JP4009300B2 - FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL - Google Patents

FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL Download PDF

Info

Publication number
JP4009300B2
JP4009300B2 JP2005254018A JP2005254018A JP4009300B2 JP 4009300 B2 JP4009300 B2 JP 4009300B2 JP 2005254018 A JP2005254018 A JP 2005254018A JP 2005254018 A JP2005254018 A JP 2005254018A JP 4009300 B2 JP4009300 B2 JP 4009300B2
Authority
JP
Japan
Prior art keywords
electrode chamber
hydrogen
oxygen
water
oxygen electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005254018A
Other languages
Japanese (ja)
Other versions
JP2007066812A (en
Inventor
裕紹 辻
和孝 辻
Original Assignee
裕紹 辻
和孝 辻
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕紹 辻, 和孝 辻 filed Critical 裕紹 辻
Priority to JP2005254018A priority Critical patent/JP4009300B2/en
Publication of JP2007066812A publication Critical patent/JP2007066812A/en
Application granted granted Critical
Publication of JP4009300B2 publication Critical patent/JP4009300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池及びそれを備えた電気自動車並びに燃料電池の運転方法に関するものである。   The present invention relates to a fuel cell, an electric vehicle including the same, and a method for operating the fuel cell.

固体高分子型の燃料電池は、発電効率が高く高電流密度のため小型軽量化が可能、低温動作のため常温で起動でき起動時間も短く取り扱いが容易等の特徴を有するため、従来より、家庭用等の定置型電源や宇宙船用,潜水艦用,船舶用,自動車用等の移動電源に適用する研究が続けられている。
しかしながら、固体高分子型の燃料電池は水素等の燃料を燃料電池に供給して電気エネルギーを発生させるものであるため、自動車用等の移動電源として用いる場合、通常のガソリン自動車がガソリンスタンドにてガソリンを補給するように、随所に燃料補給施設を設置し比較的頻繁に燃料を補給しなければならないという問題がある。
そこで、燃料電池が電気エネルギーを作り出す逆反応に着目し、水を電気分解して燃料となる水素を生成させる水の電解槽の機能を燃料電池と一体化した再生式の燃料電池が開発されている。
従来の技術としては、(特許文献1)に「イオン交換膜の両面に配置された一対の給電・集電体及び電極板を備え、燃料電池として機能し、かつ、水電解装置として機能する可逆型燃料電池と、前記可逆型燃料電池へ供給するための水素を貯蔵する水素貯蔵装置と、を備えた可逆型燃料電池搭載自動車」が開示されている。
(特許文献2)に「水電解槽と燃料電池の二つの機能を有する固体高分子電解質型の可逆セルの構成部分である多孔質のガス拡散体が、導電性物質の繊維の集合体であって、個々の繊維の表面をフッ素樹脂で被覆してあり、その被覆量が、繊維の全表面積に関して0.06〜1.20mg/cmの範囲にある多孔質ガス拡散体を有する燃料電池」が開示されている。
特開2002−135911号公報 特開2004−134134号公報
Solid polymer fuel cells have features such as high power generation efficiency and high current density, which can be reduced in size and weight, and can be started at room temperature due to low-temperature operation, and have a short startup time and easy handling. Research is continuing to apply to stationary power sources for vehicles and mobile power sources for spacecraft, submarines, ships, and automobiles.
However, since a polymer electrolyte fuel cell generates electric energy by supplying a fuel such as hydrogen to the fuel cell, when used as a mobile power source for automobiles, an ordinary gasoline automobile is used at a gas station. There is a problem in that refueling facilities have to be installed everywhere and fuel has to be replenished relatively frequently so as to replenish gasoline.
Therefore, focusing on the reverse reaction in which the fuel cell produces electrical energy, a regenerative fuel cell has been developed that integrates the function of a water electrolyzer that electrolyzes water to produce hydrogen as fuel. Yes.
As a conventional technique, Patent Document 1 describes a reversible function that includes a pair of power supply and current collectors and electrode plates arranged on both sides of an ion exchange membrane, functions as a fuel cell, and functions as a water electrolysis device. A reversible fuel cell vehicle equipped with a fuel cell and a hydrogen storage device for storing hydrogen to be supplied to the reversible fuel cell is disclosed.
(Patent Document 2) states that “a porous gas diffuser which is a constituent part of a solid polymer electrolyte type reversible cell having two functions of a water electrolytic cell and a fuel cell is an aggregate of fibers of a conductive substance. A fuel cell having a porous gas diffuser in which the surface of each fiber is coated with a fluororesin and the coating amount is in the range of 0.06 to 1.20 mg / cm 2 with respect to the total surface area of the fiber. Is disclosed.
JP 2002-135911 A JP 2004-134134 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は、可逆型燃料電池内で水の電気分解と燃料電池の運転を交互に繰り返し行う場合、水の電気分解運転直後は給電・集電体内に多量の水が存在するため、燃料電池運転開始時に給電・集電体に水素ガスや酸素ガスを流すと、水が給電・集電体のガス流路に詰まりガスが流れ難くなる現象(フラッディング現象)が生じ、水素ガス等の拡散阻害による電圧低下を招き燃料電池の性能が低下するという課題を有していた。
(2)(特許文献2)に開示の技術は、水の電気分解運転直後のフラッディング現象を防止するため、ガス拡散体(給電・集電体)の個々の繊維を、全表面積に対して0.06〜1.20mg/cmのフッ素樹脂で被覆しガス拡散体の表面を疎水性にして水はけを良くしているため、ある程度はフラッディング現象を抑制し電圧低下を防止できる。しかしながら、繰り返し運転によってフッ素樹脂による被覆が剥離したり、疎水性を維持する効果が経時的に低下したりするため、耐久性に欠けるという課題を有していた。
(3)ガス拡散体の繊維の表面をフッ素樹脂で被覆するのは、繊維にフッ素樹脂の分散液を塗布し乾燥させた後、約400℃で1時間以上加熱してフッ素樹脂を溶着させる必要があり煩雑で生産性に欠けるという課題を有していた。また、このような処理を行って繊維の表面を均一にフッ素樹脂で被覆するのは困難で斑が生じ易く、フッ素樹脂が十分に被覆されていない繊維の表面からは水が除去され難いため、フラッディング現象を完全に防止できないという課題を有していた。
(4)水の電気分解運転の際、電極板、ガス拡散体、給電・集電体は水中に浸漬され電極板等の表面では激しく酸化還元反応が起こっているため、長期間の使用によって電極板等の成分が水中に溶出することがあり、溶出した成分は電解質膜の表面にも付着し、経時的に燃料電池の起電力や水の電解効率が低下することがあり耐久性に欠けるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) In the technique disclosed in Patent Document 1, in the case where water electrolysis and fuel cell operation are alternately repeated in a reversible fuel cell, a large amount of water is fed into the power supply / current collector immediately after water electrolysis operation. Phenomenon of water, when hydrogen or oxygen gas is supplied to the power supply / current collector at the start of fuel cell operation, the water is clogged into the gas flow path of the power supply / current collector (flooding phenomenon) Has occurred, causing a voltage drop due to inhibition of diffusion of hydrogen gas and the like, resulting in a decrease in fuel cell performance.
(2) In the technique disclosed in (Patent Document 2), in order to prevent the flooding phenomenon immediately after the electrolysis operation of water, each fiber of the gas diffuser (power supply / current collector) is set to 0 with respect to the total surface area. Since the surface of the gas diffusion body is made hydrophobic by coating with a fluorine resin of .06 to 1.20 mg / cm 2 to improve drainage, the flooding phenomenon can be suppressed to some extent and the voltage drop can be prevented. However, since the coating with the fluororesin is peeled off by repeated operation or the effect of maintaining hydrophobicity is deteriorated with time, there is a problem of lack of durability.
(3) The surface of the fiber of the gas diffuser must be coated with a fluororesin after the fluororesin dispersion is applied to the fiber and dried, and then heated at about 400 ° C. for 1 hour or longer to weld the fluororesin. There is a problem that it is complicated and lacks productivity. In addition, it is difficult to uniformly coat the surface of the fiber with the fluororesin by performing such treatment, and it is easy to cause spots, and it is difficult to remove water from the surface of the fiber not sufficiently coated with the fluororesin, There was a problem that the flooding phenomenon could not be completely prevented.
(4) During electrolysis of water, the electrode plate, gas diffuser, power supply / current collector are immersed in water, and the surface of the electrode plate, etc. undergoes a violent redox reaction. Components such as plates may elute into water, and the eluted components adhere to the surface of the electrolyte membrane, and the electromotive force of the fuel cell and the water electrolysis efficiency may decrease over time, resulting in lack of durability. Had problems.

本発明は上記従来の課題を解決するもので、水の電気分解から燃料電池の運転への切り替え時に、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難いため、酸素の拡散阻害による電圧低下が起こり難く動作の安定性に優れ、また構造が簡単で軽量化できるとともに安価で量産でき、さらに電極の溶出がほとんどみられず耐久性にも優れる高効率の燃料電池を提供することを目的とする。
また、本発明は、1基の燃料電池で水素(燃料)及び酸素(空気)を用いた発電と水の電気分解による水素(燃料)の再生を行うことができ、燃料の補給頻度を少なくすることができ利便性を高めるとともにインフラ整備に要する負担を軽減でき、また水の電気分解から燃料電池の運転への切り替え時にフラッディング現象が生じ難いため、酸素の拡散阻害による電圧低下が起こり難く安定した出力が得られ耐久性にも優れた電気自動車を提供することを目的とする。
また、本発明は、燃料電池の発電運転開始時に酸素極室に酸素や空気を流すと、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、酸素の拡散阻害による電圧低下が起こり難く高い起電力が安定して得られ、また電極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れる燃料電池の運転方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and when switching from the electrolysis of water to the operation of the fuel cell, only the presence of steam on the surface of the oxygen electrode prevents the flooding phenomenon. Providing high-efficiency fuel cells that are less susceptible to voltage drop due to diffusion inhibition, have superior operational stability, are simple in structure and light in weight, can be mass-produced at low cost, and have almost no electrode elution and excellent durability. The purpose is to do.
Further, the present invention can regenerate hydrogen (fuel) by power generation using hydrogen (fuel) and oxygen (air) and electrolysis of water in one fuel cell, and reduce the frequency of fuel replenishment. It is possible to improve the convenience and reduce the burden required for infrastructure development, and since the flooding phenomenon does not easily occur when switching from water electrolysis to fuel cell operation, voltage drop due to inhibition of oxygen diffusion is difficult to occur and stable. An object of the present invention is to provide an electric vehicle that can output and has excellent durability.
Further, according to the present invention, when oxygen or air is allowed to flow through the oxygen electrode chamber at the start of power generation operation of the fuel cell, only the vapor exists on the surface of the oxygen electrode, so that the flooding phenomenon is difficult to occur. Reduced electromotive force of the fuel cell due to adhesion of the eluting component to the electrolyte membrane because the electrode component does not elute in water or the amount of elution can be extremely small. Another object of the present invention is to provide a method of operating a fuel cell that does not cause a decrease in electrolysis efficiency and has excellent durability.

上記従来の課題を解決するために本発明の燃料電池及びそれを備えた電気自動車並びに燃料電池の運転方法は、以下の構成を有している。
本発明の請求項1に記載の燃料電池は、a.電解質膜と、b.前記電解質膜の片面に配設された水素極を収容する水素極室と、c.前記電解質膜の他面に配設された酸素極を収容する酸素極室と、d.前記水素極室に形成された水素極室供給口及び水素極室排出口と、e.前記酸素極室に形成された酸素極室供給口及び酸素極室排出口と、f.前記酸素極室排出口を開閉する酸素極室排出口開閉弁と、g.前記水素極と前記酸素極との間に電圧を印加し前記酸素極室排出口開閉弁が閉止された前記酸素極室内の水を電気分解させる電圧印加部と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)水の電気分解時には、酸素極室供給口から酸素極室に水を供給して、酸素極室に水が充填されたら酸素極室排出口を開閉する酸素極室排出口開閉弁を閉止し、酸素極を陽極として電圧印加部が酸素極と水素極との間に直流電圧を印加すると、酸素極ではHO→1/2O+2H+2eのように反応し酸素が発生する。この反応によって生じたプロトン(H)は電解質膜を通って水素極(陰極)側へ移動し電子を受け取り、2H+2e→Hのように反応して水素を発生させる。また、酸素極で発生した酸素によって酸素極室の内圧が高まるので、酸素極室供給口から酸素極室内の水が酸素極室の外へ押し出され酸素極の周囲には液体状態の水がほとんど残留しなくなる。また、水の電気分解によって酸素極の温度が85〜95℃程度に上昇するため、酸素極の表面にわずかに残留した液体状態の水は蒸発する。このため、燃料電池の発電運転開始時に酸素極室に酸素や空気を流すと、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、酸素の拡散阻害による電圧低下が起こり難く高効率の燃料電池が得られる。
(2)構造が簡単で軽量化でき、安価で量産可能な高効率の燃料電池が得られる。
In order to solve the above-described conventional problems, the fuel cell of the present invention, the electric vehicle including the fuel cell, and the method of operating the fuel cell have the following configurations.
The fuel cell according to claim 1 of the present invention comprises: a. An electrolyte membrane; b. A hydrogen electrode chamber containing a hydrogen electrode disposed on one side of the electrolyte membrane; c. An oxygen electrode chamber containing an oxygen electrode disposed on the other surface of the electrolyte membrane; d. A hydrogen electrode chamber supply port and a hydrogen electrode chamber discharge port formed in the hydrogen electrode chamber; e. An oxygen electrode chamber supply port and an oxygen electrode chamber discharge port formed in the oxygen electrode chamber; f. An oxygen electrode chamber outlet opening / closing valve for opening and closing the oxygen electrode chamber outlet; g. A configuration and a voltage applying unit for electrolyzing the oxygen electrode chamber of the water applies a voltage the oxygen electrode chamber outlet on-off valve is closed between the hydrogen electrode and the oxygen electrode Yes.
With this configuration, the following effects can be obtained.
(1) At the time of electrolysis of water, an oxygen electrode chamber outlet opening / closing valve that opens and closes the oxygen electrode chamber outlet when water is supplied from the oxygen electrode chamber supply port to the oxygen electrode chamber and the oxygen electrode chamber is filled with water. closed and, when the voltage application unit oxygen electrode as an anode to apply a DC voltage between the oxygen electrode and the hydrogen electrode, the oxygen electrode H 2 O → 1 / 2O 2 + 2H + + 2e - reaction with oxygen occurs as To do. Protons (H + ) generated by this reaction move to the hydrogen electrode (cathode) side through the electrolyte membrane, receive electrons, and react as 2H + + 2e → H 2 to generate hydrogen. In addition, since the internal pressure of the oxygen electrode chamber is increased by oxygen generated at the oxygen electrode, water in the oxygen electrode chamber is pushed out of the oxygen electrode chamber from the oxygen electrode chamber supply port, and almost no liquid water is present around the oxygen electrode. It will not remain. Further, since the temperature of the oxygen electrode rises to about 85 to 95 ° C. due to the electrolysis of water, the liquid water slightly remaining on the surface of the oxygen electrode evaporates. For this reason, if oxygen or air is flowed into the oxygen electrode chamber at the start of power generation operation of the fuel cell, only the vapor exists on the surface of the oxygen electrode, so that the flooding phenomenon is difficult to occur, and the voltage drops due to the inhibition of oxygen diffusion. A difficult and highly efficient fuel cell can be obtained.
(2) A highly efficient fuel cell that has a simple structure, can be reduced in weight, is inexpensive, and can be mass-produced can be obtained.

ここで、電解質膜としては、スルホン酸基やカルボニル基をもつフッ素樹脂系等のイオン交換膜が用いられる。   Here, as the electrolyte membrane, a fluorine resin-based ion exchange membrane having a sulfonic acid group or a carbonyl group is used.

酸素極としては、チタン製,白金製の電極、チタン,カーボン,ステンレス等で形成された基材の表面に白金,ルテニウム,イリジウム等の皮膜を形成したもの、白金,白金グラファイト等で形成された基材の表面にルテニウム,イリジウム等の皮膜を形成したもの等を用いることができる。ガス透過性を高めるため、メッシュ状や多孔質状に形成されたものが好適に用いられる。   As an oxygen electrode, a titanium, platinum electrode, a surface of a substrate made of titanium, carbon, stainless steel, or the like formed with a film of platinum, ruthenium, iridium, etc., formed of platinum, platinum graphite, etc. What formed the film | membrane, such as ruthenium and iridium, on the surface of a base material can be used. In order to enhance gas permeability, those formed in a mesh shape or a porous shape are preferably used.

水素極としては、酸素極として用いられる電極の他、ニッケル,鉄等で形成された基材の表面に白金,ルテニウム,イリジウム等の皮膜を形成したもの等を用いることができる。ガス透過性を高めるため、メッシュ状や多孔質状に形成されたものが好適に用いられる。   As the hydrogen electrode, in addition to an electrode used as an oxygen electrode, a substrate in which a film made of platinum, ruthenium, iridium or the like is formed on the surface of a substrate made of nickel, iron, or the like can be used. In order to enhance gas permeability, those formed in a mesh shape or a porous shape are preferably used.

燃料電池は、a.電解質膜と、b.水素極室と、c.酸素極室と、を一つのセルとして、このセルを積層したスタックを用い、燃料電池の単位重量あたりの出力を高めることができる。   The fuel cell comprises: a. An electrolyte membrane; b. A hydrogen electrode chamber; c. Using the oxygen electrode chamber as a single cell and using a stack in which the cells are stacked, the output per unit weight of the fuel cell can be increased.

本発明の請求項2に記載の発明は、a.電解質膜と、b.前記電解質膜の片面に配設された水素極を収容する水素極室と、c.前記電解質膜の他面に配設された酸素極を収容する酸素極室と、d.前記水素極室に形成された水素極室供給口及び水素極室排出口と、e.前記酸素極室に形成された酸素極室供給口及び酸素極室排出口と、f.前記酸素極室排出口を開閉する酸素極室排出口開閉弁と、h.前記水素極室排出口を開閉する水素極室排出口開閉弁と、i.前記水素極と前記酸素極との間に電圧を印加し前記酸素極室排出口開閉弁が閉止された前記酸素極室内及び前記水素極室排出口開閉弁が閉止された前記水素極室内の水を電気分解させる電圧印加部と、を備えた構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)水の電気分解時には、水素極室供給口から水素極室にも水を供給して、水素極室に水が充填されたら水素極室排出口を開閉する水素極室排出口開閉弁を閉止し、電圧印加部が酸素極と水素極との間に直流電圧を印加し酸素極を陽極、水素極を陰極とすると、酸素極(陽極)ではHO→1/2O+2H+2eのように反応し酸素が発生する。この反応によって生じたプロトン(H)は電解質膜を通って水素極(陰極)側へ移動し電子を受け取り、2H+2e→Hのように反応して水素を発生させる。さらに、水素極(陰極)ではHO+e→OH+1/2Hのように反応し水素が発生する。また、水素極で発生した水素によって水素極室の内圧が高まるので、水素極室内の水が水素極室供給口から水素極室の外へ押し出され水素極の周囲には液体状態の水がほとんど残留しなくなる。また、水の電気分解によって水素極の温度が85〜95℃程度に上昇するため、水素極の表面にわずかに残留した液体状態の水は蒸発する。このため、燃料電池の運転開始時に酸素極室に酸素や空気を流し水素極室に水素を流すと、酸素極及び水素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、酸素及び水素の拡散阻害による電圧低下が起こり難く高効率の燃料電池が得られる。
(2)水素極室に水を供給して水素極でも水の電気分解を行うので、水を酸素極室だけに供給した場合と比較して、水素極における水素の発生量を増やすことができ、水素の再生能力を高めることができる。
The invention according to claim 2 of the present invention comprises: a. An electrolyte membrane; b. A hydrogen electrode chamber containing a hydrogen electrode disposed on one side of the electrolyte membrane; c. An oxygen electrode chamber containing an oxygen electrode disposed on the other surface of the electrolyte membrane; d. A hydrogen electrode chamber supply port and a hydrogen electrode chamber discharge port formed in the hydrogen electrode chamber; e. An oxygen electrode chamber supply port and an oxygen electrode chamber discharge port formed in the oxygen electrode chamber; f. An oxygen electrode chamber outlet opening / closing valve for opening and closing the oxygen electrode chamber outlet; h. A hydrogen electrode chamber outlet opening / closing valve for opening and closing the hydrogen electrode chamber outlet ; i. A voltage is applied between the hydrogen electrode and the oxygen electrode, and the oxygen electrode chamber in which the oxygen electrode chamber outlet opening / closing valve is closed and the water in the hydrogen electrode chamber in which the hydrogen electrode chamber outlet opening / closing valve is closed are closed. And a voltage application unit that electrolyzes .
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) When electrolyzing water, the hydrogen electrode chamber outlet opening / closing valve opens and closes the hydrogen electrode chamber outlet when water is supplied from the hydrogen electrode chamber supply port to the hydrogen electrode chamber and the hydrogen electrode chamber is filled with water. , And the voltage application unit applies a DC voltage between the oxygen electrode and the hydrogen electrode to make the oxygen electrode an anode and the hydrogen electrode a cathode. At the oxygen electrode (anode), H 2 O → 1 / 2O 2 + 2H + It reacts like + 2e to generate oxygen. Protons (H + ) generated by this reaction move to the hydrogen electrode (cathode) side through the electrolyte membrane, receive electrons, and react as 2H + + 2e → H 2 to generate hydrogen. Further, at the hydrogen electrode (cathode), hydrogen is generated by reaction as H 2 O + e → OH + 1 / 2H 2 . Further, since the internal pressure of the hydrogen electrode chamber is increased by hydrogen generated at the hydrogen electrode, the water in the hydrogen electrode chamber is pushed out of the hydrogen electrode chamber through the supply port of the hydrogen electrode chamber, and almost no liquid water is present around the hydrogen electrode. It will not remain. Further, since the temperature of the hydrogen electrode rises to about 85 to 95 ° C. due to the electrolysis of water, the liquid water slightly remaining on the surface of the hydrogen electrode evaporates. For this reason, when oxygen or air is allowed to flow through the oxygen electrode chamber and hydrogen is allowed to flow into the hydrogen electrode chamber at the start of operation of the fuel cell, only the steam exists on the surfaces of the oxygen electrode and the hydrogen electrode, so that the flooding phenomenon is unlikely to occur. A high-efficiency fuel cell is obtained in which voltage drop due to diffusion inhibition of oxygen and hydrogen hardly occurs.
(2) Since water is supplied to the hydrogen electrode chamber and water is electrolyzed even at the hydrogen electrode, the amount of hydrogen generated at the hydrogen electrode can be increased compared to when water is supplied only to the oxygen electrode chamber. , Hydrogen regeneration ability can be increased.

本発明の請求項3に記載の発明は、請求項1又は2に記載の燃料電池であって、前記酸素極室の下端側に形成された前記酸素極室供給口と連通し前記酸素極室内の水が電気分解されて発生した酸素と前記酸素極室から押し出された水を貯留する第1気液貯留部を備えた構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)水の電気分解時に、第1気液貯留部に貯留された水を酸素極室供給口から蒸気状態で酸素極に供給させることができるので、酸素極では蒸気状態の水を電気分解することができる。酸素極が水に浸漬されていないため、酸素極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れる。
(2)燃料電池の発電運転時には、第1気液貯留部と酸素極室とを連通させておくことで貯留された水で酸素を加湿して電解質膜に水分を吸収させられるので、電解質膜のプロトン導電性を向上させ燃料電池の発電性能を高めることができる。
The invention according to claim 3 of the present invention is the fuel cell according to claim 1 or 2, wherein the oxygen electrode chamber communicates with the oxygen electrode chamber supply port formed on the lower end side of the oxygen electrode chamber. The first gas-liquid storage unit stores oxygen generated by electrolyzing the water and water pushed out from the oxygen electrode chamber.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) At the time of electrolysis of water, water stored in the first gas-liquid storage unit can be supplied to the oxygen electrode in a vapor state from the oxygen electrode chamber supply port, so that the water in the vapor state is electrolyzed at the oxygen electrode. can do. Since the oxygen electrode is not immersed in water, the component of the oxygen electrode does not elute in water or the amount of elution can be extremely small, so the electromotive force reduction and electrolysis efficiency of the fuel cell due to the eluting component adhering to the electrolyte membrane No deterioration occurs and excellent durability.
(2) At the time of power generation operation of the fuel cell, the first gas-liquid storage unit and the oxygen electrode chamber communicate with each other so that the stored water can humidify oxygen and allow the electrolyte membrane to absorb moisture. The proton conductivity of the fuel cell can be improved and the power generation performance of the fuel cell can be improved.

本発明の請求項4に記載の発明は、請求項2又は3に記載の燃料電池であって、前記水素極室の下端側に形成された前記水素極室供給口と連通し前記水素極室内の水が電気分解されて発生した水素と前記水素極室から押し出された水を貯留する第2気液貯留部を備えた構成を有している。
この構成により、請求項2又は3で得られる作用に加え、以下のような作用が得られる。
(1)水の電気分解時に、第2気液貯留部に貯留された水を水素極室供給口から蒸気状態で水素極に供給させることができるので、水素極では蒸気状態の水を電気分解することができる。水素極が水に浸漬されていないため、水素極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れる。
(2)燃料電池の発電運転時には、第2気液貯留部と水素極室とを連通させておくことで貯留された水で水素を加湿できるので、水素を加湿器で加湿しなくても電解質膜のプロトン導電性を維持することができる。
The invention according to claim 4 of the present invention is the fuel cell according to claim 2 or 3, wherein the hydrogen electrode chamber communicates with the hydrogen electrode chamber supply port formed on the lower end side of the hydrogen electrode chamber. The second gas-liquid storage unit stores hydrogen generated by electrolyzing the water and water pushed out from the hydrogen electrode chamber.
With this configuration, in addition to the operation obtained in the second or third aspect, the following operation can be obtained.
(1) When water is electrolyzed, water stored in the second gas-liquid storage part can be supplied to the hydrogen electrode in a vapor state from the hydrogen electrode chamber supply port, so that the water in the vapor state is electrolyzed at the hydrogen electrode. can do. Since the hydrogen electrode is not immersed in water, the component of the hydrogen electrode does not elute into the water or the amount of elution can be extremely small, so the electromotive force reduction and electrolysis efficiency of the fuel cell caused by the adhering component adhering to the electrolyte membrane No deterioration occurs and excellent durability.
(2) During power generation operation of the fuel cell, hydrogen can be humidified with the stored water by allowing the second gas-liquid storage part and the hydrogen electrode chamber to communicate with each other, so that the electrolyte does not need to be humidified with a humidifier. The proton conductivity of the membrane can be maintained.

本発明の請求項5に記載の電気自動車は、請求項1乃至4の内いずれか1に記載の燃料電池と、前記燃料電池に供給する水素を貯蔵する水素貯蔵装置と、前記燃料電池に供給する水を貯蔵する水貯蔵槽と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)1基の燃料電池で、水素(燃料)及び酸素を用いた発電と、水の電気分解による水素(燃料)の再生を行うことができ、燃料の補給頻度を少なくすることができ利便性を高め、さらに水素の補給頻度を少なくすることができるので、水素の製造所,輸送,貯蔵,供給設備等のインフラ整備に要する負担を少なくできる。
(2)水の電気分解から燃料電池の運転への切り替え時にフラッディング現象が生じ難いため、酸素の拡散阻害による電圧低下が起こり難く安定した出力が得られるとともに耐久性にも優れる。
An electric vehicle according to a fifth aspect of the present invention is the fuel cell according to any one of the first to fourth aspects, a hydrogen storage device that stores hydrogen to be supplied to the fuel cell, and a supply to the fuel cell. And a water storage tank for storing the water to be stored.
With this configuration, the following effects can be obtained.
(1) One fuel cell can generate power using hydrogen (fuel) and oxygen and regenerate hydrogen (fuel) by electrolysis of water, reducing the frequency of fuel replenishment and convenience As a result, it is possible to reduce the burden required for infrastructure development such as hydrogen production, transportation, storage and supply facilities.
(2) Since the flooding phenomenon is unlikely to occur at the time of switching from the electrolysis of water to the operation of the fuel cell, it is difficult to cause a voltage drop due to oxygen diffusion inhibition, and a stable output is obtained and the durability is also excellent.

ここで、水素貯蔵装置としては、液体水素の貯蔵タンク、金属製や合成樹脂製等の高圧タンク、パラジウム,チタン,ジルコニウム,マグネシウム,希土類金属等の金属水素化物を形成する水素吸蔵合金を用いた水素貯蔵装置、シクロへキサン,デカリン等の有機ハイドライドを用いた水素貯蔵装置、カーボンナノチューブ,繊維状炭素,黒鉛等の炭素系材料を用いた水素貯蔵装置等を用いることができる。   Here, as a hydrogen storage device, a storage tank for liquid hydrogen, a high-pressure tank made of metal or synthetic resin, or a hydrogen storage alloy that forms a metal hydride such as palladium, titanium, zirconium, magnesium, or a rare earth metal was used. Hydrogen storage devices, hydrogen storage devices using organic hydrides such as cyclohexane and decalin, hydrogen storage devices using carbon-based materials such as carbon nanotubes, fibrous carbon, and graphite can be used.

本発明の請求項6に記載の発明は、a.電解質膜と、b.前記電解質膜の片面に配設された水素極を収容する水素極室と、c.前記電解質膜の他面に配設された酸素極を収容する酸素極室と、d.前記水素極室に形成された水素極室供給口及び水素極室排出口と、e.前記酸素極室に形成された酸素極室供給口及び酸素極室排出口と、f.前記酸素極室排出口を開閉する酸素極室排出口開閉弁と、g.前記水素極と前記酸素極との間に電圧を印加し前記酸素極室排出口開閉弁が閉止された前記酸素極室内の水を電気分解させる電圧印加部と、を備えた燃料電池の運転方法であって、電気分解運転時に、前記酸素極室内の蒸気状態の水を電気分解する構成を有している。
この構成によって、以下のような作用が得られる。
(1)電気分解運転時に蒸気状態の水を電気分解するので、酸素極ではHO→1/2O+2H+2eのように反応し酸素が発生する。この反応によって生じたプロトン(H)は電解質膜を通って水素極(陰極)側へ移動し電子を受け取り、2H+2e→Hのように反応して水素極室に水素を発生させることができる。さらに、燃料電池の発電運転開始時に酸素極室に酸素や空気を流すと、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、酸素の拡散阻害による電圧低下が起こり難く高い起電力が安定して得られる。
(2)水の電気分解時に酸素極が水に浸漬されていないため、酸素極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れる。
The invention according to claim 6 of the present invention comprises: a. An electrolyte membrane; b. A hydrogen electrode chamber containing a hydrogen electrode disposed on one side of the electrolyte membrane; c. An oxygen electrode chamber containing an oxygen electrode disposed on the other surface of the electrolyte membrane; d. A hydrogen electrode chamber supply port and a hydrogen electrode chamber discharge port formed in the hydrogen electrode chamber; e. An oxygen electrode chamber supply port and an oxygen electrode chamber discharge port formed in the oxygen electrode chamber; f. An oxygen electrode chamber outlet opening / closing valve for opening and closing the oxygen electrode chamber outlet; g. A method of operating a fuel cell, comprising: a voltage application unit that applies a voltage between the hydrogen electrode and the oxygen electrode to electrolyze water in the oxygen electrode chamber, in which the oxygen electrode chamber outlet opening / closing valve is closed And it has the structure which electrolyzes the water of the vapor | steam state in the said oxygen electrode chamber at the time of an electrolysis operation.
With this configuration, the following effects can be obtained.
(1) Since water in the vapor state is electrolyzed during the electrolysis operation, the oxygen electrode reacts as H 2 O → 1 / 2O 2 + 2H + + 2e to generate oxygen. Protons (H + ) generated by this reaction move through the electrolyte membrane to the hydrogen electrode (cathode) side, receive electrons, react as 2H + + 2e → H 2 , and generate hydrogen in the hydrogen electrode chamber. be able to. Furthermore, if oxygen or air is allowed to flow into the oxygen electrode chamber at the start of power generation operation of the fuel cell, only the vapor exists on the surface of the oxygen electrode, so that the flooding phenomenon hardly occurs and the voltage drop due to the inhibition of oxygen diffusion hardly occurs. High electromotive force can be obtained stably.
(2) Since the oxygen electrode is not immersed in water during the electrolysis of water, the oxygen electrode components do not elute in water or the amount of elution can be extremely reduced, so the fuel caused by the eluting components adhering to the electrolyte membrane The battery has excellent durability without lowering electromotive force or electrolytic efficiency.

以上のように、本発明の燃料電池及びそれを備えた電気自動車並びに燃料電池の運転方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)水の電気分解運転から燃料電池の発電運転への切り替え時に、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難いため、酸素の拡散阻害による電圧低下が起こり難く、動作の安定性に優れるとともに耐久性にも優れた高効率の燃料電池を提供することができる。
(2)構造が簡単で軽量化でき、安価で量産可能な高効率の燃料電池を提供することができる。
As described above, according to the fuel cell of the present invention, the electric vehicle including the fuel cell, and the operation method of the fuel cell, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) When switching from the electrolysis operation of water to the power generation operation of the fuel cell, since only the vapor exists on the surface of the oxygen electrode, the flooding phenomenon is unlikely to occur, so the voltage drop due to the oxygen diffusion inhibition is unlikely to occur. Thus, it is possible to provide a high-efficiency fuel cell having excellent operation stability and excellent durability.
(2) It is possible to provide a highly efficient fuel cell that is simple in structure and can be reduced in weight, can be mass-produced at low cost.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)水の電気分解運転から燃料電池の発電運転への切り替え時に、水素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難いため、水素の拡散阻害による電圧低下が起こり難く、動作の安定性に優れるとともに耐久性にも優れた高効率の燃料電池を提供することができる。
(2)水素極室に水を供給して水素極でも水の電気分解を行うので、水を酸素極室だけに供給した場合と比較して、水素極における水素の発生量を増やすことができ、水素の再生能力の高い燃料電池を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) When switching from water electrolysis operation to fuel cell power generation operation, only the presence of steam on the surface of the hydrogen electrode prevents flooding, so voltage drop due to inhibition of hydrogen diffusion is unlikely to occur. Thus, it is possible to provide a high-efficiency fuel cell having excellent operation stability and excellent durability.
(2) Since water is supplied to the hydrogen electrode chamber and water is electrolyzed even at the hydrogen electrode, the amount of hydrogen generated at the hydrogen electrode can be increased compared to when water is supplied only to the oxygen electrode chamber. A fuel cell having a high hydrogen regeneration capability can be provided.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)水の電気分解時に酸素極が水に浸漬されていないため、酸素極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れた燃料電池を提供することができる。
(2)燃料電池の発電運転時には、第1気液貯留部と酸素極室とを連通させておくことで貯留された水で酸素を加湿して電解質膜に水分を吸収させられるので、電解質膜のプロトン導電性を向上させ発電性能の優れた燃料電池を提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Since the oxygen electrode is not immersed in water during the electrolysis of water, the oxygen electrode component does not elute in water or the amount of elution can be extremely reduced, so the fuel caused by the elution component adhering to the electrolyte membrane It is possible to provide a fuel cell excellent in durability without causing a decrease in electromotive force or electrolytic efficiency of the battery.
(2) At the time of power generation operation of the fuel cell, the first gas-liquid storage unit and the oxygen electrode chamber communicate with each other so that the stored water can humidify oxygen and allow the electrolyte membrane to absorb moisture. Thus, it is possible to provide a fuel cell with improved proton conductivity and excellent power generation performance.

請求項4に記載の発明によれば、請求項2又は3の効果に加え、
(1)水の電気分解時に水素極が水に浸漬されていないため、水素極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れた燃料電池を提供することができる。
(2)燃料電池の発電運転時には、第2気液貯留部と水素極室とを連通させておくことで貯留された水で水素を加湿できるので、水素を加湿器で加湿しなくても電解質膜のプロトン導電性を維持することができ構造の簡単な燃料電池を提供することができる。
According to invention of Claim 4, in addition to the effect of Claim 2 or 3,
(1) Since the hydrogen electrode is not immersed in water at the time of electrolysis of water, the component of the hydrogen electrode does not elute in water or the amount of elution can be extremely reduced, so the fuel caused by the eluting component adhering to the electrolyte membrane It is possible to provide a fuel cell excellent in durability without causing a decrease in electromotive force or electrolytic efficiency of the battery.
(2) During power generation operation of the fuel cell, hydrogen can be humidified with the stored water by allowing the second gas-liquid storage part and the hydrogen electrode chamber to communicate with each other, so that the electrolyte does not need to be humidified with a humidifier. The proton conductivity of the membrane can be maintained, and a fuel cell having a simple structure can be provided.

請求項5に記載の発明によれば、
(1)1基の燃料電池で水素(燃料)及び酸素を用いた発電と水の電気分解による水素(燃料)の再生を行うことができ、燃料の補給頻度を少なくすることができ利便性に優れ、さらに水素の補給頻度を少なくすることができるので、水素の製造所,輸送,貯蔵,供給設備等のインフラ整備に要する負担を少なくできる電気自動車を提供することができる。
(2)水の電気分解から燃料電池の運転への切り替え時にフラッディング現象が生じ難いため、酸素の拡散阻害による電圧低下が起こり難く安定した出力が得られるとともに耐久性にも優れた電気自動車を提供することができる。
According to the invention of claim 5,
(1) Hydrogen (fuel) can be regenerated by power generation using hydrogen (fuel) and oxygen and electrolysis of water in one fuel cell, reducing the frequency of fuel replenishment and convenience Since it is excellent and the frequency of hydrogen replenishment can be reduced, it is possible to provide an electric vehicle that can reduce the burden required for infrastructure development such as a hydrogen production plant, transportation, storage, and supply facilities.
(2) Since the flooding phenomenon is unlikely to occur at the time of switching from water electrolysis to fuel cell operation, a voltage drop due to oxygen diffusion inhibition is unlikely to occur, and a stable output can be obtained and an electric vehicle excellent in durability can be provided. can do.

請求項6に記載の発明によれば、
(1)燃料電池の発電運転開始時に酸素極室に酸素や空気を流すと、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、酸素の拡散阻害による電圧低下が起こり難く高い起電力が安定して得られる燃料電池の運転方法を提供することができる。
(2)水の電気分解時に酸素極が水に浸漬されていないため、酸素極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れた燃料電池の運転方法を提供することができる。
According to the invention of claim 6,
(1) If oxygen or air is flowed into the oxygen electrode chamber at the start of power generation operation of the fuel cell, only the vapor exists on the surface of the oxygen electrode, so that flooding is unlikely to occur, and voltage drop occurs due to inhibition of oxygen diffusion. It is possible to provide a method of operating a fuel cell in which a difficult and high electromotive force can be stably obtained.
(2) Since the oxygen electrode is not immersed in water during the electrolysis of water, the oxygen electrode components do not elute in water or the amount of elution can be extremely reduced, so the fuel caused by the eluting components adhering to the electrolyte membrane It is possible to provide a method for operating a fuel cell that does not cause a decrease in electromotive force or electrolytic efficiency of the battery and has excellent durability.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1における燃料電池の模式図である。
図中、1は実施の形態1における燃料電池、2はフッ素樹脂系等のイオン交換膜で形成された電解質膜、3はチタン製,白金製等で形成され電解質膜2の片面に配設された水素極、4は水素極3を収容する水素極室、5はチタン製,白金製等で形成され電解質膜2の他面に配設された酸素極、6は酸素極5を収容する酸素極室、7は水素極室4の下端側に形成され燃料電池1の発電運転時には燃料の水素が供給され水の電解運転時には水分が供給される水素極室供給口、8は水素極室供給口7に接続された三方弁からなる方向切換弁、9は一端が方向切換弁8に接続された連結管であり、方向切換弁8は水素極室供給口7と連結管9と図示しない水素貯蔵装置に接続されている。10は連結管9の他端に接続された三方弁からなる方向切換弁、11は一端が方向切換弁10に接続された連通管であり、方向切換弁10は連結管9と連通管11と図示しない水素貯蔵装置に接続されている。12は連通管11の他端と接続し方向切換弁8,10を介して水素極室供給口7と連通した第2気液貯留部、13は上端が水素極室4の高さと略同一の高さで第2気液貯留部12の下部側に形成され連通管11の他端と連通した水素ガス貯留部、14は第2気液貯留部12の上部側に形成された水貯留部、14aは水素ガス貯留部13の底部に形成され水貯留部14と連通した連通孔、14bは連通孔14aと連通管11との間の水素ガス貯留部13に立設された仕切板である。仕切板14bの上端と水素ガス貯留部13の上端との間には隙間が形成されており、連通管11から水素ガス貯留部13内に流れてきた水素ガス等は仕切板14bに沿って上向きに流れた後に水素ガス貯留部13内に貯留される。また、水貯留部14の容積は水素ガス貯留部13の容積と同一乃至はやや大きめに形成されている。15は第2気液貯留部12の水貯留部14の上端側に接続され第2気液貯留部12から水素等のガスを排気する排気管、16は排気管15に配設された排気管開閉弁、17は第2気液貯留部12の水貯留部14の上端側に接続され第2気液貯留部12に水を供給する水供給管、18は水供給管17に配設された水供給管開閉弁、19は水素極室4の上端側に形成され燃料電池1の発電運転時には未反応の過剰な水素が排出され水の電解運転の開始時には水素極室4に供給された水が排出される水素極室排出口、20は水素極室排出口19に接続された水素極室排出口開閉弁である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram of a fuel cell according to Embodiment 1 of the present invention.
In the figure, 1 is a fuel cell according to the first embodiment, 2 is an electrolyte membrane formed of a fluororesin-based ion exchange membrane, 3 is formed of titanium, platinum, etc., and is disposed on one surface of the electrolyte membrane 2. The hydrogen electrode 4 is a hydrogen electrode chamber for accommodating the hydrogen electrode 3, 5 is an oxygen electrode made of titanium, platinum or the like and disposed on the other surface of the electrolyte membrane 2, and 6 is an oxygen for accommodating the oxygen electrode 5. An electrode chamber 7 is formed on the lower end side of the hydrogen electrode chamber 4, a hydrogen electrode chamber supply port through which hydrogen of fuel is supplied during power generation operation of the fuel cell 1 and moisture is supplied during electrolysis operation of water, and 8 is a hydrogen electrode chamber supply. A direction switching valve 9 comprising a three-way valve connected to the port 7 is a connecting pipe having one end connected to the direction switching valve 8. The direction switching valve 8 includes a hydrogen electrode chamber supply port 7, a connecting pipe 9, and a hydrogen (not shown). Connected to storage device. Reference numeral 10 denotes a directional switching valve composed of a three-way valve connected to the other end of the connecting pipe 9, and 11 denotes a communication pipe having one end connected to the directional switching valve 10. The directional switching valve 10 is connected to the connecting pipe 9, the communication pipe 11, and It is connected to a hydrogen storage device (not shown). Reference numeral 12 denotes a second gas-liquid storage unit connected to the other end of the communication pipe 11 and communicated with the hydrogen electrode chamber supply port 7 via the direction switching valves 8 and 10, and 13 has an upper end substantially the same as the height of the hydrogen electrode chamber 4. A hydrogen gas reservoir formed at the lower side of the second gas-liquid reservoir 12 and communicated with the other end of the communication pipe 11, and a water reservoir formed at the upper side of the second gas-liquid reservoir 12, 14 a is a communication hole formed at the bottom of the hydrogen gas storage unit 13 and communicated with the water storage unit 14, and 14 b is a partition plate standing on the hydrogen gas storage unit 13 between the communication hole 14 a and the communication pipe 11. A gap is formed between the upper end of the partition plate 14b and the upper end of the hydrogen gas storage unit 13, and hydrogen gas or the like flowing into the hydrogen gas storage unit 13 from the communication pipe 11 is directed upward along the partition plate 14b. Is stored in the hydrogen gas storage unit 13. Further, the volume of the water storage unit 14 is formed to be the same as or slightly larger than the volume of the hydrogen gas storage unit 13. An exhaust pipe 15 is connected to the upper end side of the water storage section 14 of the second gas-liquid storage section 12 and exhausts a gas such as hydrogen from the second gas-liquid storage section 12, and 16 is an exhaust pipe disposed in the exhaust pipe 15. The on-off valve 17 is connected to the upper end side of the water storage part 14 of the second gas-liquid storage part 12 to supply water to the second gas-liquid storage part 12, and 18 is disposed in the water supply pipe 17. A water supply pipe opening / closing valve 19 is formed on the upper end side of the hydrogen electrode chamber 4, and unreacted excess hydrogen is discharged during the power generation operation of the fuel cell 1, and water supplied to the hydrogen electrode chamber 4 at the start of water electrolysis operation. The hydrogen electrode chamber discharge port 20 is a hydrogen electrode chamber discharge port on / off valve connected to the hydrogen electrode chamber discharge port 19.

21は酸素極室6の下端側に形成され燃料電池1の発電運転時には酸素や空気が供給され水の電解運転時には水分が供給される酸素極室供給口、22は酸素極室供給口21に接続された三方弁からなる方向切換弁、23は一端が方向切換弁22に接続された連通管であり、方向切換弁22は酸素極室供給口21と連通管23と図示しないコンプレッサ等の酸素供給装置に接続されている。24は連通管23の他端と接続し方向切換弁22を介して酸素極室供給口21と連通した第1気液貯留部、25は上端が酸素極室6の高さと略同一の高さで第1気液貯留部24の下部側に形成された酸素ガス貯留部、26は第1気液貯留部24の上部側に形成された水貯留部、26aは酸素ガス貯留部25の底部に形成され水貯留部26と連通した連通孔、26bは連通孔26aと連通管23との間の酸素ガス貯留部25に立設された仕切板である。仕切板26bの上端と酸素ガス貯留部25の上端との間には隙間が形成されており、連通管23から酸素ガス貯留部25内に流れてきた酸素ガス等は仕切板26bに沿って上向きに流れた後に酸素ガス貯留部25内に貯留される水貯留部26の容積は酸素ガス貯留部25の容積と同一乃至はやや大きめに形成されている。27は第1気液貯留部24の水貯留部26の上端側に接続され第1気液貯留部24から酸素等のガスを排気する排気管、28は排気管27に配設された排気管開閉弁、29は第1気液貯留部24の水貯留部26の上端側に接続され第1気液貯留部24に水を供給する水供給管、30は水供給管29に配設された水供給管開閉弁、31は酸素極室6の上端側に形成され燃料電池1の発電運転時には未反応の酸素等のガスが生成された水とともに排出され水の電解運転の開始時には酸素極室6に供給された水が排出される酸素極室排出口、32は酸素極室排出口31に接続された酸素極室排出口開閉弁、33は水素極3と酸素極5とに接続され燃料電池1が発生した電気エネルギーを消費するモータ等の負荷である。 An oxygen electrode chamber supply port 21 is formed on the lower end side of the oxygen electrode chamber 6, and oxygen and air are supplied during power generation operation of the fuel cell 1 and moisture is supplied during water electrolysis operation, and 22 is connected to the oxygen electrode chamber supply port 21. A directional switching valve 23 comprising a three-way valve connected is a communication pipe having one end connected to the directional switching valve 22. The directional switching valve 22 includes an oxygen electrode chamber supply port 21, a communication pipe 23, and an oxygen such as a compressor (not shown). Connected to the supply device. Reference numeral 24 denotes a first gas-liquid storage part connected to the other end of the communication pipe 23 and communicated with the oxygen electrode chamber supply port 21 via the direction switching valve 22, and 25 denotes an upper end substantially the same as the height of the oxygen electrode chamber 6. The oxygen gas reservoir formed on the lower side of the first gas-liquid reservoir 24, 26 is a water reservoir formed on the upper side of the first gas-liquid reservoir 24, and 26a is on the bottom of the oxygen gas reservoir 25. A communication hole 26 b formed and communicated with the water storage unit 26 is a partition plate erected in the oxygen gas storage unit 25 between the communication hole 26 a and the communication pipe 23. A gap is formed between the upper end of the partition plate 26b and the upper end of the oxygen gas storage unit 25, and oxygen gas or the like flowing into the oxygen gas storage unit 25 from the communication pipe 23 is directed upward along the partition plate 26b. And then stored in the oxygen gas storage unit 25 . The volume of the water storage unit 26 is the same as or slightly larger than the volume of the oxygen gas storage unit 25. 27 is an exhaust pipe connected to the upper end side of the water storage section 26 of the first gas-liquid storage section 24 and exhausts a gas such as oxygen from the first gas-liquid storage section 24, and 28 is an exhaust pipe disposed in the exhaust pipe 27. The on-off valve 29 is connected to the upper end side of the water storage section 26 of the first gas-liquid storage section 24 and is a water supply pipe for supplying water to the first gas-liquid storage section 24, and 30 is disposed in the water supply pipe 29. A water supply pipe opening / closing valve 31 is formed on the upper end side of the oxygen electrode chamber 6 and is discharged together with water in which a gas such as unreacted oxygen is generated at the time of power generation operation of the fuel cell 1, and at the start of water electrolysis operation, the oxygen electrode chamber. 6 is an oxygen electrode chamber discharge port through which water supplied to 6 is discharged; 32, an oxygen electrode chamber discharge port on / off valve connected to the oxygen electrode chamber discharge port 31; and 33, a fuel connected to the hydrogen electrode 3 and the oxygen electrode 5 It is a load such as a motor that consumes electric energy generated by the battery 1.

以上のように構成された本発明の実施の形態1における燃料電池について、図面を参照しながら、水の電気分解運転と燃料電池の発電運転の運転方法について説明する。
図2は燃料電池を水の電解装置として用いて燃料の水素を製造する直前の状態を示す模式図であり、図3は水の電気分解運転開始直後の状態を示す模式図であり、図4は水の電気分解運転中の状態を示す模式図である。
図中、34は水素極3と酸素極5とに接続され水素極3を陰極、酸素極5を陽極として直流電圧を印加する電圧印加部である。
With respect to the fuel cell according to Embodiment 1 of the present invention configured as described above, an operation method of water electrolysis operation and fuel cell power generation operation will be described with reference to the drawings.
FIG. 2 is a schematic diagram showing a state immediately before producing hydrogen as a fuel using the fuel cell as a water electrolysis device, and FIG. 3 is a schematic diagram showing a state immediately after the start of water electrolysis operation. FIG. 5 is a schematic diagram showing a state during electrolysis operation of water.
In the figure, reference numeral 34 denotes a voltage application unit that is connected to the hydrogen electrode 3 and the oxygen electrode 5 and applies a DC voltage using the hydrogen electrode 3 as a cathode and the oxygen electrode 5 as an anode.

燃料電池1を水の電解装置として用い水の電気分解を行い燃料の水素を製造する場合は、方向切換弁8を水素極室供給口7,連結管9と連通するように切換え、方向切換弁10を連結管9と連通管11と連通するように切換え、排気管開閉弁16,水供給管開閉弁18,水素極室排出口開閉弁20を開弁し、水供給管17から水を第2気液貯留部12に供給すると、水が連通孔14a,水素ガス貯留部13,連通管11,方向切換弁10,連結管9,方向切換弁8から水素極室供給口7を通って水素極室4に供給される。水素ガス貯留部13の上端と水素極室4の上端とは略同一の高さに形成されているので、水素極室4と水素ガス貯留部13に水が充填されると、水素極室排出口19から水が溢れるので、水素極室排出口開閉弁20を閉止するとともに水供給管開閉弁18を閉止して水の供給を停止する(図2参照)。酸素極室6側も同様に、方向切換弁22を酸素極室供給口21と連通管23と連通するように切換え、排気管開閉弁28,水供給管開閉弁30,酸素極室排出口開閉弁32を開弁し、水供給管29から水を第1気液貯留部24に供給すると、水が連通孔26a,酸素ガス貯留部25,連通管23,方向切換弁22から酸素極室供給口21を通って酸素極室6に供給される。酸素ガス貯留部25の上端と酸素極室6の上端とは略同一の高さに形成されているので、酸素極室6と酸素ガス貯留部25に水が充填されると、酸素極室排出口31から水が溢れるので、酸素極室排出口開閉弁32を閉止するとともに水供給管開閉弁30を閉止して水の供給を停止する。排気管開閉弁16,28を開弁した状態で、電圧印加部34を用いて水素極3と酸素極5との間に水素極3が陰極、酸素極5が陽極になるように直流電圧を印加すると、水素極室4内と酸素極室6内の水が電気分解され、酸素極5(陽極)ではHO→1/2O+2H+2eのように反応し酸素が発生する。この反応によって生じたプロトン(H)は電解質膜2を通って水素極3(陰極)側へ移動し電子を受け取り、2H+2e→Hのように反応して水素極室4に水素を発生させる。さらに、水素極3(陰極)ではHO+e→OH+1/2Hのように反応し水素極室4に水素が発生する。水素極室排出口開閉弁20が閉止されているので、発生した水素によって水素極室4の内圧が高まり、図3に示すように、水素極室4内の水が水素極室供給口7を通って第2気液貯留部12内へ逆流する。また、酸素極室排出口開閉弁32も閉止されているので、発生した酸素によって酸素極室6の内圧が高まり、酸素極室6内の水が酸素極室供給口21を通って第1気液貯留部24内へ逆流する。
さらに、電圧印加部34を用いて水素極3と酸素極5との間に直流電圧を印加し続けると、図4に示すように、水素極室4及び酸素極室6内の液体状態の水が全て第2気液貯留部12及び第1気液貯留部24内に押し出され、水素ガス貯留部13及び酸素ガス貯留部25の一部にも水素及び酸素が充填される。さらに電圧印加部34によって電圧を印加し続けると、水素ガス貯留部13及び酸素ガス貯留部25に水素及び酸素が充満し、水貯留部14,26に連通孔14a,26aから水素ガス及び酸素ガスの気泡が現れ、排気管15,27から排気されるので、除湿等を行った後、図示しない水素貯蔵装置等に貯蔵して燃料電池1の発電時に用いることができる。また、水貯留部14の容積は水素ガス貯留部13の容積と同一乃至はやや大きめに形成されているので、水素ガス貯留部13に水素ガスが充満したときでも、水貯留部14内の水が第2気液貯留部12から溢れることはない。
When the fuel cell 1 is used as a water electrolyzer to produce hydrogen as a fuel by electrolyzing water, the direction switching valve 8 is switched so as to communicate with the hydrogen electrode chamber supply port 7 and the connecting pipe 9. 10 is switched to communicate with the connection pipe 9 and the communication pipe 11, the exhaust pipe opening / closing valve 16, the water supply pipe opening / closing valve 18, and the hydrogen electrode chamber discharge opening / closing valve 20 are opened, and water is supplied from the water supply pipe 17. When the gas / liquid storage unit 12 is supplied with water, the water is supplied from the communication hole 14 a, the hydrogen gas storage unit 13, the communication tube 11, the direction switching valve 10, the connection tube 9, and the direction switching valve 8 through the hydrogen electrode chamber supply port 7. It is supplied to the polar chamber 4. Since the upper end of the hydrogen gas reservoir 13 and the upper end of the hydrogen electrode chamber 4 are formed at substantially the same height, when the hydrogen electrode chamber 4 and the hydrogen gas reservoir 13 are filled with water, Since water overflows from the outlet 19, the hydrogen electrode chamber outlet opening / closing valve 20 is closed and the water supply pipe opening / closing valve 18 is closed to stop water supply (see FIG. 2). Similarly, on the oxygen electrode chamber 6 side, the direction switching valve 22 is switched so as to communicate with the oxygen electrode chamber supply port 21 and the communication pipe 23, and the exhaust pipe opening / closing valve 28, the water supply pipe opening / closing valve 30, and the oxygen electrode chamber discharge port opening / closing. When the valve 32 is opened and water is supplied from the water supply pipe 29 to the first gas-liquid storage section 24, water is supplied to the oxygen electrode chamber from the communication hole 26a, the oxygen gas storage section 25, the communication pipe 23, and the direction switching valve 22. It is supplied to the oxygen electrode chamber 6 through the port 21. Since the upper end of the oxygen gas storage unit 25 and the upper end of the oxygen electrode chamber 6 are formed at substantially the same height, when the oxygen electrode chamber 6 and the oxygen gas storage unit 25 are filled with water, the oxygen electrode chamber drainage is performed. Since water overflows from the outlet 31, the oxygen electrode chamber outlet opening / closing valve 32 is closed and the water supply pipe opening / closing valve 30 is closed to stop the supply of water. With the exhaust pipe opening / closing valves 16 and 28 opened, a DC voltage is applied between the hydrogen electrode 3 and the oxygen electrode 5 using the voltage application unit 34 so that the hydrogen electrode 3 becomes a cathode and the oxygen electrode 5 becomes an anode. When applied, the water in the hydrogen electrode chamber 4 and the oxygen electrode chamber 6 is electrolyzed, and the oxygen electrode 5 (anode) reacts as H 2 O → 1 / 2O 2 + 2H + + 2e to generate oxygen. Proton (H + ) generated by this reaction moves through the electrolyte membrane 2 to the hydrogen electrode 3 (cathode) side, receives electrons, reacts as 2H + + 2e → H 2 , and reacts with hydrogen in the hydrogen electrode chamber 4. Is generated. Furthermore, the hydrogen electrode 3 (cathode) reacts as H 2 O + e → OH + 1 / 2H 2 to generate hydrogen in the hydrogen electrode chamber 4. Since the hydrogen electrode chamber discharge port opening / closing valve 20 is closed, the generated hydrogen increases the internal pressure of the hydrogen electrode chamber 4, and the water in the hydrogen electrode chamber 4 causes the hydrogen electrode chamber supply port 7 to flow as shown in FIG. It passes through and flows back into the second gas-liquid storage unit 12. In addition, since the oxygen electrode chamber outlet opening / closing valve 32 is also closed, the internal pressure of the oxygen electrode chamber 6 is increased by the generated oxygen, and the water in the oxygen electrode chamber 6 passes through the oxygen electrode chamber supply port 21 and the first gas. It flows backward into the liquid reservoir 24.
Further, when a DC voltage is continuously applied between the hydrogen electrode 3 and the oxygen electrode 5 using the voltage application unit 34, the water in the liquid state in the hydrogen electrode chamber 4 and the oxygen electrode chamber 6 as shown in FIG. Are pushed into the second gas-liquid storage unit 12 and the first gas-liquid storage unit 24, and hydrogen and oxygen are also filled in part of the hydrogen gas storage unit 13 and the oxygen gas storage unit 25. Further, when the voltage is continuously applied by the voltage application unit 34, the hydrogen gas storage unit 13 and the oxygen gas storage unit 25 are filled with hydrogen and oxygen, and the water storage units 14 and 26 are filled with hydrogen gas and oxygen gas from the communication holes 14a and 26a. Bubbles appear and are exhausted from the exhaust pipes 15 and 27. After dehumidifying and the like, they can be stored in a hydrogen storage device (not shown) and used for power generation of the fuel cell 1. In addition, since the volume of the water reservoir 14 is formed to be the same as or slightly larger than the volume of the hydrogen gas reservoir 13, the water in the water reservoir 14 is filled even when the hydrogen gas reservoir 13 is filled with hydrogen gas. Does not overflow from the second gas-liquid storage unit 12.

さらに水の電気分解運転を継続するため、排気管開閉弁16を閉止し、方向変換弁10を連結管9,連通管11及び図示しない水素貯蔵装置と連通するように切換える。水素極室4,連結管9,連通管11,水素ガス貯留部13には水素と水蒸気乃至は水が混在して充満しており、水素ガス貯留部13と連通した水貯留部14には水が貯留されているので、水素極室4には水貯留部14から湿分が連続的に供給され、供給された湿分が電気分解されて水素が生成される。図示しない水素貯蔵装置は方向切換弁10を介して連結管9,連通管11と連通しているので、図示しない圧送装置等を使って連結管9,連通管11内の水素を水素貯蔵装置に貯蔵させることができる。電気分解によって第2気液貯留室12内の水が減ってきた場合は、水供給管開閉弁18を開弁して水を補給する。
一方、酸素極室6側は、酸素ガス貯留部25に酸素及び蒸気が充満するので、水貯留部26に連通孔26aから酸素ガスの気泡が現れ、酸素が排気管27から系外に排気される。電気分解によって第1気液貯留室24内の水が減ってきた場合は、水供給管開閉弁30を開弁して水を補給する。
Further, in order to continue the electrolysis operation of water, the exhaust pipe opening / closing valve 16 is closed, and the direction changing valve 10 is switched to communicate with the connecting pipe 9, the connecting pipe 11, and a hydrogen storage device (not shown). The hydrogen electrode chamber 4, the connecting pipe 9, the connecting pipe 11, and the hydrogen gas storage section 13 are filled with hydrogen and water vapor or water, and the water storage section 14 that communicates with the hydrogen gas storage section 13 contains water. Therefore, moisture is continuously supplied from the water storage unit 14 to the hydrogen electrode chamber 4, and the supplied moisture is electrolyzed to generate hydrogen. Since the hydrogen storage device (not shown) communicates with the connection pipe 9 and the communication pipe 11 via the direction switching valve 10, the hydrogen in the connection pipe 9 and the communication pipe 11 is transferred to the hydrogen storage device using a pressure feeding device (not shown). Can be stored. When water in the second gas-liquid storage chamber 12 is reduced by electrolysis, the water supply pipe opening / closing valve 18 is opened to supply water.
On the other hand, on the oxygen electrode chamber 6 side, since the oxygen gas storage section 25 is filled with oxygen and steam, oxygen gas bubbles appear in the water storage section 26 from the communication hole 26a, and oxygen is exhausted from the exhaust pipe 27 to the outside of the system. The When water in the first gas-liquid storage chamber 24 is reduced by electrolysis, the water supply pipe opening / closing valve 30 is opened to supply water.

燃料電池1の発電運転を開始する場合は、電圧印加部34を負荷33に切換えた後、水素極室4側の方向変換弁10を連結管9,連通管11と連通するように切換え、方向切換弁8を連結管9,水素極室供給口7及び図示しない水素貯蔵装置と連通するように切換え、水素極室排出口開閉弁20を開弁する。一方、酸素極室6側の方向切換弁22を酸素極室供給口21,連通管23及び図示しない酸素供給装置と連通するように切換え、酸素極室排出口開閉弁32を開弁し排気管開閉弁28を閉止する。次いで、図示しない水素貯蔵装置から方向切換弁8,水素極室供給口7を通って水素極室4内へ水素を、図示しない酸素供給装置から方向切換弁22,酸素極室供給口21を通って酸素極室6内へ酸素を供給する。これにより、水素極3ではH→2H+2e、酸素極5では1/2O+2H+2e→HOの反応が起こり、電力が発生する。未反応の水素は水素極室排出口19から水素極室4の外部へ排出され、生成した水及び未反応の酸素等は酸素極室排出口31から酸素極室6の外部へ排出される。 When starting the power generation operation of the fuel cell 1, the voltage application unit 34 is switched to the load 33, and then the direction change valve 10 on the hydrogen electrode chamber 4 side is switched to communicate with the connection pipe 9 and the communication pipe 11. The switching valve 8 is switched so as to communicate with the connecting pipe 9, the hydrogen electrode chamber supply port 7 and a hydrogen storage device (not shown), and the hydrogen electrode chamber outlet opening / closing valve 20 is opened. On the other hand, the direction switching valve 22 on the oxygen electrode chamber 6 side is switched so as to communicate with the oxygen electrode chamber supply port 21, the communication pipe 23, and an oxygen supply device (not shown), and the oxygen electrode chamber discharge port open / close valve 32 is opened to open the exhaust pipe. The on-off valve 28 is closed. Next, hydrogen flows from a hydrogen storage device (not shown) through the direction switching valve 8 and the hydrogen electrode chamber supply port 7 into the hydrogen electrode chamber 4, and from the oxygen supply device (not shown) through the direction switching valve 22 and the oxygen electrode chamber supply port 21. Then, oxygen is supplied into the oxygen electrode chamber 6. Thus, the hydrogen electrode 3 in H 2 → 2H + + 2e - , the oxygen electrode 5 1 / 2O 2 + 2H + + 2e - → H 2 O reaction occurs, power is generated. Unreacted hydrogen is discharged from the hydrogen electrode chamber outlet 19 to the outside of the hydrogen electrode chamber 4, and the generated water and unreacted oxygen are discharged from the oxygen electrode chamber outlet 31 to the outside of the oxygen electrode chamber 6.

以上のように、本発明の実施の形態1における燃料電池は構成されているので、以下のような作用が得られる。
(1)水の電気分解時には、酸素極室供給口21から酸素極室6に水を供給して、酸素極室6に水が充填されたら酸素極室排出口31を開閉する酸素極室排出口開閉弁32を閉止する。一方、水素極室供給口7から水素極室4にも水を供給して、水素極室4に水が充填されたら水素極室排出口19を開閉する水素極室排出口開閉弁20を閉止し、酸素極5と水素極3との間に直流電圧を印加すると、酸素極5で発生した酸素によって酸素極室6の内圧が高まるので、酸素極室供給口21から酸素極室6内の水が酸素極室6の外へ押し出され酸素極5の周囲には液体状態の水がほとんど残留しなくなる。また、水の電気分解によって酸素極5の温度が85〜95℃程度に上昇するため、酸素極5の表面にわずかに残留した液体状態の水は蒸発する。水素極室4側でも同様の現象が起こるため、燃料電池1の発電運転開始時に酸素極室6に酸素や空気を流し水素極室4に水素を流すと、酸素極5及び水素極3の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、酸素及び水素の拡散阻害による電圧低下が起こり難く高効率の燃料電池が得られる。
(2)水の電気分解運転時に、第1気液貯留部24に貯留された水を酸素極室供給口21から蒸気状態で酸素極5に供給させることができ、また液体状態で供給された水も85〜95℃に昇温した酸素極5で蒸発されるので、酸素極5では蒸気状態の水を電気分解することができる。酸素極5が水に浸漬されていないため、酸素極5の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜2に付着することが原因の燃料電池1の起電力低下や電解効率低下が生じず耐久性に優れる。
(3)水の電気分解運転時に、第2気液貯留部12に貯留された水を水素極室供給口7から蒸気状態で水素極3に供給させることができ、また液体状態で供給された水も85〜95℃に昇温した水素極3で蒸発されるので、水素極3では蒸気状態の水を電気分解することができる。水素極3が水に浸漬されていないため、水素極3の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜2に付着することが原因の燃料電池1の起電力低下や電解効率低下が生じず耐久性に優れる。
(4)燃料電池1の発電運転時には、第1気液貯留部24と酸素極室6とを連通させておくことで貯留された水で酸素を加湿して電解質膜2に水分を吸収させられるので、電解質膜2のプロトン導電性を向上させ燃料電池1の発電性能を高めることができる。
(5)燃料電池1の発電運転時には、第2気液貯留部12と水素極室4とを連通させておくことで貯留された水で水素を加湿できるので、水素を加湿器で加湿しなくても電解質膜2のプロトン導電性を維持することができる。
(6)第1気液貯留部24,第2気液貯留部12の水貯留部14,26に排気管開閉弁16,28が配設された排気管15,27が接続されているので、水の電気分解運転時には、排気管開閉弁16,28を開弁した状態にすることで、水素ガス貯留部13に水素ガスを、酸素ガス貯留部25に酸素ガスを貯留し、水素貯蔵装置に水素を貯蔵することができる。また、燃料電池の発電運転時には、排気管開閉弁16,28を閉止した状態にすることで、水素極室4や酸素極室6内を湿った水素や酸素が充満した状態に保つことができ、発電性能を高めることができる。
(7)水貯留部14,26の容積は水素ガス貯留部13,酸素ガス貯留部25の容積と同一乃至はやや大きめに形成されており、水素ガス貯留部13,酸素ガス貯留部25の上端と水素極室4,酸素極室6の上端とは略同一の高さに形成されているので、水素極室4,酸素極室6に水が充填されたときに水供給管開閉弁18,30を閉止すると、水の電気分解によって水素ガス貯留部13及び酸素ガス貯留部25に水素ガス及び酸素ガスが充満したときでも、水貯留部14,26内の水が第2気液貯留部12,第1気液貯留部24から溢れることはなく、水素ガス貯留部13及び酸素ガス貯留部25内に水素ガス及び酸素ガスを確実に貯留することができる。
(8)仕切板14b,26bが水素ガス貯留部13,酸素ガス貯留部25内に立設されているので、水素ガス貯留部13,酸素ガス貯留部25内に導入された水素ガス等が連通孔14a,26aを通って直ちに水貯留部14,26内に漏れることがなく、水素ガス貯留部13,酸素ガス貯留部25内に確実に貯留することができる。
As described above, since the fuel cell according to Embodiment 1 of the present invention is configured, the following operation can be obtained.
(1) At the time of electrolysis of water, water is supplied from the oxygen electrode chamber supply port 21 to the oxygen electrode chamber 6, and the oxygen electrode chamber discharge port 31 is opened and closed when the oxygen electrode chamber 6 is filled with water. The outlet opening / closing valve 32 is closed. On the other hand, water is also supplied from the hydrogen electrode chamber supply port 7 to the hydrogen electrode chamber 4, and when the hydrogen electrode chamber 4 is filled with water, the hydrogen electrode chamber discharge opening / closing valve 20 that opens and closes the hydrogen electrode chamber discharge port 19 is closed. When a DC voltage is applied between the oxygen electrode 5 and the hydrogen electrode 3, the oxygen generated in the oxygen electrode 5 increases the internal pressure of the oxygen electrode chamber 6. Water is pushed out of the oxygen electrode chamber 6 so that almost no liquid water remains around the oxygen electrode 5. Further, since the temperature of the oxygen electrode 5 rises to about 85 to 95 ° C. due to the electrolysis of water, the liquid water slightly remaining on the surface of the oxygen electrode 5 evaporates. Since the same phenomenon occurs on the hydrogen electrode chamber 4 side, when oxygen or air is supplied to the oxygen electrode chamber 6 and hydrogen is supplied to the hydrogen electrode chamber 4 at the start of power generation operation of the fuel cell 1, the surfaces of the oxygen electrode 5 and the hydrogen electrode 3 Since only vapor is present in the fuel cell, flooding is unlikely to occur, and voltage drop due to inhibition of diffusion of oxygen and hydrogen hardly occurs, and a highly efficient fuel cell can be obtained.
(2) During the electrolysis operation of water, the water stored in the first gas-liquid storage unit 24 can be supplied from the oxygen electrode chamber supply port 21 to the oxygen electrode 5 in a vapor state and supplied in a liquid state. Since water is also evaporated at the oxygen electrode 5 heated to 85 to 95 ° C., the oxygen electrode 5 can electrolyze water in a vapor state. Since the oxygen electrode 5 is not immersed in water, the component of the oxygen electrode 5 does not elute in water or the amount of elution can be extremely reduced, so that the electromotive force of the fuel cell 1 caused by the eluting component adhering to the electrolyte membrane 2 It has excellent durability without lowering or electrolytic efficiency.
(3) During the electrolysis operation of water, the water stored in the second gas-liquid storage unit 12 can be supplied from the hydrogen electrode chamber supply port 7 to the hydrogen electrode 3 in a vapor state and supplied in a liquid state. Since water is also evaporated at the hydrogen electrode 3 heated to 85 to 95 ° C., the hydrogen electrode 3 can electrolyze water in a vapor state. Since the hydrogen electrode 3 is not immersed in water, the components of the hydrogen electrode 3 do not elute in water or the amount of elution can be extremely reduced, so that the electromotive force of the fuel cell 1 caused by the elution component adhering to the electrolyte membrane 2 It has excellent durability without lowering or electrolytic efficiency.
(4) During power generation operation of the fuel cell 1, the first gas-liquid storage unit 24 and the oxygen electrode chamber 6 are in communication with each other so that oxygen is humidified with the stored water so that the electrolyte membrane 2 can absorb moisture. Therefore, the proton conductivity of the electrolyte membrane 2 can be improved and the power generation performance of the fuel cell 1 can be enhanced.
(5) During the power generation operation of the fuel cell 1, hydrogen can be humidified with the stored water by allowing the second gas-liquid storage unit 12 and the hydrogen electrode chamber 4 to communicate with each other, so that the hydrogen is not humidified with a humidifier. However, the proton conductivity of the electrolyte membrane 2 can be maintained.
(6) Since the exhaust pipes 15 and 27 provided with the exhaust pipe on-off valves 16 and 28 are connected to the water storage parts 14 and 26 of the first gas-liquid storage part 24 and the second gas-liquid storage part 12, During the water electrolysis operation, the exhaust pipe on-off valves 16 and 28 are opened, so that hydrogen gas is stored in the hydrogen gas storage section 13 and oxygen gas is stored in the oxygen gas storage section 25. Hydrogen can be stored. Further, during the power generation operation of the fuel cell, the hydrogen pipe chamber 4 and the oxygen electrode chamber 6 can be kept in a state filled with wet hydrogen or oxygen by closing the exhaust pipe opening / closing valves 16 and 28. , Can improve power generation performance.
(7) The volume of the water reservoirs 14 and 26 is formed to be the same as or slightly larger than the volumes of the hydrogen gas reservoir 13 and the oxygen gas reservoir 25, and the upper ends of the hydrogen gas reservoir 13 and the oxygen gas reservoir 25. And the hydrogen electrode chamber 4 and the upper end of the oxygen electrode chamber 6 are formed at substantially the same height, so that when the hydrogen electrode chamber 4 and the oxygen electrode chamber 6 are filled with water, When 30 is closed, even when the hydrogen gas storage unit 13 and the oxygen gas storage unit 25 are filled with hydrogen gas and oxygen gas by water electrolysis, the water in the water storage units 14 and 26 remains in the second gas-liquid storage unit 12. The hydrogen gas and oxygen gas can be reliably stored in the hydrogen gas storage unit 13 and the oxygen gas storage unit 25 without overflowing from the first gas-liquid storage unit 24.
(8) Since the partition plates 14b and 26b are erected in the hydrogen gas storage part 13 and the oxygen gas storage part 25, the hydrogen gas introduced into the hydrogen gas storage part 13 and the oxygen gas storage part 25 communicates with each other. The water does not leak immediately into the water reservoirs 14 and 26 through the holes 14a and 26a, and can be reliably stored in the hydrogen gas reservoir 13 and the oxygen gas reservoir 25.

また、本発明の実施の形態1における燃料電池の運転方法によれば、以下のような作用が得られる。
(1)電気分解運転時に蒸気状態の水を電気分解するので、水素極室4に水素を発生させることができる。さらに、燃料電池1の発電運転開始時に酸素極室6に酸素や空気を流し、水素極室4に水素を流すと、水素極3及び酸素極5の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、水素や酸素の拡散阻害による電圧低下が起こり難く高い起電力が安定して得られる。
(2)水の電気分解時に水素極3及び酸素極5が水に浸漬されていないため、水素極3及び酸素極5の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜2に付着することが原因の燃料電池1の起電力低下や電解効率低下が生じず耐久性に優れる。
Further, according to the method of operating the fuel cell in the first embodiment of the present invention, the following operation is obtained.
(1) Since water in the vapor state is electrolyzed during the electrolysis operation, hydrogen can be generated in the hydrogen electrode chamber 4. Furthermore, when oxygen or air is allowed to flow into the oxygen electrode chamber 6 and hydrogen is allowed to flow into the hydrogen electrode chamber 4 at the start of the power generation operation of the fuel cell 1, only steam exists on the surfaces of the hydrogen electrode 3 and the oxygen electrode 5. A flooding phenomenon is unlikely to occur, a voltage drop due to inhibition of diffusion of hydrogen or oxygen hardly occurs, and a high electromotive force can be stably obtained.
(2) Since the hydrogen electrode 3 and the oxygen electrode 5 are not immersed in water during electrolysis of water, the components of the hydrogen electrode 3 and the oxygen electrode 5 do not elute in water or the amount of elution can be extremely reduced. The durability of the fuel cell 1 due to the adhesion to the electrolyte membrane 2 does not decrease and electrolysis efficiency does not decrease.

(実施の形態2)
図5は実施の形態1における燃料電池を用いた実施の形態2における電気自動車の構成図である。なお、実施の形態1で説明したものは、同じ符号を付して説明を省略する。
図中、40は電気自動車、41は水素極3及び酸素極5に接続され燃料電池1で発生させた電力の制御を行うとともに水の電解運転と発電運転の切り替え制御を行うコントロールユニット、42はコントロールユニット41に接続された太陽電池である。太陽電池42で発生された電力はコントロールユニット41に供給されるとともに、余剰の電力は2次電池からなる電圧印加部34に蓄積される。コントロールユニット41は太陽電池42や電圧印加部34から電力を供給され、自動車の走行時には燃料電池1で発生した電力をモータ等の負荷33に供給し、自動車の停止時には負荷33から電圧印加部34に切り替え、燃料電池1内では水の電気分解が行われる。
43は方向切換弁22を介して連結管23,酸素極室供給口21に連通され空気を加圧するコンプレッサ等の酸素供給装置、44は水素極室排出口開閉弁20に接続された三方弁からなる方向切換弁、45は酸素極室排出口開閉弁32を介して酸素極室排出口31に連通した水から酸素を分離する酸素分離装置、46は方向切換弁44、酸素分離装置45、水供給管17,29に接続された水貯蔵槽、47は排気管15に接続され第2気液貯留部12で水と分離された水素が除湿され精製される水素精製装置、48は水素精製装置47に接続され水素を圧送するコンプレッサ等の圧送装置、49は水素吸蔵合金,有機ハイドライド,炭素系材料等を用いた水素貯蔵装置、50は一端が水素貯蔵装置49に接続され他端が方向切換弁8に接続された逆止弁、51は上流側が方向切換弁10に接続され下流側が水素貯蔵装置49に接続され水素を昇圧し水素貯蔵装置49に圧送するコンプレッサ等の圧送装置、52は一端が方向切換弁44に他端が逆止弁50の下流側に接続されたバイパス管である。
(Embodiment 2)
FIG. 5 is a configuration diagram of the electric vehicle according to the second embodiment using the fuel cell according to the first embodiment. In addition, what was demonstrated in Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 40 is an electric vehicle, 41 is a control unit that is connected to the hydrogen electrode 3 and the oxygen electrode 5 and controls the electric power generated in the fuel cell 1 and controls the switching between water electrolysis operation and power generation operation. This is a solar cell connected to the control unit 41. The electric power generated by the solar cell 42 is supplied to the control unit 41, and the surplus electric power is accumulated in the voltage application unit 34 made of a secondary battery. The control unit 41 is supplied with electric power from the solar cell 42 or the voltage application unit 34, supplies electric power generated in the fuel cell 1 to a load 33 such as a motor when the vehicle is running, and from the load 33 to the voltage application unit 34 when the vehicle is stopped. In the fuel cell 1, water is electrolyzed.
Reference numeral 43 denotes an oxygen supply device such as a compressor that is connected to the connecting pipe 23 and the oxygen electrode chamber supply port 21 via the direction switching valve 22 to pressurize the air, and 44 is a three-way valve connected to the hydrogen electrode chamber discharge opening / closing valve 20. A direction switching valve 45, an oxygen separator for separating oxygen from water communicated with the oxygen electrode chamber outlet 31 through the oxygen electrode chamber outlet opening / closing valve 32, 46 a direction switching valve 44, an oxygen separator 45, water A water storage tank 47 connected to the supply pipes 17 and 29, a hydrogen purification apparatus 47 connected to the exhaust pipe 15 and dehumidified and purified from water separated from the water in the second gas-liquid storage section 12, and 48 a hydrogen purification apparatus 47 is a pumping device such as a compressor that pumps hydrogen, 49 is a hydrogen storage device using a hydrogen storage alloy, organic hydride, carbon-based material, etc. 50 is connected to the hydrogen storage device 49 at one end and the direction is switched at the other end Connected to valve 8 The non-return valve 51 is connected to the direction switching valve 10 on the upstream side and connected to the hydrogen storage device 49 on the downstream side to pressurize the hydrogen and pump it to the hydrogen storage device 49. The other end is a bypass pipe connected to the downstream side of the check valve 50.

以上のように構成された実施の形態2における電気自動車について、以下その運転方法を説明する。
コントロールユニット41は、自動車の停止時には電圧印加部34を用いて水素極3及び酸素極5に電圧を印加し、燃料電池1内で水の電気分解を行い、燃料となる水素を製造する。このときの動作は実施の形態1で説明したものと重複するが、主な動作だけを説明する。
水は、水貯蔵槽46から水供給管17,29を通って第2気液貯留部12、第1気液貯留部24に供給され、水素極室供給口7,酸素極室供給口21を通って水素極室4,酸素極室6に供給される。供給された水が水素極室排出口19,酸素極室排出口31から溢れたら水素極室排出口開閉弁20、酸素極室排出口開閉弁32を閉止し、水供給管開閉弁18,30を閉止し水の供給を止める。水素極室排出口19から溢れた水は方向切換弁44を通って水貯蔵槽46に戻され、酸素極室排出口31から溢れた水は酸素分離装置45を通って水貯蔵槽46に戻される。
水素極3及び酸素極5に電圧が印加されると水素極室4及び酸素極室6内に水素及び酸素が発生し、発生した水素及び酸素によって水素極室4及び酸素極室6の外へ水が押し出される。水は第2気液貯留部12内に逆流し、水素極室4,連結管9,連通管11及び第2気液貯留部12の一部には水素と蒸気が充満し、充満した水素は方向切換弁10から圧送装置51を通って水素貯蔵装置49に圧送され貯蔵される。なお、除湿機等の水素精製装置を通過させて精製した水素を貯蔵するのが好ましい。第2気液貯留部12から溢れた水素は排気管15から水素精製装置47を通して水素貯蔵装置49に圧送され貯蔵される。水素は、第2気液貯留部12内の水が湿り蒸気として水素極室4内に供給されて蒸気状態の水が連続的に電気分解され連続的に製造される。第2気液貯留部12内の水が不足してきたときは水貯蔵槽46から供給する。
一方、酸素極室6側でも同様に、水は第1気液貯留部24内に逆流し、酸素極室6,連通管23及び第1気液貯留部24の一部には酸素と蒸気が充満する。第1気液貯留部24から溢れた酸素は排気管27から大気中へ放出される。第1気液貯留部24内の水が湿り蒸気として酸素極室6内に供給されて連続的に蒸気状態の水が電気分解される。第1気液貯留部24内の水が不足してきたときは水貯蔵槽46から供給する。
About the electric vehicle in Embodiment 2 comprised as mentioned above, the driving | running method is demonstrated below.
The control unit 41 applies a voltage to the hydrogen electrode 3 and the oxygen electrode 5 using the voltage application unit 34 when the automobile is stopped, electrolyzes water in the fuel cell 1, and produces hydrogen as fuel. Although the operation at this time is the same as that described in the first embodiment, only the main operation will be described.
Water is supplied from the water storage tank 46 to the second gas-liquid storage unit 12 and the first gas-liquid storage unit 24 through the water supply pipes 17 and 29, and the hydrogen electrode chamber supply port 7 and the oxygen electrode chamber supply port 21 are connected. Then, the hydrogen electrode chamber 4 and the oxygen electrode chamber 6 are supplied. When the supplied water overflows from the hydrogen electrode chamber outlet 19 and the oxygen electrode chamber outlet 31, the hydrogen electrode chamber outlet opening / closing valve 20 and the oxygen electrode chamber outlet opening / closing valve 32 are closed, and the water supply pipe opening / closing valves 18, 30 are closed. To stop the water supply. Water overflowing from the hydrogen electrode chamber outlet 19 is returned to the water storage tank 46 through the direction switching valve 44, and water overflowing from the oxygen electrode chamber outlet 31 is returned to the water storage tank 46 through the oxygen separator 45. It is.
When a voltage is applied to the hydrogen electrode 3 and the oxygen electrode 5, hydrogen and oxygen are generated in the hydrogen electrode chamber 4 and the oxygen electrode chamber 6, and the generated hydrogen and oxygen move out of the hydrogen electrode chamber 4 and the oxygen electrode chamber 6. Water is pushed out. The water flows back into the second gas-liquid storage part 12, and the hydrogen electrode chamber 4, the connecting pipe 9, the communication pipe 11 and a part of the second gas-liquid storage part 12 are filled with hydrogen and steam. The directional switching valve 10 is pumped and stored in the hydrogen storage device 49 through the pumping device 51. In addition, it is preferable to store the hydrogen purified through a hydrogen purifier such as a dehumidifier. Hydrogen overflowing from the second gas-liquid storage unit 12 is pumped and stored in the hydrogen storage device 49 from the exhaust pipe 15 through the hydrogen purification device 47. Hydrogen is continuously produced by supplying the water in the second gas-liquid storage unit 12 as wet steam into the hydrogen electrode chamber 4 and continuously electrolyzing the water in the vapor state. When the water in the 2nd gas-liquid storage part 12 runs short, it supplies from the water storage tank 46. FIG.
On the other hand, on the oxygen electrode chamber 6 side as well, water flows back into the first gas-liquid storage unit 24, and oxygen and steam are partially contained in the oxygen electrode chamber 6, the communication pipe 23 and the first gas-liquid storage unit 24. To charge. Oxygen overflowing from the first gas-liquid storage unit 24 is released from the exhaust pipe 27 into the atmosphere. The water in the first gas-liquid storage unit 24 is supplied into the oxygen electrode chamber 6 as wet steam, and the water in the vapor state is continuously electrolyzed. When the water in the 1st gas-liquid storage part 24 runs short, it supplies from the water storage tank 46. FIG.

自動車の走行時は、コントロールユニット41が電圧印加部34から負荷33に切換え後、酸素極室6内へ酸素供給装置43を用いて方向切換弁22を通して空気や酸素を供給し、水素貯蔵装置49から逆止弁50,方向切換弁8を通して水素極室4内へ水素を供給する。これにより、燃料電池1は電力を発生し、負荷33に電力を供給することができる。なお、発生した電力のうち余剰分は、2次電池からなる電圧印加部34に充電される。また、発電運転時に酸素極室6で発生した水(水蒸気)は、酸素分離装置45を通して水貯蔵槽46に戻される。また、発電運転時に水素極室4で反応に使われなかった過剰な水素は方向切換弁44からバイパス管52を通って方向切換弁8,水素極室供給口7を通り再び水素極室4に供給される。   When the vehicle is running, the control unit 41 switches from the voltage application unit 34 to the load 33, and then supplies air and oxygen into the oxygen electrode chamber 6 through the direction switching valve 22 using the oxygen supply device 43 and the hydrogen storage device 49. Then, hydrogen is supplied into the hydrogen electrode chamber 4 through the check valve 50 and the direction switching valve 8. Thereby, the fuel cell 1 can generate electric power and supply electric power to the load 33. In addition, the surplus part of generated electric power is charged in the voltage application part 34 which consists of a secondary battery. Further, water (steam) generated in the oxygen electrode chamber 6 during the power generation operation is returned to the water storage tank 46 through the oxygen separator 45. In addition, excess hydrogen that is not used for the reaction in the hydrogen electrode chamber 4 during the power generation operation passes from the direction switching valve 44 through the bypass pipe 52 to the direction switching valve 8 and the hydrogen electrode chamber supply port 7 and returns to the hydrogen electrode chamber 4 again. Supplied.

以上のように、本発明の実施の形態2における電気自動車は構成されているので、以下のような作用が得られる。
(1)1基の燃料電池1で、発電運転と水の電気分解運転による水素(燃料)の再生を行うことができ、燃料の補給頻度を少なくすることができ利便性を高め、さらに水の電気分解から発電運転への切り替え時にフラッディング現象が生じ難いため、酸素や水素の拡散阻害による電圧低下が起こり難く安定した出力が得られる。
As described above, since the electric vehicle according to Embodiment 2 of the present invention is configured, the following operation is obtained.
(1) With one fuel cell 1, hydrogen (fuel) can be regenerated by power generation operation and water electrolysis operation, the frequency of fuel replenishment can be reduced, and convenience can be improved. Since a flooding phenomenon is unlikely to occur when switching from electrolysis to power generation operation, a stable output is obtained in which voltage drop due to inhibition of diffusion of oxygen and hydrogen hardly occurs.

(実施の形態3)
図6は本発明の実施の形態3における燃料電池の模式図である。なお、実施の形態1で説明したものと同様のものは、同じ符号を付して説明を省略する。
図中、1aは実施の形態3における燃料電池であり、10aは連結管9の他端に接続された開閉弁である。
実施の形態3における燃料電池1aが実施の形態1における燃料電池1と異なる点は、水素極室4側に第2気液貯留部12が接続されていない点である。
(Embodiment 3)
FIG. 6 is a schematic diagram of a fuel cell according to Embodiment 3 of the present invention. In addition, the thing similar to what was demonstrated in Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 1a is the fuel cell according to Embodiment 3, and 10a is an on-off valve connected to the other end of the connecting pipe 9.
The difference between the fuel cell 1a in the third embodiment and the fuel cell 1 in the first embodiment is that the second gas-liquid storage unit 12 is not connected to the hydrogen electrode chamber 4 side.

以上のように構成された本発明の実施の形態3における燃料電池について、図面を参照しながら、水の電気分解運転と燃料電池の発電運転の動作について説明する。
図7は燃料電池を水の電解装置として用いて燃料の水素を製造する直前の状態を示す模式図であり、図8は水の電気分解運転開始直後の状態を示す模式図であり、図9は水の電気分解運転中の状態を示す模式図である。
With respect to the fuel cell according to Embodiment 3 of the present invention configured as described above, operations of water electrolysis operation and fuel cell power generation operation will be described with reference to the drawings.
FIG. 7 is a schematic diagram showing a state immediately before producing hydrogen of fuel using the fuel cell as a water electrolyzer, and FIG. 8 is a schematic diagram showing a state immediately after the start of electrolysis of water. FIG. 5 is a schematic diagram showing a state during electrolysis operation of water.

燃料電池1を水の電解装置として用い水の電気分解を行い燃料の水素を製造する場合は、方向切換弁22を酸素極室供給口21と連通管23と連通するように切換え、排気管開閉弁28,水供給管開閉弁30,酸素極室排出口開閉弁32を開弁し、水供給管29から水を第1気液貯留部24に供給すると、水が連通孔26a,酸素ガス貯留部25,連通管23,方向切換弁22から酸素極室供給口21を通って酸素極室6に供給される。酸素ガス貯留部25の上端と酸素極室6の上端とは略同一の高さに形成されているので、酸素極室6と酸素ガス貯留部25に水が充填されると、酸素極室排出口31から水が溢れるので、酸素極室排出口開閉弁32を閉止するとともに水供給管開閉弁30を閉止して水の供給を停止する(図7参照)。この状態で電圧印加部34を用いて水素極3と酸素極5との間に水素極3が陰極、酸素極5が陽極になるように直流電圧を印加すると、酸素極室6内の水が電気分解され、酸素極5(陽極)ではHO→1/2O+2H+2eのように反応し酸素が発生する。この反応によって生じたプロトン(H)は電解質膜2を通って水素極3(陰極)側へ移動し電子を受け取り、2H+2e→Hのように反応して水素極室4に水素を発生させる。酸素極室排出口開閉弁32が閉止されているので、発生した酸素によって酸素極室6の内圧が高まり、酸素極室6内の水が酸素極室供給口21を通って第1気液貯留部24内へ逆流する(図8参照)。 When the fuel cell 1 is used as a water electrolyzer to produce hydrogen as a fuel by electrolyzing water, the direction switching valve 22 is switched so as to communicate with the oxygen electrode chamber supply port 21 and the communication pipe 23, and the exhaust pipe is opened and closed. When the valve 28, the water supply pipe opening / closing valve 30, and the oxygen electrode chamber outlet opening / closing valve 32 are opened and water is supplied from the water supply pipe 29 to the first gas-liquid storage unit 24, the water is connected to the communication hole 26 a and oxygen gas storage. The oxygen is supplied to the oxygen electrode chamber 6 through the oxygen electrode chamber supply port 21 from the section 25, the communication pipe 23, and the direction switching valve 22. Since the upper end of the oxygen gas storage unit 25 and the upper end of the oxygen electrode chamber 6 are formed at substantially the same height, when the oxygen electrode chamber 6 and the oxygen gas storage unit 25 are filled with water, the oxygen electrode chamber drainage is performed. Since water overflows from the outlet 31, the oxygen electrode chamber outlet opening / closing valve 32 is closed and the water supply pipe opening / closing valve 30 is closed to stop water supply (see FIG. 7). In this state, when a DC voltage is applied between the hydrogen electrode 3 and the oxygen electrode 5 so that the hydrogen electrode 3 is a cathode and the oxygen electrode 5 is an anode, the water in the oxygen electrode chamber 6 is discharged. After being electrolyzed, the oxygen electrode 5 (anode) reacts as H 2 O → 1 / 2O 2 + 2H + + 2e to generate oxygen. Proton (H + ) generated by this reaction moves through the electrolyte membrane 2 to the hydrogen electrode 3 (cathode) side, receives electrons, reacts as 2H + + 2e → H 2 , and reacts with hydrogen in the hydrogen electrode chamber 4. Is generated. Since the oxygen electrode chamber outlet opening / closing valve 32 is closed, the generated oxygen increases the internal pressure of the oxygen electrode chamber 6, and the water in the oxygen electrode chamber 6 passes through the oxygen electrode chamber supply port 21 to store the first gas-liquid. It flows backward into the part 24 (see FIG. 8).

さらに、電圧印加部34を用いて水素極3と酸素極5との間に直流電圧を印加し続けると、図9に示すように、酸素極室6内の液体状態の水が全て第1気液貯留部24内に押し出され、酸素ガス貯留部25の一部にも酸素が充填される。さらに電圧印加部34によって電圧を印加し続けると、酸素ガス貯留部25に酸素が充満し、水貯留部26に連通孔26aから酸素ガスの気泡が現れ排気管27から排気される。水貯留部26の容積は酸素ガス貯留部25の容積と同一乃至はやや大きめに形成されているので、酸素ガス貯留部25に酸素ガスが充満したときでも、水貯留部26内の水が第1気液貯留部24から溢れることはない。
酸素極室6,連通管23,酸素ガス貯留部25には酸素と水蒸気が混在して充満しており、酸素ガス貯留部25と連通した水貯留部26には水が貯留されているので、酸素極室6には水貯留部26から湿り蒸気が連続的に供給され、供給された湿り蒸気が電気分解されて酸素極室6には酸素が、水素極室4には水素が連続的に生成される。図示しない水素貯蔵装置は開閉弁10aを介して連結管9と連通しているので、開閉弁10aを開弁して図示しない圧送装置等を使って、連結管9内の水素を水素貯蔵装置に貯蔵させることができる。電気分解によって第1気液貯留室24内の水が減ってきた場合は、水供給管開閉弁30を開弁して水を補給する。
Further, when a DC voltage is continuously applied between the hydrogen electrode 3 and the oxygen electrode 5 using the voltage application unit 34, all the water in the liquid state in the oxygen electrode chamber 6 is first gas as shown in FIG. The liquid is stored in the liquid storage unit 24 and part of the oxygen gas storage unit 25 is filled with oxygen. When the voltage is continuously applied by the voltage application unit 34, the oxygen gas storage unit 25 is filled with oxygen, oxygen gas bubbles appear in the water storage unit 26 from the communication hole 26 a, and are exhausted from the exhaust pipe 27. Since the volume of the water storage unit 26 is formed to be the same as or slightly larger than the volume of the oxygen gas storage unit 25, even when the oxygen gas storage unit 25 is filled with oxygen gas, the water in the water storage unit 26 is the first. The 1 gas-liquid storage part 24 does not overflow.
Since the oxygen electrode chamber 6, the communication pipe 23, and the oxygen gas storage unit 25 are filled with oxygen and water vapor, and the water storage unit 26 communicated with the oxygen gas storage unit 25 stores water. Wet steam is continuously supplied from the water reservoir 26 to the oxygen electrode chamber 6, and the supplied wet steam is electrolyzed to continuously supply oxygen to the oxygen electrode chamber 6 and hydrogen to the hydrogen electrode chamber 4. Generated. Since the hydrogen storage device (not shown) is in communication with the connecting pipe 9 via the on-off valve 10a, the on-off valve 10a is opened and the hydrogen in the connecting pipe 9 is transferred to the hydrogen storage device by using a pressure feeding device (not shown). Can be stored. When water in the first gas-liquid storage chamber 24 is reduced by electrolysis, the water supply pipe opening / closing valve 30 is opened to supply water.

燃料電池1aの発電運転を開始する場合は、電圧印加部34を負荷33に切換えた後、水素極室4側の方向変換弁10aを閉止し、方向切換弁8を水素極室供給口7及び図示しない水素貯蔵装置と連通するように切換え、水素極室排出口開閉弁20を開弁する。一方、酸素極室6側の方向切換弁22を酸素極室供給口21,連通管23及び図示しない酸素供給装置と連通するように切換え、酸素極室排出口開閉弁32を開弁し排気管開閉弁28を閉止する。次いで、図示しない水素貯蔵装置から方向切換弁8,水素極室供給口7を通って水素極室4内へ水素を、図示しない酸素供給装置から方向切換弁22,酸素極室供給口21を通って酸素極室6内へ酸素を供給する。なお、水素は図示しない加湿器で加湿した後、水素極室4内に供給される。これにより、水素極3ではH→2H+2e、酸素極5では1/2O+2H+2e→HOの反応が起こり、電力が発生する。未反応の水素は水素極室排出口19から水素極室4の外部へ排出され、生成した水及び未反応の酸素等は酸素極室排出口31から酸素極室6の外部へ排出される。 When starting the power generation operation of the fuel cell 1a, after switching the voltage application unit 34 to the load 33, the direction changing valve 10a on the hydrogen electrode chamber 4 side is closed, and the direction switching valve 8 is connected to the hydrogen electrode chamber supply port 7 and It switches so that it may communicate with the hydrogen storage apparatus which is not shown in figure, and the hydrogen electrode chamber discharge port on-off valve 20 is opened. On the other hand, the direction switching valve 22 on the oxygen electrode chamber 6 side is switched so as to communicate with the oxygen electrode chamber supply port 21, the communication pipe 23, and an oxygen supply device (not shown), and the oxygen electrode chamber discharge port open / close valve 32 is opened to open the exhaust pipe. The on-off valve 28 is closed. Next, hydrogen flows from a hydrogen storage device (not shown) through the direction switching valve 8 and the hydrogen electrode chamber supply port 7 into the hydrogen electrode chamber 4, and from the oxygen supply device (not shown) through the direction switching valve 22 and the oxygen electrode chamber supply port 21. Then, oxygen is supplied into the oxygen electrode chamber 6. The hydrogen is supplied to the hydrogen electrode chamber 4 after being humidified by a humidifier (not shown). Thus, the hydrogen electrode 3 in H 2 → 2H + + 2e - , the oxygen electrode 5 1 / 2O 2 + 2H + + 2e - → H 2 O reaction occurs, power is generated. Unreacted hydrogen is discharged from the hydrogen electrode chamber outlet 19 to the outside of the hydrogen electrode chamber 4, and the generated water and unreacted oxygen are discharged from the oxygen electrode chamber outlet 31 to the outside of the oxygen electrode chamber 6.

以上のように、本発明の実施の形態3における燃料電池は構成されているので、実施の形態1に記載した作用に加え、以下のような作用が得られる。
(1)酸素極室6側だけに水を供給する機構を設ければよいので、装置構成を単純にすることができ、部品点数を少なくし小型化することができる。
As described above, since the fuel cell according to Embodiment 3 of the present invention is configured, in addition to the operations described in Embodiment 1, the following operations are obtained.
(1) Since it is only necessary to provide a mechanism for supplying water only to the oxygen electrode chamber 6 side, the apparatus configuration can be simplified, the number of parts can be reduced, and the size can be reduced.

(実施の形態4)
図10は実施の形態3における燃料電池を用いた実施の形態4における電気自動車の構成図である。なお、実施の形態2及び実施の形態3で説明したものは、同じ符号を付して説明を省略する。
図中、40aは燃料電池1aを備えた電気自動車であり、52aは一端が水素極室排出口開閉弁20に他端が逆止弁50の下流側に接続されたバイパス管である。
(Embodiment 4)
FIG. 10 is a configuration diagram of an electric vehicle according to the fourth embodiment using the fuel cell according to the third embodiment. In addition, what was demonstrated in Embodiment 2 and Embodiment 3 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 40a is an electric vehicle equipped with a fuel cell 1a, and 52a is a bypass pipe having one end connected to the hydrogen electrode chamber outlet opening / closing valve 20 and the other end connected to the downstream side of the check valve 50.

以上のように構成された実施の形態4における電気自動車について、以下その動作を説明する。
コントロールユニット41は、自動車の停止時には電圧印加部34を用いて水素極3及び酸素極5に電圧を印加し、燃料電池1内で水の電気分解を行い、燃料となる水素を製造する。このときの動作は実施の形態3で説明したものと重複するが、主な動作だけを説明する。
水は、水貯蔵槽46から水供給管29を通って第1気液貯留部24に供給され、酸素極室供給口21を通って酸素極室6に供給される。供給された水が酸素極室排出口31から溢れたら酸素極室排出口開閉弁32を閉止し、水供給管開閉弁30を閉止し水の供給を止める。酸素極室排出口31から溢れた水は酸素分離装置45を通って水貯蔵槽46に戻される。
水素極3及び酸素極5に電圧が印加されると水素極室4及び酸素極室6内に水素及び酸素が発生し、発生した酸素によって酸素極室6の外へ水が押し出される。水は第1気液貯留部24内に逆流し、酸素極室6,連通管23及び第1気液貯留部24の一部には酸素と蒸気が充満する。第1気液貯留部24から溢れた酸素は排気管27から大気中へ放出される。第1気液貯留部24内の水が湿り蒸気として酸素極室6内に供給されて連続的に蒸気状態の水が電気分解される。第1気液貯留部24内の水が不足してきたときは水貯蔵槽46から供給する。
水素極室4に発生した水素は、開閉弁10aから圧送装置51を通って水素貯蔵装置49に圧送され貯蔵される。なお、除湿機や水素分離装置等の水素精製装置を通過させて精製した水素を貯蔵するのが好ましい。
The operation of the electric vehicle according to Embodiment 4 configured as described above will be described below.
The control unit 41 applies a voltage to the hydrogen electrode 3 and the oxygen electrode 5 using the voltage application unit 34 when the automobile is stopped, electrolyzes water in the fuel cell 1, and produces hydrogen as fuel. Although the operation at this time is the same as that described in the third embodiment, only the main operation will be described.
Water is supplied from the water storage tank 46 through the water supply pipe 29 to the first gas-liquid storage unit 24, and is supplied to the oxygen electrode chamber 6 through the oxygen electrode chamber supply port 21. When the supplied water overflows from the oxygen electrode chamber outlet 31, the oxygen electrode chamber outlet on / off valve 32 is closed, the water supply pipe on / off valve 30 is closed, and the supply of water is stopped. The water overflowing from the oxygen electrode chamber outlet 31 is returned to the water storage tank 46 through the oxygen separator 45.
When a voltage is applied to the hydrogen electrode 3 and the oxygen electrode 5, hydrogen and oxygen are generated in the hydrogen electrode chamber 4 and the oxygen electrode chamber 6, and water is pushed out of the oxygen electrode chamber 6 by the generated oxygen. The water flows back into the first gas-liquid storage unit 24, and oxygen and the vapor are partially filled in the oxygen electrode chamber 6, the communication pipe 23, and a part of the first gas-liquid storage unit 24. Oxygen overflowing from the first gas-liquid storage unit 24 is released from the exhaust pipe 27 into the atmosphere. The water in the first gas-liquid storage unit 24 is supplied into the oxygen electrode chamber 6 as wet steam, and the water in the vapor state is continuously electrolyzed. When the water in the 1st gas-liquid storage part 24 runs short, it supplies from the water storage tank 46. FIG.
Hydrogen generated in the hydrogen electrode chamber 4 is pumped and stored in the hydrogen storage device 49 from the on-off valve 10a through the pumping device 51. In addition, it is preferable to store hydrogen purified by passing through a hydrogen purifier such as a dehumidifier or a hydrogen separator.

自動車の走行時は、コントロールユニット41が電圧印加部34から負荷33に切換え後、酸素極室6内へ酸素供給装置43を用いて方向切換弁22を通して空気や酸素を供給し、水素貯蔵装置49から逆止弁50,方向切換弁8を通して水素極室4内へ水素を供給する。これにより、燃料電池1は電力を発生し、負荷33に電力を供給することができる。なお、発生した電力のうち余剰分は、2次電池からなる電圧印加部34に充電される。また、発電運転時に酸素極室6で発生した水(水蒸気)は、酸素分離装置45を通して水貯蔵槽46に戻される。また、発電運転時に水素極室4で反応に使われなかった過剰な水素は、水素極室排出口開閉弁20からバイパス管52aを通って方向切換弁8,水素極室供給口7を通り再び水素極室4に供給される。   When the vehicle is running, the control unit 41 switches from the voltage application unit 34 to the load 33, and then supplies air and oxygen into the oxygen electrode chamber 6 through the direction switching valve 22 using the oxygen supply device 43 and the hydrogen storage device 49. Then, hydrogen is supplied into the hydrogen electrode chamber 4 through the check valve 50 and the direction switching valve 8. Thereby, the fuel cell 1 can generate electric power and supply electric power to the load 33. In addition, the surplus part of generated electric power is charged in the voltage application part 34 which consists of a secondary battery. Further, water (steam) generated in the oxygen electrode chamber 6 during the power generation operation is returned to the water storage tank 46 through the oxygen separator 45. Excess hydrogen that is not used in the reaction in the hydrogen electrode chamber 4 during the power generation operation passes from the hydrogen electrode chamber outlet opening / closing valve 20 through the bypass pipe 52a, through the direction switching valve 8 and the hydrogen electrode chamber supply port 7 again. The hydrogen electrode chamber 4 is supplied.

以上のように、本発明の実施の形態4における電気自動車は構成されているので、実施の形態2で説明したのと同様の作用が得られる。   As described above, since the electric vehicle according to the fourth embodiment of the present invention is configured, the same operation as described in the second embodiment can be obtained.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
実施の形態1で説明した構成を備えた燃料電池において、電解質膜としてデュポン社製のナフィオン115(膜厚130μm)、水素極及び酸素極としてクロール法で製造された高純度チタン(純度99.99〜99.999%、厚さ1mm、大きさ25mm)及び高純度チタン製メッシュを用い、水素極室及び酸素極室に純水を供給した。水素極室排出口開閉弁及び酸素極室排出口開閉弁を閉止した後、電流印加部から水素極と酸素極との間に直流電圧を印加し電気分解を行った。このときの電圧は約1.5〜4.5Vであり、電流は約0.5〜2Aであり、水素極室及び酸素極室から液体状態の水が押し出された後、水素極室及び酸素極室内の湿り蒸気が安定して電気分解された。電圧を印加してから1時間後、電圧印加部を直流モータからなる負荷に代え、水素極室及び酸素極室に水素ガス及び酸素ガスを供給し発電運転を開始した。発電運転中の起電力の測定は、負荷への接続配線の一部に0.1Ωの抵抗器を配設し、この抵抗器に印加される電圧を測定することによって行った。この結果、発電運転開始直後から0.98V(電流230〜300mA)の起電力が得られた。1時間の発電運転後、水素極室及び酸素極室への水素ガス及び酸素ガスの供給を停止した後、水素極室及び酸素極室内に純水を供給した。水素極室排出口開閉弁及び酸素極室排出口開閉弁を閉止した後、電流印加部から水素極と酸素極との間に直流電圧を印加し再び1時間の電気分解を行った。これにより、水素極室及び酸素極室から液体状態の水が押し出された後、水素極室及び酸素極室内の湿り蒸気が安定して電気分解された。
以上の電気分解運転と発電運転との切り替えを1サイクルとして10サイクル行ったが、いずれも発電運転開始直後から0.98Vの起電力が安定して得られた。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
In the fuel cell having the configuration described in the first embodiment, Nafion 115 (thickness 130 μm) manufactured by DuPont is used as an electrolyte membrane, and high-purity titanium (purity 99.99) manufactured by a crawl method as a hydrogen electrode and an oxygen electrode. Pure water was supplied to the hydrogen electrode chamber and the oxygen electrode chamber using a high purity titanium mesh of ˜99.999%, thickness 1 mm, size 25 mm 2 ). After closing the hydrogen electrode chamber outlet opening / closing valve and the oxygen electrode chamber outlet opening / closing valve, electrolysis was performed by applying a DC voltage between the hydrogen electrode and the oxygen electrode from the current application unit. The voltage at this time is about 1.5 to 4.5 V, the current is about 0.5 to 2 A, and after the liquid water is pushed out from the hydrogen electrode chamber and oxygen electrode chamber, the hydrogen electrode chamber and oxygen Wet steam in the polar chamber was stably electrolyzed. One hour after the voltage was applied, the voltage application unit was replaced with a load consisting of a DC motor, and hydrogen gas and oxygen gas were supplied to the hydrogen electrode chamber and oxygen electrode chamber to start power generation operation. The electromotive force during the power generation operation was measured by disposing a 0.1Ω resistor in a part of the connection wiring to the load and measuring the voltage applied to the resistor. As a result, an electromotive force of 0.98 V (current 230 to 300 mA) was obtained immediately after the start of the power generation operation. After the power generation operation for 1 hour, the supply of hydrogen gas and oxygen gas to the hydrogen electrode chamber and oxygen electrode chamber was stopped, and then pure water was supplied into the hydrogen electrode chamber and oxygen electrode chamber. After closing the hydrogen electrode chamber outlet opening / closing valve and the oxygen electrode chamber outlet opening / closing valve, a DC voltage was applied between the hydrogen electrode and the oxygen electrode from the current application unit, and electrolysis was again performed for 1 hour. Thereby, after liquid water was pushed out from the hydrogen electrode chamber and the oxygen electrode chamber, the wet steam in the hydrogen electrode chamber and the oxygen electrode chamber was stably electrolyzed.
The above switching between the electrolysis operation and the power generation operation was performed for 10 cycles. In all cases, an electromotive force of 0.98 V was stably obtained immediately after the start of the power generation operation.

(比較例1)
実施例1で説明した燃料電池を用いるが、水素極室排出口開閉弁、酸素極室排出口開閉弁は開弁した状態で、水素極室供給口及び酸素極室供給口から水素極室及び酸素極室に純水を供給し、電流印加部から水素極と酸素極との間に直流電圧を印加し電気分解を行った。このときの電圧は約1.5〜4.5Vであり、電流は約0.5〜2Aであった。電圧を印加してから1時間後、純水の供給を停止するとともに電圧印加部を直流モータからなる負荷に代え、水素極室及び酸素極室に水素ガス及び酸素ガスを供給し発電運転を開始した。この結果、発電運転開始直後は、水素極室及び酸素極室内に水が存在しているため、水が水素極室及び酸素極室から押し出されるまでは、実施例1と同様の0.98Vの起電力が得られなかった。1時間の発電運転後、水素極室及び酸素極室への水素ガス及び酸素ガスの供給を停止するとともに負荷から電圧印加部に接続を切り替え、水素極室及び酸素極室内に純水を供給し電流印加部から水素極と酸素極との間に直流電圧を印加し電気分解を1時間行った。
以上の電気分解運転と発電運転との切り替えを1サイクルとして10サイクル行ったが、サイクル数を増すごとに、発電運転時の起電力が0.98Vから次第に低下し、10サイクル目には0.78Vまで低下した。これは、水が水素極室及び酸素極室のガス流路に詰まりガスが流れ難くなる現象(フラッディング現象)が生じ、水素ガス及び酸素ガスの拡散阻害による電圧低下が生じたものであると推察される。
(Comparative Example 1)
Although the fuel cell described in Example 1 is used, the hydrogen electrode chamber outlet and the oxygen electrode chamber outlet on / off valve are opened, and the hydrogen electrode chamber and the oxygen electrode chamber supply port are connected to the hydrogen electrode chamber and the oxygen electrode chamber. Pure water was supplied to the oxygen electrode chamber, and a DC voltage was applied between the hydrogen electrode and the oxygen electrode from the current application unit to perform electrolysis. The voltage at this time was about 1.5 to 4.5 V, and the current was about 0.5 to 2 A. One hour after applying the voltage, the supply of pure water is stopped and the voltage application unit is replaced with a load consisting of a DC motor, and hydrogen gas and oxygen gas are supplied to the hydrogen electrode chamber and oxygen electrode chamber to start power generation operation. did. As a result, immediately after the start of the power generation operation, water is present in the hydrogen electrode chamber and the oxygen electrode chamber. Therefore, until the water is pushed out from the hydrogen electrode chamber and the oxygen electrode chamber, 0.98 V, which is the same as that in the first embodiment. The electromotive force was not obtained. After one hour of power generation operation, supply of hydrogen gas and oxygen gas to the hydrogen electrode chamber and oxygen electrode chamber is stopped and connection from the load to the voltage application unit is switched to supply pure water to the hydrogen electrode chamber and oxygen electrode chamber. A DC voltage was applied between the hydrogen application electrode and the oxygen electrode from the current application unit, and electrolysis was performed for 1 hour.
The above-described switching between the electrolysis operation and the power generation operation was performed for 10 cycles. However, as the number of cycles increased, the electromotive force during the power generation operation gradually decreased from 0.98 V, and at the 10th cycle, 0. The voltage dropped to 78V. This is presumed to be caused by a phenomenon in which water clogged in the gas flow path of the hydrogen electrode chamber and oxygen electrode chamber, making it difficult for the gas to flow (flooding phenomenon), resulting in a voltage drop due to inhibition of diffusion of hydrogen gas and oxygen gas. Is done.

以上のように本実施例によれば、水の電気分解運転から燃料電池の発電運転への切り替え時に、酸素極及び水素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難いため、酸素ガスや水素ガスの拡散阻害による電圧低下が起こり難く、動作の安定性に優れるとともに耐久性にも優れる高効率の燃料電池を提供できることが明らかになった。   As described above, according to the present embodiment, when switching from the electrolysis operation of water to the power generation operation of the fuel cell, since only the steam exists on the surfaces of the oxygen electrode and the hydrogen electrode, the flooding phenomenon hardly occurs. It has been found that a high-efficiency fuel cell can be provided which is less likely to cause a voltage drop due to inhibition of diffusion of oxygen gas and hydrogen gas, has excellent operational stability and durability.

本発明は、燃料電池及びそれを備えた電気自動車並びに燃料電池の運転方法に関し、水の電気分解から燃料電池の運転への切り替え時に、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難いため、酸素の拡散阻害による電圧低下が起こり難く動作の安定性に優れ、また構造が簡単で軽量化できるとともに安価で量産でき、さらに電極の溶出がほとんどみられず耐久性にも優れる高効率の燃料電池を提供することができ、また1基の燃料電池で水素(燃料)及び酸素(空気)を用いた発電と水の電気分解による水素(燃料)の再生を行うことができ、燃料の補給頻度を少なくすることができ利便性を高めるとともにインフラ整備に要する負担を軽減でき、また水の電気分解から燃料電池の運転への切り替え時にフラッディング現象が生じ難いため、酸素の拡散阻害による電圧低下が起こり難く安定した出力が得られ耐久性にも優れた電気自動車を提供することができる。また、燃料電池の発電運転開始時に酸素極室に酸素や空気を流すと、酸素極の表面には蒸気が存在しているだけなのでフラッディング現象が生じ難く、酸素の拡散阻害による電圧低下が起こり難く高い起電力が安定して得られ、また電極の成分が水に溶出しないか溶出量を極めて少なくできるため、溶出成分が電解質膜に付着することが原因の燃料電池の起電力低下や電解効率低下が生じず耐久性に優れた燃料電池の運転方法を提供することができる。この燃料電池は、自動車用の移動電源としてだけでなく、家庭用等の定置型電源や宇宙船用,潜水艦用,船舶用等の移動電源等の用途に幅広く用いることができる。   The present invention relates to a fuel cell, an electric vehicle including the fuel cell, and a method for operating the fuel cell. When switching from the electrolysis of water to the operation of the fuel cell, only the steam exists on the surface of the oxygen electrode, and thus flooding Since the phenomenon is unlikely to occur, voltage drop due to inhibition of oxygen diffusion is unlikely to occur, the operation is stable, the structure is simple and lightweight, it can be mass-produced at low cost, and there is almost no electrode elution, and durability is also improved An excellent high-efficiency fuel cell can be provided, and hydrogen (fuel) can be regenerated by power generation using hydrogen (fuel) and oxygen (air) and electrolysis of water in one fuel cell. Therefore, it is possible to reduce the frequency of fuel replenishment, increase convenience, reduce the burden of infrastructure development, and reduce the amount of fuel when switching from water electrolysis to fuel cell operation. Since fading phenomenon hardly occurs, it is possible to provide an electric vehicle output voltage drop due to diffusion inhibition of the oxygen is to occur hardly stable is obtained excellent durability. In addition, if oxygen or air is allowed to flow into the oxygen electrode chamber at the start of power generation operation of the fuel cell, only the vapor exists on the surface of the oxygen electrode, so that the flooding phenomenon is unlikely to occur, and the voltage drop due to oxygen diffusion inhibition is unlikely to occur. High electromotive force can be obtained stably, and electrode components do not elute in water or the amount of elution can be extremely small, so the electromotive force of the fuel cell and electrolysis efficiency are reduced due to the elution components adhering to the electrolyte membrane. It is possible to provide a method of operating a fuel cell that does not generate a fuel and has excellent durability. This fuel cell can be widely used not only as a mobile power source for automobiles but also for a stationary power source for home use and a mobile power source for spacecraft, submarine and ship.

実施の形態1における燃料電池の模式図Schematic diagram of fuel cell in Embodiment 1 燃料電池を水の電解装置として用いて燃料の水素を製造する直前の状態を示す模式図Schematic diagram showing a state immediately before producing hydrogen of fuel using a fuel cell as an electrolyzer for water 水の電気分解運転開始直後の状態を示す模式図Schematic showing the state immediately after the start of electrolysis of water 水の電気分解運転中の状態を示す模式図Schematic diagram showing the state during electrolysis of water 実施の形態2における電気自動車の構成図Configuration diagram of electric vehicle in Embodiment 2 実施の形態3における燃料電池の模式図Schematic diagram of fuel cell in Embodiment 3 燃料電池を水の電解装置として用いて燃料の水素を製造する直前の状態を示す模式図Schematic diagram showing a state immediately before producing hydrogen of fuel using a fuel cell as an electrolyzer for water 水の電気分解運転開始直後の状態を示す模式図Schematic showing the state immediately after the start of electrolysis of water 水の電気分解運転中の状態を示す模式図燃料電池を水の電解装置として用いて燃料の水素を製造している状態を示す模式図Schematic diagram showing the state during water electrolysis operation Schematic diagram showing the state in which fuel hydrogen is produced using the fuel cell as a water electrolyzer 実施の形態4における電気自動車の構成図Configuration diagram of electric vehicle in Embodiment 4

符号の説明Explanation of symbols

1,1a 燃料電池
2 電解質膜
3 水素極
4 水素極室
5 酸素極
6 酸素極室
7 水素極室供給口
8 方向切換弁
9 連結管
10 方向切換弁
10a 開閉弁
11 連通管
12 第2気液貯留部
13 水素ガス貯留部
14 水貯留部
14a 連通孔
14b 仕切板
15 排気管
16 排気管開閉弁
17 水供給管
18 水供給管開閉弁
19 水素極室排出口
20 水素極室排出口開閉弁
21 酸素極室供給口
22 方向切換弁
23 連通管
24 第1気液貯留部
25 酸素ガス貯留部
26 水貯留部
26a 連通孔
26b 仕切板
27 排気管
28 排気管開閉弁
29 水供給管
30 水供給管開閉弁
31 酸素極室排出口
32 酸素極室排出口開閉弁
33 負荷
34 電圧印加部
40,40a 電気自動車
41 コントロールユニット
42 太陽電池
43 酸素供給装置
44 方向切換弁
45 酸素分離装置
46 水貯蔵槽
47 水素精製装置
48 圧送装置
49 水素貯蔵装置
50 逆止弁
51 圧送装置
52,52a バイパス管
DESCRIPTION OF SYMBOLS 1,1a Fuel cell 2 Electrolyte membrane 3 Hydrogen electrode 4 Hydrogen electrode chamber 5 Oxygen electrode 6 Oxygen electrode chamber 7 Hydrogen electrode chamber supply port 8 Directional switching valve 9 Connection pipe 10 Directional switching valve 10a On-off valve 11 Communication pipe 12 2nd gas liquid Storage part 13 Hydrogen gas storage part 14 Water storage part 14a Communication hole 14b Partition plate 15 Exhaust pipe 16 Exhaust pipe on / off valve 17 Water supply pipe 18 Water supply pipe on / off valve 19 Hydrogen electrode chamber outlet 20 Hydrogen electrode chamber outlet on / off valve 21 Oxygen electrode chamber supply port 22 Directional switching valve 23 Communication pipe 24 First gas-liquid storage section 25 Oxygen gas storage section 26 Water storage section 26a Communication hole 26b Partition plate 27 Exhaust pipe 28 Exhaust pipe on-off valve 29 Water supply pipe 30 Water supply pipe On-off valve 31 Oxygen electrode chamber outlet 32 Oxygen electrode chamber outlet on-off valve 33 Load 34 Voltage application unit 40, 40a Electric vehicle 41 Control unit 42 Solar cell 43 Oxygen supply device Device 44 Directional switching valve 45 Oxygen separator 46 Water storage tank 47 Hydrogen purification device 48 Pressure feeding device 49 Hydrogen storage device 50 Check valve 51 Pressure feeding device 52, 52a Bypass pipe

Claims (6)

a.電解質膜と、b.前記電解質膜の片面に配設された水素極を収容する水素極室と、c.前記電解質膜の他面に配設された酸素極を収容する酸素極室と、d.前記水素極室に形成された水素極室供給口及び水素極室排出口と、e.前記酸素極室に形成された酸素極室供給口及び酸素極室排出口と、f.前記酸素極室排出口を開閉する酸素極室排出口開閉弁と、g.前記水素極と前記酸素極との間に電圧を印加し前記酸素極室排出口開閉弁が閉止された前記酸素極室内の水を電気分解させる電圧印加部と、を備えていることを特徴とする燃料電池。 a. An electrolyte membrane; b. A hydrogen electrode chamber containing a hydrogen electrode disposed on one side of the electrolyte membrane; c. An oxygen electrode chamber containing an oxygen electrode disposed on the other surface of the electrolyte membrane; d. A hydrogen electrode chamber supply port and a hydrogen electrode chamber discharge port formed in the hydrogen electrode chamber; e. An oxygen electrode chamber supply port and an oxygen electrode chamber discharge port formed in the oxygen electrode chamber; f. An oxygen electrode chamber outlet opening / closing valve for opening and closing the oxygen electrode chamber outlet; g. A voltage application unit that applies a voltage between the hydrogen electrode and the oxygen electrode and electrolyzes water in the oxygen electrode chamber in which the oxygen electrode chamber outlet opening / closing valve is closed ; Fuel cell. a.電解質膜と、b.前記電解質膜の片面に配設された水素極を収容する水素極室と、c.前記電解質膜の他面に配設された酸素極を収容する酸素極室と、d.前記水素極室に形成された水素極室供給口及び水素極室排出口と、e.前記酸素極室に形成された酸素極室供給口及び酸素極室排出口と、f.前記酸素極室排出口を開閉する酸素極室排出口開閉弁と、h.前記水素極室排出口を開閉する水素極室排出口開閉弁と、i.前記水素極と前記酸素極との間に電圧を印加し前記酸素極室排出口開閉弁が閉止された前記酸素極室内及び前記水素極室排出口開閉弁が閉止された前記水素極室内の水を電気分解させる電圧印加部と、を備えていることを特徴とする燃料電池。 a. An electrolyte membrane; b. A hydrogen electrode chamber containing a hydrogen electrode disposed on one side of the electrolyte membrane; c. An oxygen electrode chamber containing an oxygen electrode disposed on the other surface of the electrolyte membrane; d. A hydrogen electrode chamber supply port and a hydrogen electrode chamber discharge port formed in the hydrogen electrode chamber; e. An oxygen electrode chamber supply port and an oxygen electrode chamber discharge port formed in the oxygen electrode chamber; f. An oxygen electrode chamber outlet opening / closing valve for opening and closing the oxygen electrode chamber outlet; h. A hydrogen electrode chamber outlet opening / closing valve for opening and closing the hydrogen electrode chamber outlet ; i. A voltage is applied between the hydrogen electrode and the oxygen electrode, and the oxygen electrode chamber in which the oxygen electrode chamber outlet opening / closing valve is closed and the water in the hydrogen electrode chamber in which the hydrogen electrode chamber outlet opening / closing valve is closed are closed. And a voltage application unit that electrolyzes the fuel cell. 前記酸素極室の下端側に形成された前記酸素極室供給口と連通し前記酸素極室内の水が電気分解されて発生した酸素と前記酸素極室から押し出された水を貯留する第1気液貯留部を備えていることを特徴とする請求項1又は2に記載の燃料電池。 A first air that stores oxygen that is generated by electrolyzing water in the oxygen electrode chamber and water that is pushed out of the oxygen electrode chamber, in communication with the oxygen electrode chamber supply port formed on the lower end side of the oxygen electrode chamber. The fuel cell according to claim 1, further comprising a liquid storage unit. 前記水素極室の下端側に形成された前記水素極室供給口と連通し前記水素極室内の水が電気分解されて発生した水素と前記水素極室から押し出された水を貯留する第2気液貯留部を備えていることを特徴とする請求項2又は3に記載の燃料電池。 A second gas that communicates with the hydrogen electrode chamber supply port formed on the lower end side of the hydrogen electrode chamber and stores hydrogen generated by electrolyzing water in the hydrogen electrode chamber and water pushed out of the hydrogen electrode chamber. The fuel cell according to claim 2, further comprising a liquid storage unit. 請求項1乃至4の内いずれか1に記載の燃料電池と、前記燃料電池に供給する水素を貯蔵する水素貯蔵装置と、前記燃料電池に供給する水を貯蔵する水貯蔵槽と、を備えていることを特徴とする電気自動車。   A fuel cell according to any one of claims 1 to 4, a hydrogen storage device for storing hydrogen supplied to the fuel cell, and a water storage tank for storing water supplied to the fuel cell. An electric vehicle characterized by a.電解質膜と、b.前記電解質膜の片面に配設された水素極を収容する水素極室と、c.前記電解質膜の他面に配設された酸素極を収容する酸素極室と、d.前記水素極室に形成された水素極室供給口及び水素極室排出口と、e.前記酸素極室に形成された酸素極室供給口及び酸素極室排出口と、f.前記酸素極室排出口を開閉する酸素極室排出口開閉弁と、g.前記水素極と前記酸素極との間に電圧を印加し前記酸素極室排出口開閉弁が閉止された前記酸素極室内の水を電気分解させる電圧印加部と、を備えた燃料電池の運転方法であって、
電気分解運転時に、前記酸素極室内の蒸気状態の水を電気分解することを特徴とする燃料電池の運転方法。
a. An electrolyte membrane; b. A hydrogen electrode chamber containing a hydrogen electrode disposed on one side of the electrolyte membrane; c. An oxygen electrode chamber containing an oxygen electrode disposed on the other surface of the electrolyte membrane; d. A hydrogen electrode chamber supply port and a hydrogen electrode chamber discharge port formed in the hydrogen electrode chamber; e. An oxygen electrode chamber supply port and an oxygen electrode chamber discharge port formed in the oxygen electrode chamber; f. An oxygen electrode chamber outlet opening / closing valve for opening and closing the oxygen electrode chamber outlet; g. A method of operating a fuel cell, comprising: a voltage application unit that applies a voltage between the hydrogen electrode and the oxygen electrode to electrolyze water in the oxygen electrode chamber, in which the oxygen electrode chamber outlet opening / closing valve is closed Because
A method for operating a fuel cell, comprising electrolyzing water in a vapor state in the oxygen electrode chamber during electrolysis.
JP2005254018A 2005-09-01 2005-09-01 FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL Expired - Fee Related JP4009300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254018A JP4009300B2 (en) 2005-09-01 2005-09-01 FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254018A JP4009300B2 (en) 2005-09-01 2005-09-01 FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL

Publications (2)

Publication Number Publication Date
JP2007066812A JP2007066812A (en) 2007-03-15
JP4009300B2 true JP4009300B2 (en) 2007-11-14

Family

ID=37928751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254018A Expired - Fee Related JP4009300B2 (en) 2005-09-01 2005-09-01 FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL

Country Status (1)

Country Link
JP (1) JP4009300B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200110888A (en) * 2019-03-18 2020-09-28 선문대학교 산학협력단 Redox Separator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207230B2 (en) * 2007-11-15 2013-06-12 独立行政法人産業技術総合研究所 System for carrying out performance recovery method of polymer electrolyte fuel cell
JP5312076B2 (en) * 2009-02-06 2013-10-09 トヨタ自動車株式会社 Fuel cell system
JP5492460B2 (en) * 2009-06-03 2014-05-14 高砂熱学工業株式会社 Reversible cell operation method
JP4821937B2 (en) * 2009-10-29 2011-11-24 コニカミノルタホールディングス株式会社 Fuel cell device
JP5196510B1 (en) * 2012-07-20 2013-05-15 株式会社健康支援センター Desktop hydrogen gas generator
KR102228132B1 (en) * 2020-11-02 2021-03-17 (주)시그넷이브이 ESS System for Charging fuel cell electric vehicles and electric vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200110888A (en) * 2019-03-18 2020-09-28 선문대학교 산학협력단 Redox Separator
KR102401627B1 (en) * 2019-03-18 2022-05-25 선문대학교 산학협력단 Redox Separator

Also Published As

Publication number Publication date
JP2007066812A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP7162258B2 (en) Hydrogen supply system and method of operating hydrogen supply system
CN1966777B (en) Water electrolysis device with proton exchange membrane
JP4009300B2 (en) FUEL CELL, ELECTRIC VEHICLE HAVING THE SAME, AND METHOD OF OPERATING FUEL CELL
JP7149530B2 (en) Hydrogen supply system and method of operating hydrogen supply system
JP3719178B2 (en) Hydrogen gas production filling device and electrochemical device
Vincent et al. Solutions to the water flooding problem for unitized regenerative fuel cells: status and perspectives
JP6811444B2 (en) Electrochemical hydrogen pump
KR102275277B1 (en) Hydrogen system and method of operation
JP2010535942A (en) Electrolyzer with anode depolarized by sulfur dioxide and method of using the same in hydrogen production
JP5492460B2 (en) Reversible cell operation method
JP4768236B2 (en) FUEL CELL, FUEL SUPPLY SYSTEM, FUEL CARTRIDGE, AND ELECTRONIC DEVICE
CN114402094A (en) Electrochemical cell and method of treating a hydrogen-containing gas stream
KR100896900B1 (en) Oxygen generator using a fuel cell and water electrolysis
JP2020090695A (en) Electrochemical hydrogen compression system
Niya et al. Enhancement of the performance of a proton battery
KR102258287B1 (en) Electrochemical hydrogen compressor
KR20040000568A (en) Stack structure for fuel cell
KR100448692B1 (en) Fuel feed system for fuel cell
KR100531824B1 (en) Fuel circulation control apparatus of fuel cell system
JP2003308869A (en) Fuel cell
KR102358856B1 (en) Rechargeable electrochemical device for producing electrical energy
JP2006024401A (en) Fuel cell
JP2020037724A (en) Hydrogen system
JP2006185896A (en) Fuel cell system and water collection device
WO2005050763A1 (en) Microfluidic fuel cell system and method for portable energy applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070420

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees