給装置の構成図であり、中圧及び高圧水素供給装置10は、水を電気分解して中圧の水素を取出すことができる水素製造装置の役割と水素を加圧し、高圧の水素を得るコンプレッサの役割とを果たす固体高分子型水電解装置20と、この固体高分子型水電解装置20で製造した中圧の水素を溜めることのできる貯蔵タンク41と、この貯蔵タンク41から固体高分子型水電解装置20の入口27へ中圧の水素を戻すリターン流路42を含む管路43と、この管路43に介設した複数のバルブ44〜49と、水素ガスに含まれ水分を除去するために管路43に介設した精製器50と、管路43の末端に設けた中・高圧水素吐出口51と、固体高分子型水電解装置20の排気を行う排気ポンプ60からなる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a configuration diagram of a medium-pressure and high-pressure hydrogen supply apparatus according to the present invention. A medium-pressure and high-pressure hydrogen supply apparatus 10 is a role of a hydrogen production apparatus that can electrolyze water and take out medium-pressure hydrogen. And a solid polymer water electrolyzer 20 that serves as a compressor that pressurizes hydrogen and obtains high-pressure hydrogen, and a storage tank that can store medium-pressure hydrogen produced by the solid polymer water electrolyzer 20 41, a pipe line 43 including a return flow path 42 for returning medium pressure hydrogen from the storage tank 41 to the inlet 27 of the polymer electrolyte water electrolysis device 20, and a plurality of valves 44 to 49, a purifier 50 interposed in the pipe line 43 for removing moisture contained in the hydrogen gas, a medium / high pressure hydrogen discharge port 51 provided at the end of the pipe line 43, and a solid polymer type water electrolysis apparatus It consists of an exhaust pump 60 that exhausts 20

そして、中・高圧水素吐出口51に水素供給ホース52を連結し、この水素供給ホース52の先端を車載タンク53に連結することで、車両54に搭載した車載タンク53に中圧水素又は高圧水素を充填することができる。   Then, a hydrogen supply hose 52 is connected to the medium / high pressure hydrogen discharge port 51, and the tip of the hydrogen supply hose 52 is connected to the vehicle-mounted tank 53, so that the vehicle-mounted tank 53 mounted on the vehicle 54 has medium-pressure hydrogen or high-pressure hydrogen. Can be filled.

32は固体高分子型水電解装置20のための直流電源であり、太陽光発電や風力発電からの電力を基本とし、不足分を商用電力で充当し、交流電源を所定の直流電源に変換する機能を有する。
また、55は純水製造装置であり、詳細構造は省略するが、水道水から純水を製造することができる装置である。
Reference numeral 32 denotes a DC power source for the polymer electrolyte water electrolysis device 20, which is based on power from solar power generation or wind power generation, uses the shortage with commercial power, and converts the AC power into a predetermined DC power source. It has a function.
Reference numeral 55 denotes a pure water production device, which is a device capable of producing pure water from tap water, although its detailed structure is omitted.

図2は固体高分子型水電解装置の断面図であり、固体高分子型水電解装置20は、プロトンは通すが、電子は通さないが性質をもつ固体高分子層21の両面に薄い触媒層22、23を付設し、この様な固体高分子層21を間にして、一方にアノード側ガス拡散電極と称するアノード24及び給電体33を配置し、他方にカソード側ガス拡散電極と称するカソード25及び給電体34を配置し、全体を密閉ケース26で囲い、この密閉ケース26に入口27、出口28及び酸素出口29を設けてなる。なお、入口27はアノード24に臨ませ、出口28はカソード25に臨ませる共に入口27に対向配置し、酸素出口29はアノード24に臨ませると共に入口27に対向配置する。   FIG. 2 is a cross-sectional view of a solid polymer type water electrolysis apparatus. The solid polymer type water electrolysis apparatus 20 has a thin catalyst layer on both sides of a solid polymer layer 21 that has properties of passing protons but not electrons. 22 and 23 are provided, and an anode 24 and a power feeding body 33 called an anode side gas diffusion electrode are arranged on one side with such a solid polymer layer 21 therebetween, and a cathode 25 called a cathode side gas diffusion electrode on the other side. In addition, the power supply body 34 is disposed, and the whole is surrounded by a sealed case 26, and an inlet 27, an outlet 28, and an oxygen outlet 29 are provided in the sealed case 26. The inlet 27 faces the anode 24, the outlet 28 faces the cathode 25 and is disposed opposite to the inlet 27, and the oxygen outlet 29 faces the anode 24 and is disposed opposite to the inlet 27.

31はアノード24とカソード25とを結ぶ回路、32は直流電源である。
また、33、34は電流を供給しガスの流れを促す給電体であり、金属多孔質体からなる。
31 is a circuit connecting the anode 24 and the cathode 25, and 32 is a DC power source.
Reference numerals 33 and 34 denote power feeding bodies that supply a current and promote a gas flow, and are made of a metal porous body.

図3は固体高分子型水電解装置による水素製造の原理図であり、入口27を通じてアノード24側へHOを供給する。アノード24、カソード25間に回路31を通じて直流電圧を印可する。
供給したHOは、触媒22の作用で、(1/2O+2H+2e)に分解する。Hはプロトンであり、eは電子である。
FIG. 3 is a principle diagram of hydrogen production by the solid polymer type water electrolysis apparatus, and H 2 O is supplied to the anode 24 side through the inlet 27. A DC voltage is applied between the anode 24 and the cathode 25 through a circuit 31.
The supplied H 2 O is decomposed into (1 / 2O 2 + 2H + + 2e) by the action of the catalyst 22. H + is a proton and e is an electron.

分離したHは、固体高分子層21を通過してカソード25側の触媒23に至る。この触媒23の作用で、2H+2e→Hの反応が起こり、水素(H)を製造することができる。反応に関わるeは回路31を通じて電流とは逆、すなわちカソード25からアノード24へ絶えず流れてアノード24側及びカソード25側での反応を継続させる役割を果たす。 The separated H + passes through the solid polymer layer 21 and reaches the catalyst 23 on the cathode 25 side. By the action of the catalyst 23, a reaction of 2H + + 2e → H 2 occurs, and hydrogen (H 2 ) can be produced. The e associated with the reaction is opposite to the current through the circuit 31, that is, constantly flows from the cathode 25 to the anode 24 and plays a role of continuing the reaction on the anode 24 side and the cathode 25 side.

以上の原理により、出口28から水素(H)、酸素出口29から酸素(O)を連続的に得ることができる。 Based on the above principle, hydrogen (H 2 ) can be continuously obtained from the outlet 28, and oxygen (O 2 ) can be continuously obtained from the oxygen outlet 29.

図4は固体高分子型水電解装置によるコンプレッサ作用の説明図である。なお、2つの圧力に差がある場合には、一般に、低圧、高圧と区別するが、本発明では、「中圧」、「高圧」の呼称を採用する。
先ず、酸素出口29はバルブ49により閉じ、入口27を通じてアノード24側へ中圧Hを供給する。アノード24、カソード25間に回路31を通じて直流電圧を印可する。
FIG. 4 is an explanatory view of the compressor action by the solid polymer type water electrolysis apparatus. In the case where there is a difference between the two pressures, it is generally distinguished from low pressure and high pressure, but in the present invention, the names “medium pressure” and “high pressure” are adopted.
First, the oxygen outlet 29 is closed by a valve 49, supplies the intermediate pressure H 2 through the inlet 27 to the anode 24 side. A DC voltage is applied between the anode 24 and the cathode 25 through a circuit 31.

供給した中圧Hは、触媒22の作用で、(2H+2e)に分解する。
分離したHは、固体高分子層21を通過してカソード25側の触媒23に至る。この触媒23の作用で、2H+2e→高圧Hの反応が起こり、中圧水素(H)を高圧化することができる。
The supplied intermediate pressure H 2 is decomposed into (2H + + 2e) by the action of the catalyst 22.
The separated H + passes through the solid polymer layer 21 and reaches the catalyst 23 on the cathode 25 side. By the action of the catalyst 23, a reaction of 2H + + 2e → high pressure H 2 occurs, and medium pressure hydrogen (H 2 ) can be increased in pressure.

なお、このコンプレッサの能力は次の式で説明することができる。ln(Ph/Pl)=(2F/RT)×(ΔE−ir)。ただし、lnは自然対数記号、Phは高圧側水素分圧、Plは中圧側水素分圧、Fはファラディー定数、Rはガス定数、Tはセルの絶対温度、ΔEは印加電圧、iは電流密度、rはセルの抵抗である。
コンプレッサの能力は、Ph/Plで示すことができる。例えば印加電圧(ΔE)を制御することで、高圧水素の圧力を制御することができる。
The capacity of this compressor can be explained by the following equation. In (Ph / Pl) = (2F / RT) × (ΔE−ir). Here, ln is a natural logarithm symbol, Ph is a high-pressure side hydrogen partial pressure, Pl is a medium-pressure side hydrogen partial pressure, F is a Faraday constant, R is a gas constant, T is an absolute temperature of the cell, ΔE is an applied voltage, and i is a current. Density, r is the resistance of the cell.
The compressor capacity can be expressed as Ph / Pl. For example, the pressure of high-pressure hydrogen can be controlled by controlling the applied voltage (ΔE).

以上に説明した固体高分子型水電解装置20を含む本発明の中圧及び高圧水素供給装置の作用を次に説明する。なお、以下の図中、黒く塗りつぶしたバルブシンボルは弁閉、白抜きバルブシンボルは弁開を示す。   The operation of the medium pressure and high pressure hydrogen supply apparatus of the present invention including the solid polymer type water electrolysis apparatus 20 described above will be described below. In the following drawings, a valve symbol filled in black indicates valve closing, and a white valve symbol indicates valve opening.

図5は中圧及び高圧水素供給装置による水素製造に係る作用図であり、バルブ45、47は閉じ、バルブ44、46、48、49を開いて、バルブ44側からHO(水)を供給し、固体高分子型水電解装置20で、H(水素)とO(酸素)に分解し、O(酸素)はバルブ49及び酸素放出口56を介して放出若しくは図示せぬ容器に溜める。 FIG. 5 is an operation diagram relating to hydrogen production by an intermediate-pressure and high-pressure hydrogen supply device. Valves 45 and 47 are closed, valves 44, 46, 48 and 49 are opened, and H 2 O (water) is supplied from the valve 44 side. Supplied and decomposed into H 2 (hydrogen) and O 2 (oxygen) by the polymer electrolyte water electrolysis apparatus 20, and O 2 (oxygen) is discharged through a valve 49 and an oxygen discharge port 56 or a container (not shown). Accumulate on.

一方、H(水素)はバルブ48、精製器50、バルブ46を介して貯蔵タンク41に送り、そこに溜める。精製器50では、H(水素)に含まれる不可避的水分を除去して、高純度のH(水素)にすることができる。 On the other hand, H 2 (hydrogen) is sent to the storage tank 41 through the valve 48, the purifier 50, and the valve 46 and stored there. In the purifier 50, unavoidable moisture contained in H 2 (hydrogen) can be removed to obtain high-purity H 2 (hydrogen).

図6は車載タンクへ水素を供給する手順の説明図であり、(a)は中圧水素供給図、(b)は高圧水素供給図である。
(a)において、水素供給ホース52で中・高圧水素吐出口51と車載タンク53を連結し、バルブ44、45、48、49を閉じ、バルブ46、47を開く。すると、貯蔵タンク41に溜めた水素はバルブ46、47や水素供給ホース52を通じて車載タンク53に流入し始める。貯蔵タンク41の残圧と車載タンク53との圧力が平衡状態、すなわち同圧になった時点で供給は終了する。
予定走行距離が短い場合には、水素の充填量はこれで間に合う。予定走行距離が長い場合には次の(b)を続いて実施する。
FIG. 6 is an explanatory diagram of a procedure for supplying hydrogen to the on-vehicle tank, where (a) is a medium-pressure hydrogen supply diagram and (b) is a high-pressure hydrogen supply diagram.
In (a), the hydrogen supply hose 52 connects the middle / high pressure hydrogen discharge port 51 and the vehicle-mounted tank 53, the valves 44, 45, 48, 49 are closed, and the valves 46, 47 are opened. Then, the hydrogen accumulated in the storage tank 41 starts to flow into the on-vehicle tank 53 through the valves 46 and 47 and the hydrogen supply hose 52. The supply ends when the residual pressure in the storage tank 41 and the pressure in the in-vehicle tank 53 are in an equilibrium state, that is, the same pressure.
If the planned mileage is short, the hydrogen charge will be in time. If the planned travel distance is long, the following (b) is performed.

なお、この(a)は圧力差で作動するために、車載タンク53に水素がかなり残っていてその残圧が、貯蔵タンク41の内圧より高い若しくは差がないときには、適用できない。この場合は次の(b)を用いる。   Since (a) operates with a pressure difference, it cannot be applied when a considerable amount of hydrogen remains in the vehicle-mounted tank 53 and the residual pressure is higher than or not different from the internal pressure of the storage tank 41. In this case, the following (b) is used.

すなわち、(b)は(a)に引き続いて実施する場合と、車載タンクの残圧が高い場合とに適用できる。
(b)において、バルブ44、46、49を閉じ、排気ポンプ60を作動させて固体高分子型水電解装置20中に残存する水や酸素を排出する。そして、バルブ45、47、48を開き、固体高分子型水電解装置20を作動させる。すると、固体高分子型水電解装置20は図4で述べたコンプレッサ作用を発揮し、バルブ45を通じて貯留タンク41の水素を吸込み、高圧化し、高圧水素をバルブ47、48や水素供給ホース52を通じて車載タンク53へ充填することができる。
That is, (b) can be applied to the case where it is carried out following (a) and the case where the residual pressure in the vehicle tank is high.
In (b), the valves 44, 46 and 49 are closed, and the exhaust pump 60 is operated to discharge water and oxygen remaining in the polymer electrolyte water electrolysis device 20. Then, the valves 45, 47 and 48 are opened, and the polymer electrolyte water electrolysis device 20 is operated. Then, the polymer electrolyte water electrolysis apparatus 20 exhibits the compressor action described with reference to FIG. 4 and sucks the hydrogen in the storage tank 41 through the valve 45 to increase the pressure, and the high-pressure hydrogen is mounted on the vehicle through the valves 47 and 48 and the hydrogen supply hose 52. The tank 53 can be filled.

なお、(a)と(b)は車載タンク53の残量(残圧)や予定走行距離などの要素により、(a)のみ、(b)のみ、若しくは(a)、(b)の組み合わせからなる使用が可能となる。この様な使用形態を次図で説明する。   It should be noted that (a) and (b) are based on factors such as the remaining amount (residual pressure) of the in-vehicle tank 53 and the planned travel distance, and only (a), only (b), or a combination of (a) and (b). Can be used. Such usage will be described with reference to the following figure.

図7は本発明に係る中圧及び高圧水素供給方法に係るフロー図であり、ST××はステップ番号を示す。
ST01:予め固体高分子型水電解装置を用いて水素を製造する。
ST02:水素を貯蔵タンクに溜める。
ST03:水素供給に際し、車載タンクの圧力P1を読込む。
ST04:同時に、貯蔵タンクの圧力P2を読込む。
FIG. 7 is a flowchart according to the intermediate pressure and high pressure hydrogen supply method according to the present invention, and STxx indicates a step number.
ST01: Hydrogen is produced in advance using a solid polymer type water electrolysis apparatus.
ST02: Hydrogen is stored in a storage tank.
ST03: When supplying hydrogen, the pressure P1 in the vehicle tank is read.
ST04: At the same time, the storage tank pressure P2 is read.

ST05:貯蔵タンクの圧力P2が車載タンクの圧力P1を超えているか否かを調べる。超えていれば次に進み、否であればST08に進む。
ST06:貯蔵タンクの圧力P2が車載タンクの圧力P1を超えているので、図6(a)の要領で差圧充填を実施する。
ST07:車載タンクにはかなりの量の水素が充填された。予定走行距離が短いなどの理由で充填量が十分であれば、このフローを終了する。まだ、不十分であれば次に進む。
ST05: Check whether the pressure P2 of the storage tank exceeds the pressure P1 of the vehicle tank. If exceeded, the process proceeds to the next step. If not, the process proceeds to ST08.
ST06: Since the pressure P2 of the storage tank exceeds the pressure P1 of the in-vehicle tank, the differential pressure filling is performed as shown in FIG.
ST07: The on-board tank was filled with a considerable amount of hydrogen. If the filling amount is sufficient due to a short planned travel distance or the like, this flow is terminated. If it is still insufficient, go to the next.

ST08:固体高分子型水電解装置をコンプレッサとして使用することにより、図6(b)の要領で高圧化水素を車載タンクへ充填する。
ST09:車載タンクの圧力が所定圧力に達するまで、充填を続け、所定圧力に達した時点で充填を終了する。
ST08: By using the solid polymer type water electrolysis apparatus as a compressor, high-pressure hydrogen is filled in the vehicle-mounted tank as shown in FIG. 6B.
ST09: Filling is continued until the pressure in the on-vehicle tank reaches a predetermined pressure, and the filling is terminated when the predetermined pressure is reached.

以上のフローをまとめると次のとおりになる。
本発明は、固体高分子型水電解装置で水を電気分解することで中圧の水素を製造する工程(ST01)と、
この水素を貯蔵タンクに溜める工程(ST02)と、
溜めた水素を前記貯蔵タンクから直接的に車両へ供給し(ST06)、必要時に貯蔵タンクに溜めた水素を前記固体高分子型水電解装置を用いて加圧しながら、高圧の水素を車両へ供給する工程(ST08)とからなることを特徴とする。
The above flow is summarized as follows.
The present invention includes a step (ST01) of producing medium pressure hydrogen by electrolyzing water with a solid polymer type water electrolysis device;
A step of storing this hydrogen in a storage tank (ST02);
Supply the stored hydrogen directly from the storage tank to the vehicle (ST06), and supply high-pressure hydrogen to the vehicle while pressurizing the hydrogen stored in the storage tank using the polymer electrolyte water electrolyzer when necessary. And a step (ST08).

この方法によれば、予定走行距離が短いなどの理由で少なめに水素を充填する場合は中圧水素を充填し、十分な量の水素を充填する必要があれば高圧水素を充填する。
水素供給装置を必要に応じて、運転することができ、従来の水素製造・供給装置に比較して使用エネルギーを大幅に削減することができる。
According to this method, when filling a little hydrogen for reasons such as the planned travel distance being short, the medium-pressure hydrogen is filled, and if it is necessary to fill a sufficient amount of hydrogen, the high-pressure hydrogen is filled.
The hydrogen supply device can be operated as necessary, and the energy used can be greatly reduced as compared with the conventional hydrogen production / supply device.

尚、本発明の中圧及び高圧水素供給装置は、家庭や小規模事業所の駐車場の隅に設置する他、本格的な大規模事業所や水素サービスステーションへ適用することは差し支えない。   The medium-pressure and high-pressure hydrogen supply apparatus of the present invention can be applied to a full-scale large-scale office or a hydrogen service station in addition to being installed in a corner of a parking lot at home or a small-scale office.

本発明は、車載タンクに水素ガスを供給する中圧及び高圧水素供給技術に好適である。   The present invention is suitable for a medium-pressure and high-pressure hydrogen supply technology for supplying hydrogen gas to a vehicle-mounted tank.

本発明に係る中圧及び高圧水素供給装置の構成図である。It is a block diagram of the intermediate pressure and high pressure hydrogen supply apparatus which concerns on this invention. 固体高分子型水電解装置の断面図である。It is sectional drawing of a solid polymer type water electrolysis apparatus. 固体高分子型水電解装置による水素製造の原理図である。It is a principle diagram of hydrogen production by a solid polymer type water electrolysis apparatus. 固体高分子型水電解装置によるコンプレッサ作用の説明図である。It is explanatory drawing of the compressor effect | action by a solid polymer type water electrolysis apparatus. 中圧及び高圧水素供給装置による水素製造に係る作用図である。It is an effect | action figure which concerns on the hydrogen production by a medium pressure and high pressure hydrogen supply apparatus. 車載タンクへ水素を供給する手順の説明図であり、(a)は中圧水素供給図、(b)は高圧水素供給図である。It is explanatory drawing of the procedure which supplies hydrogen to a vehicle-mounted tank, (a) is a medium pressure hydrogen supply figure, (b) is a high pressure hydrogen supply figure. 本発明に係る中圧及び高圧水素供給方法に係るフロー図である。It is a flowchart concerning the intermediate pressure and high pressure hydrogen supply method according to the present invention. 従来の技術の基本原理を説明する図である。It is a figure explaining the basic principle of the prior art.

符号の説明Explanation of symbols

10…中圧及び高圧水素供給装置、20…固体高分子型水電解装置、41…貯蔵タンク、42…リターン流路、43…管路、44〜49…バルブ、50…精製器、51…中・高圧水素吐出口、53…車載タンク、54…車両。   DESCRIPTION OF SYMBOLS 10 ... Medium pressure and high pressure hydrogen supply apparatus, 20 ... Solid polymer type water electrolysis apparatus, 41 ... Storage tank, 42 ... Return flow path, 43 ... Pipe line, 44-49 ... Valve, 50 ... Purifier, 51 ... Medium -High-pressure hydrogen discharge port, 53 ... vehicle tank, 54 ... vehicle.

Claims (2)

固体高分子型水電解装置で水を電気分解することで中圧の水素を製造する工程と、
この水素を貯蔵タンクに溜める工程と、
溜めた水素を前記貯蔵タンクから直接的に車両へ供給し、必要時に貯蔵タンクに溜めた水素を前記固体高分子型水電解装置を用いて加圧しながら、高圧の水素を車両へ供給する工程とからなることを特徴とする中圧及び高圧水素供給方法。
A process for producing medium pressure hydrogen by electrolyzing water in a solid polymer water electrolyzer;
Storing this hydrogen in a storage tank;
Supplying the stored hydrogen directly from the storage tank to the vehicle, and supplying high-pressure hydrogen to the vehicle while pressurizing the hydrogen stored in the storage tank using the solid polymer water electrolyzer when necessary; An intermediate-pressure and high-pressure hydrogen supply method comprising:
水を電気分解して中圧の水素を取出すことのできるとともに水素を加圧し、高圧の水素を得るコンプレッサの役割を果たす固体高分子型水電解装置と、この固体高分子型水電解装置で製造した中圧の水素を溜めることのできる貯蔵タンクと、この貯蔵タンクから前記固体高分子型水電解装置の入口へ中圧の水素を戻すリターン流路を含む管路と、この管路に介設した複数のバルブと、管路の末端に設けた中・高圧水素吐出口とからなる中圧及び高圧水素供給装置。
Manufactured with a solid polymer water electrolyzer that can extract water of medium pressure by electrolyzing water and pressurize hydrogen to act as a compressor to obtain high pressure hydrogen, and this solid polymer water electrolyzer A storage tank capable of storing the intermediate pressure hydrogen, a conduit including a return passage for returning the intermediate pressure hydrogen from the storage tank to the inlet of the polymer electrolyte water electrolysis device, and an intervening in the conduit A medium-pressure and high-pressure hydrogen supply device comprising a plurality of valves and a medium- and high-pressure hydrogen discharge port provided at the end of the pipeline.
JP2004142361A 2004-05-12 2004-05-12 Intermediate and high pressure hydrogen supply method and its device Withdrawn JP2005324584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142361A JP2005324584A (en) 2004-05-12 2004-05-12 Intermediate and high pressure hydrogen supply method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142361A JP2005324584A (en) 2004-05-12 2004-05-12 Intermediate and high pressure hydrogen supply method and its device

Publications (1)

Publication Number Publication Date
JP2005324584A true JP2005324584A (en) 2005-11-24

Family

ID=35471287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142361A Withdrawn JP2005324584A (en) 2004-05-12 2004-05-12 Intermediate and high pressure hydrogen supply method and its device

Country Status (1)

Country Link
JP (1) JP2005324584A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157346A (en) * 2006-12-22 2008-07-10 Honda Motor Co Ltd Vehicular hydrogen supply system
WO2013099524A1 (en) * 2011-12-28 2013-07-04 株式会社 日立製作所 System for converting and storing renewable energy
JP2013535085A (en) * 2010-06-29 2013-09-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Electric vehicle with a fuel cell including a sodium chlorate decomposition reactor for supplying oxygen to the fuel cell
JP2013538934A (en) * 2010-06-29 2013-10-17 コンパニー ゼネラール デ エタブリッスマン ミシュラン Production and supply system for hydrogen and sodium chlorate, including sodium chloride electrolyzer for producing sodium chlorate
JP2017026145A (en) * 2015-05-29 2017-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method of supplying fuel to hydrogen automobile and home charging system for hydrogen automobile
EP3533757A1 (en) 2018-03-01 2019-09-04 Panasonic Intellectual Property Management Co., Ltd. Hydrogen system
AT526100A1 (en) * 2022-05-10 2023-11-15 Hoerbiger Wien Gmbh Device for providing hydrogen
JP7431767B2 (en) 2021-03-05 2024-02-15 株式会社東芝 Hydrogen energy supply system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157346A (en) * 2006-12-22 2008-07-10 Honda Motor Co Ltd Vehicular hydrogen supply system
JP2013535085A (en) * 2010-06-29 2013-09-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Electric vehicle with a fuel cell including a sodium chlorate decomposition reactor for supplying oxygen to the fuel cell
JP2013538934A (en) * 2010-06-29 2013-10-17 コンパニー ゼネラール デ エタブリッスマン ミシュラン Production and supply system for hydrogen and sodium chlorate, including sodium chloride electrolyzer for producing sodium chlorate
WO2013099524A1 (en) * 2011-12-28 2013-07-04 株式会社 日立製作所 System for converting and storing renewable energy
JP2013136801A (en) * 2011-12-28 2013-07-11 Hitachi Ltd System for converting and storing renewable energy
JP2017026145A (en) * 2015-05-29 2017-02-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method of supplying fuel to hydrogen automobile and home charging system for hydrogen automobile
EP3533757A1 (en) 2018-03-01 2019-09-04 Panasonic Intellectual Property Management Co., Ltd. Hydrogen system
US11332836B2 (en) 2018-03-01 2022-05-17 Panasonic Intellectual Property Management Co., Ltd. Hydrogen system
JP7431767B2 (en) 2021-03-05 2024-02-15 株式会社東芝 Hydrogen energy supply system
AT526100A1 (en) * 2022-05-10 2023-11-15 Hoerbiger Wien Gmbh Device for providing hydrogen
AT526100B1 (en) * 2022-05-10 2023-12-15 Hoerbiger Wien Gmbh Device for providing hydrogen

Similar Documents

Publication Publication Date Title
US6887601B2 (en) Regenerative electrochemical cell system and method for use thereof
CN101638792A (en) Recovering the compression energy in gaseous hydrogen and oxygen generated from high-pressure water electrolysis
US20100219066A1 (en) Water electrolysis system
DK2396846T3 (en) Hydrogen fed power plant comprising an electrochemical pressure transducer and method for power generation
EP2561575A1 (en) Device for storing and restoring electrical energy
US20220220621A1 (en) Method and system for an off-grid variable state hydrogen refueling infrastructure
JP2005324584A (en) Intermediate and high pressure hydrogen supply method and its device
JP4009300B2 (en) FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL
JP6291402B2 (en) Compressed hydrogen supply device
CN114402094A (en) Electrochemical cell and method of treating a hydrogen-containing gas stream
JP2000502834A (en) Operating method of fuel cell plant and fuel cell plant
JP2008235203A (en) Fuel cell system and method of discharging water produced in fuel cell system
CN101548424B (en) Fuel cell system and purging method thereof
US7718302B2 (en) Electrochemical deoxygenation of fuel by electrolysis
JP5200299B2 (en) Anode-side hydrogen / oxygen interface formation suppression structure for fuel cell vehicles
CN217839154U (en) Hydrogen production and hydrogenation integrated system
CN114909871B (en) Method and device for preparing liquid hydrogen by offshore off-grid superconducting wind power
JP2005033961A (en) Power generating system and power generating facility
US10840572B1 (en) Solar hydrogen generation and off-peak storage
CN214226971U (en) Energy regeneration circulating device of hydrogen-oxygen fuel cell
KR100448692B1 (en) Fuel feed system for fuel cell
JP2011256432A (en) Method of shutting down water electrolysis apparatus
JP2012067368A (en) Operating method of high-pressure water electrolytic system
FR2845825A1 (en) Water recovery system for electric vehicle fuel cell includes compressor and condenser extracting water vapor providing liquid for later use in fuel cell
CN203179987U (en) Nitrogen purging system for hydrogen supplying busbar of emergency power supply of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807