JP2003308869A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2003308869A
JP2003308869A JP2002145437A JP2002145437A JP2003308869A JP 2003308869 A JP2003308869 A JP 2003308869A JP 2002145437 A JP2002145437 A JP 2002145437A JP 2002145437 A JP2002145437 A JP 2002145437A JP 2003308869 A JP2003308869 A JP 2003308869A
Authority
JP
Japan
Prior art keywords
fuel cell
methanol
fuel
hydrogen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002145437A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Akira Yoshikawa
公 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002145437A priority Critical patent/JP2003308869A/en
Publication of JP2003308869A publication Critical patent/JP2003308869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell using methanol as a fuel, haying improved power efficiency by completely preventing the leakage of the methanol and achieving stable operation with no leakage of the fuel even in intermittent power generation. <P>SOLUTION: The fuel cell using the methanol as the fuel for generating electric power comprises an electrolytic unit for electrochemically decomposing the methanol to produce hydrogen and a PEM fuel cell unit using the hydrogen as the fuel, integrated therewith. The electrolytic unit can hold a methanol utilization factor higher and the fuel cell unit using the hydrogen as the fuel can hold energy efficiency extremely higher. In no consideration of the power consumption of the electrolytic unit, the fuel cell can be operated at higher efficiency than a direct type methanol fuel cell and it can be easily energized/ deenergized momentarily. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はメタノールを燃料と
して電気化学反応によって発電をする、メタノール型の
燃料電池に関するものであり、メタノールを電気化学的
に分解して水素を製造する部分と水素を燃料とするPE
M型燃料電池を一体としたメタノールを燃料として発電
を行う燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell of the methanol type, which uses methanol as a fuel to generate electricity by an electrochemical reaction, and which produces hydrogen by electrochemically decomposing methanol and hydrogen. PE to
The present invention relates to a fuel cell in which an M-type fuel cell is integrated to generate electricity using methanol as a fuel.

【0002】[0002]

【従来技術と問題点】いわゆる高分子固体電解質型燃料
電池の開発により燃料電池の実用化が近くなり、その応
用範囲は極めて大きくなったとされている。特に水素燃
料を使用する燃料電池では、水素に対してエネルギー効
率が50から60%が可能であるとされ、しかも電流密
度は極めて低いところから2ないし3A/cm2という
大きな範囲までが可能とされている。しかも運転温度は
最高でも100℃程度で良いために、小型の熱電併給シ
ステムから、車載用としての次世代自動車用動力源とし
て注目されている。しかしながら、燃料としての水素は
重要であることは認識されているものの、水素を得る手
段、並びに得た水素の貯蔵手段、運搬手段等、取り扱い
上の問題を残していることも確かである。つまり水素燃
料の運搬用として従来からの水素ボンベという考えがあ
るが、通常のボンベでは一本で7m3、わずかに500
g程度しか運べない。また水素吸蔵金属を使うことも提
案されているが、現在までのところ、実用上の吸蔵能の
最高は重量で2.5%程度であり、重量的に不利になる
とともに、水素の吸蔵、放出条件の適正化問題がある。
このために熱分解法の改質が行われる。すなわち、メタ
ノールを燃料とした場合は温度300℃程度で触媒の存
在下CH3OH+H2O→CO2+3H2なる水蒸気改
質が行われ、また天然ガスやガソリンの場合は改質温度
が700から800℃と高くなり、たとえば天然ガスを
例にとるとCH4+2H2O→CO2+4H2あるいは
CH4+O2→CO2+2H2なる反応で水素を得るこ
とが行われる。ただこれらでは水素が得られるが、触媒
の存在下とはいえ極めて高い温度を必要とすることから
据え置き型はよいとしても、車両などではよりいっそう
の温度低下が望まれるに至っている。 また改質による
エネルギーロスも相当大きいために発電にかかる全エネ
ルギー消費が大きくなるという問題を残していた。つま
り燃料電池の発電効率は燃料電池本体が50%以上あっ
ても、改質器を入れると30%程度になると言う訳であ
る。また設備的に大きくなってしまう。特に今後の問題
として、携帯用通信機器やコンピューターの高機能化に
つれて起こる消費電力増大に対して、二次電池では重量
過大と容量不足という問題が出てきている。これに対応
できる手段としての超小型の燃料電池が注目を集めるよ
うになっているが、熱分解改質ではそれ自身が大型にな
るし、また高温の問題があって実用上の疑問が出てきて
いる。
2. Description of the Related Art With the development of so-called solid polymer electrolyte fuel cells, it is said that the practical application of fuel cells is approaching, and the range of application thereof has become extremely large. In particular, a fuel cell using a hydrogen fuel is said to be capable of energy efficiency of 50 to 60% with respect to hydrogen, and has a current density of from extremely low to a large range of 2 to 3 A / cm2. There is. Moreover, since the operating temperature may be about 100 ° C. at the maximum, it is attracting attention as a power source for next-generation automobiles for in-vehicle use, from a small combined heat and power supply system. However, although it is recognized that hydrogen as a fuel is important, it is certain that there are still handling problems such as means for obtaining hydrogen, and means for storing and transporting the obtained hydrogen. In other words, there is an idea of a conventional hydrogen cylinder for transporting hydrogen fuel, but with a normal cylinder, one cylinder has a capacity of 7 m3 and only 500
Can only carry about g. It has also been proposed to use a hydrogen storage metal, but up to now, the maximum practical storage capacity is about 2.5% by weight, which is disadvantageous in terms of weight and also causes hydrogen storage and release. There is a problem of proper conditions.
For this purpose, the pyrolysis method is modified. That is, when methanol is used as a fuel, steam reforming of CH3OH + H2O → CO2 + 3H2 is performed in the presence of a catalyst at a temperature of about 300 ° C., and in the case of natural gas or gasoline, the reforming temperature is increased from 700 to 800 ° C. Taking natural gas as an example, hydrogen is obtained by a reaction of CH4 + 2H2O → CO2 + 4H2 or CH4 + O2 → CO2 + 2H2. However, although hydrogen can be obtained from these, even if the stationary type is good, even in the presence of a catalyst, even if the stationary type is good, further temperature reduction is desired. Moreover, the energy loss due to the reforming is considerably large, and thus there is a problem that the total energy consumption for power generation becomes large. That is, the power generation efficiency of the fuel cell is about 30% when the reformer is inserted even if the fuel cell main body has 50% or more. In addition, the equipment becomes large. In particular, as a future problem, with respect to the increase in power consumption that accompanies the higher functionality of portable communication devices and computers, secondary batteries have problems such as excessive weight and insufficient capacity. Ultra-small fuel cells have come to the forefront as a means to deal with this, but pyrolysis and reforming make them large in size, and due to the high temperature problem, practical questions have arisen. ing.

【0003】これらのために燃料としてメタノールを使
い、それを燃料電池に直接燃料として送り込む、いわゆ
る直接型メタノール燃料電池が考えられており多くの研
究がなされている。特に小型軽量を必要とするゴルフカ
ートや、電動フォークリフトなどの運搬機器並びに上記
に示した携帯用電子機器の電源として使うことが試みら
れている。ところがメタノールを直接燃料とする燃料電
池では電極の過電圧が大きく、大きな電流が取りにくい
こと、又電力効率が低く、実際の発電電圧は理論電圧
1.18Vに対して0.4V程度と約30%である。更
に、固体電解質として使用するイオン交換膜はメタノー
ル燃料がイオン状態でないために容易に通過させしまう
と言う問題点があり、通過したメタノールは対極反応と
して発電の打ち消しにまわってしまうために、更にエネ
ルギー効率を低下させると言う問題があった。このメタ
ノールの通過の問題点は現在入手可能な材料ではほとん
ど解決が出来ず、イオン交換膜に特殊な処理をしても3
0%程度のロスになるとされる。従って全体のエネルギ
ー効率では20から25%程度になるという問題点があ
った。ただ小型化という点では大いに期待されており、
特に小型モバイル機器ではなおかつ最も期待される次世
代の電源として検討が進んでいる。
For these purposes, so-called direct methanol fuel cell, which uses methanol as a fuel and sends it directly to the fuel cell as a fuel, has been considered and many studies have been made. In particular, it has been attempted to be used as a power source for a golf cart, a transportation device such as an electric forklift truck, and the above-mentioned portable electronic device that require small size and light weight. However, in a fuel cell that uses methanol as a direct fuel, the overvoltage of the electrode is large, it is difficult to obtain a large current, and the power efficiency is low. The actual generated voltage is about 0.4V against the theoretical voltage of 1.18V, which is about 30%. Is. Further, the ion exchange membrane used as the solid electrolyte has a problem that the methanol fuel easily passes because it is not in an ionic state. There was a problem of reducing efficiency. This problem of passage of methanol can hardly be solved with currently available materials, and even if special treatment is applied to the ion exchange membrane,
It is said that the loss will be about 0%. Therefore, there is a problem that the overall energy efficiency is about 20 to 25%. However, there are great expectations in terms of miniaturization,
In particular, small mobile devices are being studied as the next-generation power source that is expected most.

【0004】従来技術に示したように直接型メタノール
燃料電池は機構が極めてシンプルになるというメリット
と裏腹にエネルギー効率が悪くなると言う問題点があっ
た。ただ、直接の発電にかかる低い電力効率は改質器を
使った燃料電池の改質器込みの効率と同等であり、その
点では問題は少ないが、燃料であるメタノールの対極へ
の漏れが大きいという点は問題であり、さらに携帯機器
などでは酸素極側からそのまま、メタノールが出てきて
しまうために、周囲に臭気を出すという付随的な問題も
併せ持っていた。また携帯機器では必然的に起こる、断
続使用で燃料を繋いだままにした場合、いわゆるフラッ
ディングを起こしてしまい空気極への酸素の供給が不十
分となり、場合によっては燃料電池が働かなくなるとい
う問題点を有していた。更に純メタノールを使用するプ
ロセスにあっては、メタノール自身が腐食剤であるため
に金属部分などの腐食が進むという問題点を有してい
た。
As described in the prior art, the direct methanol fuel cell has a merit that the mechanism is extremely simple, and on the contrary, has a problem that energy efficiency is deteriorated. However, the low power efficiency of direct power generation is equivalent to the efficiency of a fuel cell that uses a reformer, which includes a reformer. In that respect, there are few problems, but the leakage of methanol, which is the fuel, to the counter electrode is large. This is a problem, and in addition, in a portable device, etc., methanol comes out from the oxygen electrode side as it is, so that it has an additional problem of giving off an odor to the surroundings. In addition, if the fuel is left connected for intermittent use, which is inevitable with mobile devices, so-called flooding will occur and oxygen supply to the air electrode will be insufficient, and in some cases the fuel cell will not work. Had. Further, in the process using pure methanol, there is a problem that corrosion of metal parts and the like progresses because methanol itself is a corrosive agent.

【0005】[0005]

【本発明の解決しようとする課題】本発明は如上の問題
点を解決するためになされたものであり、メタノールを
燃料とした燃料電池の電力効率をより向上させると共
に、メタノールの漏れを完全に無くしてより効率を向上
させ、更に断続的な発電においても燃料の漏れが無く安
定的に運転の出来る燃料電池を提供することを課題とし
た。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and further improves the power efficiency of a fuel cell using methanol as a fuel and completely prevents the leakage of methanol. An object of the present invention is to provide a fuel cell which can be eliminated and improved in efficiency, and can be operated stably without fuel leakage even in intermittent power generation.

【0006】[0006]

【発明の手段】本発明は陽極物質と陰極物質を高分子固
体電解質を密着させた電解ユニットと、高分子固体電解
質に水素ガス拡散電極と空気/酸素ガス拡散電極を密着
させた燃料電池ユニットとを液が不透過でガスを透過で
きる薄層を介して密着させ、電解ユニット部分にメタノ
ールを供給し、空気/酸素ガス拡散電極に酸素含有ガス
を供給するようにしたメタノールを燃料とする燃料電池
であって、本発明者らによる特許出願、特開2000−
917470並びに特開2000−91740に示され
るメタノール水から水素を得る電解リフォーマーと水素
燃料電池とを水素ガスあるいは気体のみを通す膜を介し
て直列に接続する。これによって電解リフォーマーで発
生した水素を燃料として燃料電池で発電することによっ
て、メタノール部分をクローズド化することが可能にな
ると共に、燃料電池部分はメタノールと完全に切り離さ
れるので、メタノール漏洩問題が完全になくなり、しか
もエネルギー効率を高く保持することが可能となった。
以下詳細に説明する。本発明に依る燃料電池の反応は以
下に示される。すなわち、 であり、電解ユニットと燃料電池ユニットを直列に接続
することにより、理論電圧としては1.24V−0.0
6V=1.18Vとなり、理論的には水素燃料電池の
1.24Vとほぼ同じ電力が得られる。
The present invention relates to an electrolytic unit in which an anode material and a cathode material are in close contact with a polymer solid electrolyte, and a fuel cell unit in which a hydrogen gas diffusion electrode and an air / oxygen gas diffusion electrode are in close contact with the polymer solid electrolyte. A fuel cell using methanol as a fuel, in which the liquid is impermeable and the gas is permeable through a thin layer, methanol is supplied to the electrolysis unit, and an oxygen-containing gas is supplied to the air / oxygen gas diffusion electrode. Patent application by the present inventors, Japanese Patent Laid-Open No. 2000-
An electrolytic reformer for obtaining hydrogen from methanol water shown in 917470 and JP-A-2000-91740 and a hydrogen fuel cell are connected in series through a membrane through which hydrogen gas or gas is passed. This makes it possible to close the methanol part by generating electricity in the fuel cell using hydrogen generated in the electrolytic reformer as fuel, and since the fuel cell part is completely separated from methanol, the problem of methanol leakage is completely eliminated. It became possible to maintain high energy efficiency.
The details will be described below. The reaction of the fuel cell according to the present invention is shown below. That is, Therefore, the theoretical voltage is 1.24V-0.0 when the electrolysis unit and the fuel cell unit are connected in series.
6V = 1.18V, which theoretically provides almost the same electric power as 1.24V of the hydrogen fuel cell.

【0007】ただ電解の場合は過電圧や液抵抗などがあ
り、理論より若干余分に電圧が必要となることはよく知
られている。メタノール溶液中で高分子固体電解質の両
面に電極物質を形成した電解部分を入れ通電すると、条
件にもよるが、温度が40℃から60℃程度では電流密
度10A/dm2程度の電流では槽電圧が0.2から
0.3Vで電解を行うことが出来、その陰極から水素が
得られることがわかった。また水素発生は、陰極側でほ
ぼ理論通り起こっていることがわかった。なお陰極側が
メタノール水であってもメタノールの分解は認められて
いない。本発明はこの現象を利用したもので、電解電圧
が0.3Vであっても、燃料電池は水素で作動するため
に発電効率60%以上が可能であり、従って全発電効率
は電流密度10A/dmで燃料電池ユニットは發電電圧
が0.7から0.75Vであるのでこれからは電解ユニ
ットへの供給電圧、0.3Vを差し引いても0.4から
0.45Vが可能であって、少なくとも直接型メタノー
ル燃料電池と同等または良い数字が可能である。
[0007] However, it is well known that in the case of electrolysis, there are overvoltages, liquid resistances, etc., and a voltage slightly higher than the theory is required. When an electrolyzed part in which electrode materials are formed on both sides of a polymer solid electrolyte is placed in a methanol solution and electricity is applied, it depends on the conditions, but at a temperature of about 40 to 60 ° C., a cell voltage at a current density of about 10 A / dm 2 is obtained. It was found that electrolysis can be performed at 0.2 to 0.3 V and hydrogen can be obtained from the cathode. It was also found that hydrogen generation occurred on the cathode side almost according to theory. No decomposition of methanol was observed even if the cathode side was methanol water. The present invention utilizes this phenomenon, and even if the electrolysis voltage is 0.3 V, the fuel cell operates with hydrogen, so that a power generation efficiency of 60% or more is possible. Therefore, the total power generation efficiency is 10 A / current density. Since the fuel cell unit has a charging voltage of 0.7 to 0.75 V at dm, it is possible to reduce the supply voltage to the electrolysis unit from 0.3 V to 0.4 to 0.45 V, at least directly. Type methanol fuel cells can be as good or good numbers.

【0008】このようにして電解ユニットの水素発生部
と燃料電池ユニットの負極である水素極部を共通化し、
電気的に直列に接続することによって、水素の供給が起
これば燃料電池が働いて発電を開始し、その電力で電解
が起こり継続的に水素燃料電池運転が起こるようにな
る。ただ液状のメタノールが燃料電池側の水素極にはい
るとそれによって水素の供給に支障が出ること、またメ
タノールが燃料として燃料電池側で使われることによっ
て燃料電池電極の失活につながる可能性があるために電
解部分と燃料電池の間の隔壁を液の透過を防ぎ水素のみ
を通す薄膜とすることが重要である。ここではその薄膜
として箔状のパラジウムを用いたが、目的を達成できる
ものであればいかなる膜であっても良い。つまり以下の
ような条件で製作が出来る。まず燃料電池は通常の条件
で作成できる。たとえばイオン交換膜を固体電解質と
し、その両面に白金を担持したグラファイト粉末を触媒
として担持したいわゆるMEA(Membrane E
lectrode Assembly)を用意し、その
水素極面にパラジウムの薄膜を形成する。形成方法は特
には指定されないが貫通孔のないことが必要であり、最
適にはPVD法によって厚さ0.1から5μm程度の薄
膜を形成する。ただ本目的を達成出来るのであれば、他
の方法でも良く、また厚みについても特には指定されな
い。このようにして作成したパラジウム膜の上に電解部
分を形成する。これも通常の条件で良いが、水素極触媒
は白金あるいはルテニウムが活性であるので望ましい
が、この担持方法について特には指定されず、燃料電池
電極と同じく白金、あるいはルテニウム黒を直接あるい
は、白金やルテニウムを担持したグラファイトなどの粉
末を適当なバインダーを使用してパラジウム膜上に薄槽
として形成する。バインダーは特には指定されないが触
媒量の5から10%程度のPTFE(Poly Tet
ra Fluoro Ethylene)を使うことが
出来る。これによって極めて安定に保持できる。但しこ
れに限定されるものではない。これに固体電解質として
陽イオン交換膜を、イオン交換樹脂をバインダーとして
貼り付ける。このイオン交換膜の対抗面にはあらかじめ
白金/ルテニウムなど耐メタノール性の特性を有するメ
タノール分解触媒を形成したMEAとしたものであって
も良いことはもちろんである。このようにして燃料電池
と電解部分とを一体化したユニットが出来る。
In this way, the hydrogen generation part of the electrolysis unit and the hydrogen electrode part which is the negative electrode of the fuel cell unit are made common,
By electrically connecting in series, when the supply of hydrogen occurs, the fuel cell operates to start power generation, and the electric power causes electrolysis to continuously operate the hydrogen fuel cell. However, if liquid methanol enters the hydrogen electrode on the fuel cell side, it may interfere with the supply of hydrogen, and the use of methanol as fuel on the fuel cell side may lead to deactivation of the fuel cell electrode. Therefore, it is important that the partition wall between the electrolysis portion and the fuel cell is a thin film that prevents liquid permeation and allows only hydrogen to pass. Although foil-like palladium was used as the thin film here, any film may be used as long as it can achieve the purpose. In other words, it can be manufactured under the following conditions. First, the fuel cell can be manufactured under normal conditions. For example, a so-called MEA (Membrane E) in which an ion-exchange membrane is used as a solid electrolyte and graphite powder having platinum supported on both sides thereof is used as a catalyst.
Electrode assembly) is prepared, and a palladium thin film is formed on the hydrogen electrode surface. Although the forming method is not particularly specified, it is necessary that there is no through hole, and optimally, a thin film having a thickness of about 0.1 to 5 μm is formed by the PVD method. However, other methods may be used as long as the object can be achieved, and the thickness is not particularly specified. An electrolytic portion is formed on the palladium film thus formed. This is also acceptable under normal conditions, but the hydrogen electrode catalyst is desirable because platinum or ruthenium is active, but this supporting method is not specified in particular, and platinum or ruthenium black is directly or platinum similarly to the fuel cell electrode. Powder of ruthenium-loaded graphite or the like is formed as a thin bath on a palladium film using a suitable binder. The binder is not specified, but PTFE (Poly Tet) of about 5 to 10% of the catalyst amount is used.
Ra Fluoro Ethylene) can be used. As a result, it can be held extremely stable. However, it is not limited to this. A cation exchange membrane as a solid electrolyte and an ion exchange resin as a binder are attached thereto. It is needless to say that the opposite surface of the ion exchange membrane may be MEA in which a methanol decomposition catalyst having a methanol resistance characteristic such as platinum / ruthenium is formed in advance. In this way, a unit in which the fuel cell and the electrolysis portion are integrated can be formed.

【0009】また別の製造法としては、燃料電池ユニッ
トのMEAの水素極側にパラジウム薄膜を形成するとこ
ろまでは同じであるが、パラジウム膜の水素極の対抗面
に電解部の水素発生極を形成し、その上面に商品名Na
fion液などとされるイオン交換樹脂の液状物を塗布
固定して固体電解質膜とすることもできる。ここで形成
される膜は水素あるいは陽極側CO2が該膜を通して対
極側への移動が起こらない様にする必要がある、この様
にして形成した固体電解質膜の対抗面に白金/ルテニウ
ムからなるメタノール分解触媒を形成する。またこのほ
か、パラジウム薄膜を中心として、その片面に電解ユニ
ットの陰極を、反対面に燃料電池ユニットの負極(水素
極)をあらかじめ形成しておき、その両面にそれぞれ対
極電極物質を形成したMEAを張り付けることもでき
る。かかるようにして燃料電池部分と電解部分を一体化
できればいかなる方法でも差し支えないことは言うまで
もない。このようにして製造した一体型のユニットのメ
タノール極と燃料電池側の酸素極を負荷を入れて電気的
に接続し、メタノール極にメタノールと水の混合液を燃
料電池側に空気を吹き込みながら、最初電池などでわず
かに電圧をかけて水素発生を起こさせると、燃料電池の
発電作用で継続的に電流が流れるようになる。最初の水
素発生用の電源を二次電池あるいは一次電池で行っても
良いが、ソーラーセルと接続することによって携帯用機
器として有効に働かせることも出来る。図1には本発明
による燃料電池の断面構造の模式図を示した。以下実施
例によって説明するが、それに制限されないことは言う
までもない。
Another manufacturing method is the same up to the step of forming the palladium thin film on the hydrogen electrode side of the MEA of the fuel cell unit, but the hydrogen generating electrode of the electrolysis section is provided on the opposing surface of the hydrogen electrode of the palladium film. Formed, and the product name Na on the upper surface
It is also possible to apply and fix a liquid substance of an ion exchange resin such as a fion liquid to form a solid electrolyte membrane. The membrane formed here must prevent hydrogen or CO2 on the anode side from migrating to the counter electrode side through the membrane. Methanol containing platinum / ruthenium is formed on the opposing surface of the solid electrolyte membrane thus formed. Form a cracking catalyst. In addition, with the palladium thin film as the center, a cathode of the electrolysis unit is formed on one side of the palladium thin film, and a negative electrode (hydrogen electrode) of the fuel cell unit is formed on the other side thereof in advance. You can also stick it. It goes without saying that any method may be used as long as the fuel cell portion and the electrolysis portion can be integrated in this way. The methanol electrode and the oxygen electrode on the fuel cell side of the integrated unit manufactured in this way are electrically connected by applying a load, while blowing a mixed liquid of methanol and water into the methanol electrode on the fuel cell side, First, when a small amount of voltage is applied to a cell or the like to cause hydrogen to be generated, a current will continuously flow due to the power generation action of the fuel cell. The first power source for hydrogen generation may be a secondary battery or a primary battery, but it can be effectively used as a portable device by connecting to a solar cell. FIG. 1 shows a schematic diagram of a cross-sectional structure of a fuel cell according to the present invention. The embodiments will be described below, but it goes without saying that the invention is not limited thereto.

【0010】[0010]

【実施例】「実施例1」基材兼通電体として直径0.2
mmのニッケル線を編んで作成した網メッシュを用い、
その表面に燃料電池部としてE−TEK社製のMEAを
ホットプレスにより貼り付けた。ニッケルメッシュは酸
素極側とし、ホットプレス条件は150℃、圧力2kg
/cm2であった。なおこのMEAはイオン交換膜がN
afion115であり水素極が白金40g/m2空気
極側が白金20g/m2の担持であった。なお白金はカ
ーボンブラックVulkan XC−72上に担持した
ものであった。ニッケルメッシュとの対抗面にパラジウ
ム金属膜を蒸着法により約1μmの厚さにつけた。Pd
表面に高分子固体電解質としてDuPont社製Naf
ion115を用い、パラジウム側には燃料電池酸素極
と同じ白金/炭素を担持し、その対抗面、メタノール側
には白金:ルテニウム=1:1(モル)からなる電極物
質を同じくカーボンブラックVulkan XC72上
にカーボンブラックに対して20%となるように担持し
た電極物質を貼り付けた。バインダーとしては両面とも
にNafion液とし、触媒の10%(重量)とした。
電極物質量は白金+ルテニウムで40g/m2であっ
た。なお担持はホットプレスにより2kg/cm2、温
度150℃によった。この電解部MEAの白金極を燃料
電池Pd側に接着した。またメタノール電極側には通電
体として、酸素極側と同じニッケル編メッシュを取り付
けた。このようにして作成した構造体の電解側にメタノ
ールと水の1:1混合液を滴下した。また酸素極側に酸
素ガスを供給した。負荷として可変抵抗を取り付け、最
初乾電池で通電した。水素発生により発電が始まった。
電流密度を変えて発電電圧を測定したところ以下になっ
た。なお運転温度は50℃であった。 「実施例2」実施例1と同じ燃料電池部分を使い水素極
表面に1μmのパラジウム箔をおきその上に白金を担持
したカーボンブラックを、エチルアルコールをバインダ
ーとして作成したペイントを塗布し乾燥後Nafion
液を3回塗布した。その表面に実施例1と同じに準備し
た電解用メタノール電解電極物質をペイントした。これ
を実施例1と同じホットプレス条件で一体化した。この
ものについて実施例1と同じ条件で発電を調べた。なお
最初の通電のためにはソーラーセルに逆電流防止装置を
取り付けて使用した。この場合は10A/dm2で0.
5Vから0.52Vであった。
[Embodiment] "Embodiment 1" A diameter of 0.2 as a base material and an electric conductor
Using a net mesh made by knitting a nickel wire of mm,
MEA manufactured by E-TEK was attached to the surface as a fuel cell unit by hot pressing. Nickel mesh is on the oxygen electrode side, hot press conditions are 150 ° C, pressure 2 kg
It was / cm2. This MEA has an ion exchange membrane of N
The afion 115 was 40 g / m2 of platinum on the hydrogen electrode and 20 g / m2 of platinum on the air electrode side. The platinum was supported on carbon black Vulkan XC-72. A palladium metal film was applied to the surface facing the nickel mesh by vapor deposition to a thickness of about 1 μm. Pd
Naf made by DuPont as a solid polymer electrolyte on the surface
The same platinum / carbon as the fuel cell oxygen electrode was supported on the palladium side using the ion115, and an electrode material composed of platinum: ruthenium = 1: 1 (mol) was mounted on the opposite side of the methanol side on the carbon black Vulkan XC72. Then, an electrode material supported so as to be 20% with respect to carbon black was attached. The binder was Nafion liquid on both sides, and was 10% (weight) of the catalyst.
The amount of electrode material was 40 g / m 2 with platinum and ruthenium. The loading was carried out by hot pressing at 2 kg / cm2 and a temperature of 150 ° C. The platinum electrode of this electrolysis part MEA was bonded to the fuel cell Pd side. The same nickel knitted mesh as that on the oxygen electrode side was attached to the methanol electrode side as an electric conductor. A 1: 1 mixture of methanol and water was added dropwise to the electrolysis side of the structure thus prepared. Further, oxygen gas was supplied to the oxygen electrode side. A variable resistor was attached as a load, and the battery was first energized. Power generation started due to hydrogen generation.
When the generated voltage was measured while changing the current density, the results were as follows. The operating temperature was 50 ° C. [Example 2] Using the same fuel cell part as in Example 1, a 1 μm palladium foil was placed on the surface of the hydrogen electrode and platinum was carried on the carbon black, and a paint prepared using ethyl alcohol as a binder was applied and dried, followed by Nafion.
The solution was applied three times. A methanol electrolysis electrode material for electrolysis prepared in the same manner as in Example 1 was painted on the surface. This was integrated under the same hot press conditions as in Example 1. The power generation of this product was examined under the same conditions as in Example 1. For the first energization, a reverse current prevention device was attached to the solar cell and used. In this case, it is 0 A at 10 A / dm2.
It was from 5V to 0.52V.

【0010】[0010]

【発明の効果】本発明により、特に携帯用も小型燃料電
池システムとして実質的な取り扱いはメタノール直接型
と同等であるが、電力効率が改良され、しかもメタノー
ルの透過による効率の低下がなくなり、メタノールによ
る酸素極へのガス供給の阻止それに伴う効率低下という
問題がなくなり取り扱いが極めて容易になった。つまり 1) メタノールの改質のよる水素発生を電解部分で
行うことにより、メタノール透過(cross ove
r)による効率低下の問題が完全に解消された。 2) 燃料電池部分は水素燃料PEMFCであるの
で、極めて効率を高く保持できると共に安定な運転が可
能となった。 3) 従来のメタノール直接型燃料電池方式とほぼ同
じ大きさで改質部分と燃料電池部分を形成でき、構造的
には極めてシンプルである。 4) 燃料電池部分は純水素燃料型であるので、電極
触媒が単純になりしかもその量が少なくて済むという特
徴がある。 5) メタノール燃料電池では電源off時に燃料を
完全に抜かないと電池内に充満してしまい、運転再開時
に充満した燃料を抜かなければならない、或いは電源o
ff時に燃料を抜くような機構が必要であり、構造が複
雑になるが、本発明で電解槽内に燃料が充満していても
差し支えないので、燃料系統の構造が簡単になると共
に、on−offを行うような装置の電源として特に優
れている。 6) 燃料系の特殊な操作を要しないのでその操作性
は通常の二次電池とほぼ同じであり極めて良好である。
しかも二次電池と異なり、燃料を入れるだけで長時間を
要する充電操作が不要であり取り理扱いが容易になる。
等の効果が得られた。
EFFECTS OF THE INVENTION According to the present invention, the portable fuel cell system is substantially the same as the direct methanol type in a small fuel cell system, but the power efficiency is improved, and the efficiency is not lowered due to the permeation of methanol. The prevention of gas supply to the oxygen electrode due to the elimination of the problem of reduced efficiency associated therewith has become extremely easy to handle. In other words, 1) By carrying out hydrogen generation by reforming methanol in the electrolysis portion, methanol permeation (cross over)
The problem of reduced efficiency due to r) has been completely resolved. 2) Since the fuel cell part is a hydrogen fuel PEMFC, the efficiency can be kept extremely high and stable operation is possible. 3) The reforming portion and the fuel cell portion can be formed with substantially the same size as the conventional direct methanol fuel cell system, and the structure is extremely simple. 4) Since the fuel cell part is a pure hydrogen fuel type, it has a feature that the electrode catalyst is simple and the amount thereof is small. 5) In a methanol fuel cell, if the fuel is not completely drained when the power is off, the cell will fill up and must be drained when the operation is restarted.
A mechanism for draining fuel at the time of ff is required, which makes the structure complicated. However, since the present invention may fill the electrolytic cell with fuel, the structure of the fuel system is simplified and the on- It is particularly excellent as a power source for a device that performs off. 6) Since no special operation of the fuel system is required, its operability is almost the same as that of an ordinary secondary battery and is extremely good.
Moreover, unlike secondary batteries, charging operation that requires a long time just by adding fuel is not necessary, and handling is easy.
And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池の断面構造の模式図であ
る。
FIG. 1 is a schematic diagram of a cross-sectional structure of a fuel cell according to the present invention.

【符号の説明】 メタノールから水素を製造する電解部分 発生水素を燃料とする燃料電池部分 水素透過膜 集電体 陽イオン交換膜(高分子固体電解質) 電解部分陽極(メタノール極) 電解部分陰極(水素発生極) 燃料電池負極(水素極) 燃料電池正極(酸素・空気極)[Explanation of symbols]   Electrolysis part for producing hydrogen from methanol   Fuel cell part using generated hydrogen as fuel   Hydrogen permeable membrane   Current collector   Cation exchange membrane (polymer solid electrolyte)   Electrolytic partial anode (methanol electrode)   Electrolytic partial cathode (hydrogen generating electrode)   Fuel cell negative electrode (hydrogen electrode)   Fuel cell positive electrode (oxygen / air electrode)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K021 AA01 BA06 DB31 DB53 DC15 5H026 AA06 BB04 CX04 CX05 EE02 EE18 5H027 AA06 BA11    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K021 AA01 BA06 DB31 DB53 DC15                 5H026 AA06 BB04 CX04 CX05 EE02                       EE18                 5H027 AA06 BA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】陽極物質と陰極物質を高分子固体電解質に
密着させた電解ユニットと、高分子固体電解質に水素ガ
ス拡散電極と空気/酸素ガス拡散電極を密着させた燃料
電池ユニットとを、液が不透過でガスを透過できる薄層
を介して密着させ、電解ユニット部分にメタノールを供
給し、空気/酸素ガス拡散電極に酸素含有ガスを供給す
るようにしたメタノールを燃料とする燃料電池。
1. A liquid electrolyte comprising an electrolytic unit in which an anode material and a cathode material are adhered to a solid polymer electrolyte, and a fuel cell unit in which a hydrogen gas diffusion electrode and an air / oxygen gas diffusion electrode are adhered to the solid polymer electrolyte. A fuel cell that uses methanol as a fuel, which is made to be in close contact with a gas-permeable thin layer to supply methanol to the electrolysis unit and to supply an oxygen-containing gas to the air / oxygen gas diffusion electrode.
【請求項2】ガスを透過し、液が不透過な薄膜がパラジ
ウム薄膜であることを特徴とする請求項1の燃料電池。
2. The fuel cell according to claim 1, wherein the thin film which is permeable to gas and impermeable to liquid is a palladium thin film.
【請求項3】ガスを透過し、液が不透過な薄膜がパラジ
ウム薄膜であり、その片面に電解ユニットの陰極が形成
され、該パラジウム膜の対向面に燃料電池ユニットの水
素ガス拡散電極が形成されて成ることを特徴とする請求
項1の燃料電池。
3. A thin film which is permeable to gas and impermeable to liquid is a palladium thin film, a cathode of an electrolysis unit is formed on one surface of the palladium thin film, and a hydrogen gas diffusion electrode of a fuel cell unit is formed on the opposite surface of the palladium film. The fuel cell according to claim 1, wherein the fuel cell comprises:
【請求項4】ガスを透過し、液が不透過な薄膜が、高分
子膜表面にパラジウムを被覆した薄膜であることを特徴
とする請求項1、2及び3の燃料電池。
4. The fuel cell according to claim 1, wherein the thin film which is permeable to gas and impermeable to liquid is a thin film in which palladium is coated on the surface of the polymer film.
【請求項5】メタノールがメタノールと水との混合物で
あることを特徴とする請求項1の燃料電池。
5. The fuel cell according to claim 1, wherein the methanol is a mixture of methanol and water.
JP2002145437A 2002-04-12 2002-04-12 Fuel cell Pending JP2003308869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145437A JP2003308869A (en) 2002-04-12 2002-04-12 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145437A JP2003308869A (en) 2002-04-12 2002-04-12 Fuel cell

Publications (1)

Publication Number Publication Date
JP2003308869A true JP2003308869A (en) 2003-10-31

Family

ID=29397760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145437A Pending JP2003308869A (en) 2002-04-12 2002-04-12 Fuel cell

Country Status (1)

Country Link
JP (1) JP2003308869A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362966A (en) * 2003-06-05 2004-12-24 Sony Corp Fuel cell and fuel supply method
WO2006070910A1 (en) * 2004-12-28 2006-07-06 Gs Yuasa Corporation Stand-alone hydrogen production system
WO2006070908A1 (en) * 2004-12-28 2006-07-06 Gs Yuasa Corporation Fuel cell power generation device
JP2007001852A (en) * 2004-12-28 2007-01-11 Gs Yuasa Corporation:Kk Independent hydrogen producing system
JP2009514175A (en) * 2005-10-28 2009-04-02 レオニダ アンドレイ Fuel cell system suitable for fuel of complicated composition and its operating method
WO2010040897A1 (en) 2008-10-08 2010-04-15 Teknillinen Korkeakoulu Method and system for producing hydrogen, and electricity generation system
JP2011138786A (en) * 2011-02-09 2011-07-14 Toshiba Corp Membrane electrode composite, fuel cell using the same, and method for operating the fuel cell
CN102751523A (en) * 2012-07-17 2012-10-24 中国东方电气集团有限公司 Integrated cell, integrated cell stack including integrated cell and integrated cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362966A (en) * 2003-06-05 2004-12-24 Sony Corp Fuel cell and fuel supply method
WO2006070910A1 (en) * 2004-12-28 2006-07-06 Gs Yuasa Corporation Stand-alone hydrogen production system
WO2006070908A1 (en) * 2004-12-28 2006-07-06 Gs Yuasa Corporation Fuel cell power generation device
JP2007001852A (en) * 2004-12-28 2007-01-11 Gs Yuasa Corporation:Kk Independent hydrogen producing system
JP2009514175A (en) * 2005-10-28 2009-04-02 レオニダ アンドレイ Fuel cell system suitable for fuel of complicated composition and its operating method
WO2010040897A1 (en) 2008-10-08 2010-04-15 Teknillinen Korkeakoulu Method and system for producing hydrogen, and electricity generation system
JP2011138786A (en) * 2011-02-09 2011-07-14 Toshiba Corp Membrane electrode composite, fuel cell using the same, and method for operating the fuel cell
CN102751523A (en) * 2012-07-17 2012-10-24 中国东方电气集团有限公司 Integrated cell, integrated cell stack including integrated cell and integrated cell system

Similar Documents

Publication Publication Date Title
JP5587797B2 (en) Direct fuel cell without selectively permeable membrane and components thereof
TW533619B (en) Fuel cell, fuel cell generator, and equipment using the same
EP1829144B1 (en) Direct oxidation fuel cell and system operating on concentrated fuel using low oxidant stoichiometry
CA2497105A1 (en) Fuel cell electrode
CA2968036A1 (en) Apparatus for producing organic hydride and method for producing organic hydride using same
Ong et al. Applications of graphene nano-sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC)
US20020127451A1 (en) Compact direct methanol fuel cell
US20090023046A1 (en) Porous Transport Structures for Direct-Oxidation Fuel Cell System Operating with Concentrated Fuel
US20040247992A1 (en) Fuel cell
CN100521317C (en) Membrane-electrode unit for direct methanol fuel cells and method for the production thereof
JP6799368B2 (en) Equipment and methods combined with fuel cells without reformer
JP2005174872A (en) Power generating element for fuel cell and fuel cell using same
JP6998797B2 (en) Organic hydride manufacturing equipment, organic hydride manufacturing method and energy transportation method
US20090042091A1 (en) Supported catalyst layers for direct oxidation fuel cells
US20070111085A1 (en) Electrocatalyst for fuel cell-electrode, membrane-electrode assembly using the same and fuel cell
JP2003308869A (en) Fuel cell
JP2003510767A (en) Fuel cell having internal reformer and method of operating the same
JP2003317791A (en) Liquid fuel cell
JP4643393B2 (en) Fuel cell
JP5487097B2 (en) Membrane / electrode assembly for fuel cells
JP2005240064A (en) Reforming device, fuel cell system and equipment
Ma et al. Direct borohydride fuel cells—current status, issues, and future directions
Shabani et al. Unitised regenerative fuel cells
WO2004032270A1 (en) Fuel cell and method for driving fuel cell
KR102260935B1 (en) High efficiency unitized regenerative fuel cell based on polymer electrolyte membrane, method of operating the same, and method of manufacturing the same