WO2004032270A1 - Fuel cell and method for driving fuel cell - Google Patents

Fuel cell and method for driving fuel cell Download PDF

Info

Publication number
WO2004032270A1
WO2004032270A1 PCT/JP2003/012435 JP0312435W WO2004032270A1 WO 2004032270 A1 WO2004032270 A1 WO 2004032270A1 JP 0312435 W JP0312435 W JP 0312435W WO 2004032270 A1 WO2004032270 A1 WO 2004032270A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
electrode
container
fuel cell
flow path
Prior art date
Application number
PCT/JP2003/012435
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Yoshitake
Hidekazu Kimura
Takashi Manako
Yoshimi Kubo
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2004032270A1 publication Critical patent/WO2004032270A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and a driving method of the fuel cell.
  • a solid oxide fuel cell is composed of a solid electrolyte membrane such as a perfluorosulfonate membrane as an electrolyte, and a fuel electrode and an oxidizer electrode joined to both sides of the membrane.
  • This is a device that supplies oxygen to the drug electrode and generates power by an electrochemical reaction.
  • the electrochemical reaction that occurs at each electrode is as follows:
  • both electrodes are composed of a mixture of carbon fine particles carrying a catalyst substance and a solid polymer electrolyte.
  • the methanol supplied to the fuel electrode passes through the pores in the electrode and reaches the catalyst, where the methanol is decomposed and the reaction represented by the reaction formula [1] is performed.
  • the hydrogen ions reach the oxidizer electrode through the electrolyte in the electrode and the solid electrolyte membrane between the electrodes, and react with oxygen supplied to the oxidizer electrode and electrons flowing from an external circuit, as shown in the above reaction equation [2].
  • the electrons emitted from methanol are led to the external circuit through the catalyst carrier in the electrode and the electrode substrate, and flow from the external circuit to the oxidant electrode. As a result, in the external circuit, electrons flow from the fuel electrode to the oxidizer electrode, and power is extracted.
  • hydrogen ions can be obtained from an aqueous methanol solution, so that a reformer or the like is not required, and the size and weight can be reduced.
  • the benefits of applying are great.
  • liquid methanol aqueous solution As a fuel, the energy density is very high.
  • a flow channel for supplying liquid fuel is formed at the interface between the catalyst layer of the fuel electrode and the solid polymer electrolyte membrane, and flows through this groove.
  • Patent Document 1 A method has been proposed in which a gas is diffused in a liquid fuel and discharged outside the cell.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-5626-856
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-1930531 Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a fuel cell that is thin, small, lightweight, and stably exhibits a high output. Another object of the present invention is to provide a driving method of a fuel cell that stabilizes the output of the fuel cell easily.
  • a fuel cell main body having a fuel electrode, and a fuel container for storing liquid fuel, and a part of the liquid fuel supplied from the fuel container to the fuel electrode is a fuel electrode.
  • a fuel cell is provided which is configured to be collected in the fuel container together with the generated gas.
  • a gas such as carbon dioxide generated by an electrochemical reaction at a fuel electrode can be discharged to a fuel container together with a part of liquid fuel such as unused liquid fuel. .
  • This makes it possible to efficiently remove bubbles adhering to the fuel electrode, thereby improving the utilization efficiency of the catalyst at the fuel electrode. Therefore, the output of the fuel cell can be improved.
  • a fuel cell main body having a fuel electrode, a fuel container for storing liquid fuel, and a fuel supply channel and a fuel recovery channel connecting the fuel electrode and the fuel container, A fuel cell is provided, wherein a part of the liquid fuel supplied from the fuel container to the fuel electrode is collected in the fuel container together with a gas generated at the fuel electrode.
  • the gas such as carbon dioxide generated by the electrochemical reaction at the fuel electrode is discharged into the fuel recovery channel together with a part of the liquid fuel such as unused liquid fuel, and the fuel container Will be collected.
  • the fuel cell according to the present invention may be configured such that a path from the fuel electrode to the fuel container via the fuel recovery flow path is sealed.
  • the air bubbles adhering to the fuel electrode can be more efficiently discharged to the fuel container together with a part of the liquid fuel, so that the utilization efficiency of the catalyst at the fuel electrode can be improved.
  • the output of the fuel cell can be improved.
  • a path from the fuel container to the fuel container via the fuel supply flow path, the fuel recovery flow path, and the fuel electrode may be a closed system circulation path. it can.
  • the fuel cell according to the present invention has a circulating configuration in which unused fuel, which is supplied from the fuel container to the fuel electrode, is again introduced into the fuel electrode, and the fuel is sealed in the circulation path. ing. Therefore, gas such as carbon dioxide generated by the electrochemical reaction at the fuel electrode can be discharged to the fuel container together with the unused fuel. This makes it possible to efficiently remove bubbles attached to the fuel electrode, thereby improving the efficiency of using the catalyst at the fuel electrode. Therefore, the output of the fuel cell can be improved. Furthermore, since the passage of the liquid fuel is closed, the internal pressure of the fuel container increases due to the gas collected from the fuel electrode to the fuel container. By this internal pressure, the fuel in the fuel container can be pumped out to the fuel electrode. This eliminates the need for a driving means such as a pump. Therefore, the fuel cell can be made smaller and lighter. Further, power required for use in the driving means is not required, so that power can be saved.
  • the fuel cell may further include a fuel flow path provided in the fuel electrode and communicating with the fuel supply flow path and the fuel recovery flow path.
  • a fuel flow path provided in the fuel electrode and communicating with the fuel supply flow path and the fuel recovery flow path.
  • the fuel container may be provided with a pressure release member.
  • the internal pressure of the fuel container can be adjusted to an internal pressure that is sufficient for extruding the fuel and that is highly safe.
  • a method of driving a fuel cell including a fuel cell main body having an anode and a fuel container storing a liquid fuel, wherein a gas generated at the anode is supplied to the anode.
  • a fuel cell driving method is provided, wherein the fuel is collected in a fuel container together with a part of the fuel, and the liquid fuel is supplied to the fuel electrode by the pressure of the gas collected in the fuel container.
  • gas such as carbon dioxide generated by the electrochemical reaction at the fuel electrode is discharged to the fuel container together with some liquid fuel such as unused liquid fuel.
  • liquid fuel such as unused liquid fuel.
  • the bubbles attached to the fuel electrode can be efficiently removed, so that the utilization efficiency of the catalyst at the fuel electrode can be improved. Therefore, the output of the fuel cell can be improved and stabilized.
  • the internal pressure of the fuel container increases due to the gas collected from the fuel electrode to the fuel container. By this internal pressure, the fuel in the fuel container can be pumped out to the fuel electrode. By doing so, the fuel cell can be operated without using a driving means such as a pump. Therefore, the size and weight of the fuel cell can be further reduced.
  • power required for use in the driving means is not required, power can be saved.
  • a fuel cell including a fuel cell main body including a fuel electrode, a fuel container storing liquid fuel, and a fuel supply flow path and a fuel recovery flow path connecting the fuel electrode and the fuel container is provided.
  • the gas generated at the fuel electrode is recovered in the fuel container via the fuel recovery flow path together with a part of the liquid fuel supplied to the fuel electrode, and is recovered in the fuel container.
  • a method for driving a fuel cell is provided, wherein the liquid fuel is supplied to the fuel electrode via the fuel supply channel by the pressure of the gas.
  • the electrochemical reaction at the fuel electrode The generated gas such as carbon dioxide is discharged to the fuel recovery channel together with some liquid fuel such as unused liquid fuel, and is recovered in the fuel container.
  • This makes it possible to efficiently remove bubbles attached to the fuel electrode, thereby improving the efficiency of use of the catalyst at the fuel electrode. Therefore, the output of the fuel cell can be improved and stabilized.
  • the internal pressure of the fuel container rises due to the gas collected from the fuel electrode to the fuel container. With this internal pressure, the fuel in the fuel container can be pumped out to the fuel electrode via the fuel supply channel. By doing so, the fuel cell can be operated without using driving means such as a pump. Therefore, the fuel cell can be made smaller and lighter.
  • power required for use in the driving means is not required, power can be saved.
  • the internal pressure of the fuel container may be controlled by a pressure release member provided in the fuel container.
  • the internal pressure of the fuel container can be controlled to an internal pressure that is high enough to express the fuel and high in safety, so that the fuel cell can operate safely and exhibit a high output.
  • a part of the liquid fuel supplied from the fuel container to the fuel electrode is collected in the fuel container together with the gas generated at the fuel electrode, thereby achieving a thin, small, and lightweight structure.
  • the gas generated at the fuel electrode is recovered in the fuel container together with a part of the liquid fuel supplied to the fuel electrode, and the liquid fuel is supplied to the fuel electrode by the pressure of the gas recovered in the fuel container.
  • FIG. 1 is a diagram showing an example of a configuration of a fuel cell according to the present invention.
  • FIG. 2 is a diagram showing an example of the configuration of the fuel electrode side current collector of the fuel cell according to the present invention.
  • FIG. 3 is a diagram showing an example of the configuration of the fuel cell according to the present invention.
  • FIG. 4 is a cross-sectional view of the fuel electrode shown in FIG. 3 in the AA ′ direction.
  • FIG. 5 is a diagram showing an example of the configuration of the fuel cell according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a sectional view schematically showing the structure of a fuel cell 100 according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the fuel electrode 102 in FIG. 1 in the AA ′ direction.
  • the catalyst electrode-solid electrolyte membrane assembly 101 is composed of a fuel electrode 102, an oxidizer electrode 108, and a solid electrolyte membrane 114.
  • the fuel electrode and the oxidant electrode are collectively called a catalyst electrode.
  • the fuel electrode 102 includes a substrate 104 and a catalyst layer 106.
  • the oxidant electrode 108 is composed of a base 110 and a catalyst layer 112.
  • One or more catalyst electrode-solid electrolyte membrane assemblies 101 are electrically connected via a fuel electrode side current collector 120 and an oxidant electrode side current collector 122.
  • a fuel supply line 435 and a fuel return line 437 are provided between the fuel container 425 and the fuel electrode side current collector 120.
  • a fuel flow path 4 33 is formed in the fuel electrode side current collector 120, and one end of the fuel flow path 4 33 is connected to one end of the fuel supply line 4 35, and the fuel flow path 4 The other end is connected to one end of the fuel return line 437.
  • the fuel electrode side current collector 120 for example, carbon or metal can be used.
  • the method of forming the fuel flow path 4 33 to the anode-side current collector 120 but, for example, a method of forming the anode-side current collector 120 at the same time as forming the plate into a plate shape And a method of forming a plate-shaped material by machining.
  • each catalyst electrode was connected to the solid electrolyte membrane.
  • Fuel 124 is supplied to the fuel electrode 102 of the combined unit 101 via the fuel electrode-side current collector 120. Further, the oxidant electrode 126 of the catalyst electrode-solid electrolyte membrane assembly 101 is supplied with the oxidant 126 via the oxidant electrode side current collector 122.
  • organic liquid fuel such as methanol, ethanol, dimethyl ether, other alcohols, or liquid hydrocarbon such as cycloparaffin can be used.
  • the organic liquid fuel can be an aqueous solution.
  • the oxidizing agent 126 air can be usually used, but oxygen gas or the like may be supplied.
  • the fuel 124 When the fuel 124 is supplied from the fuel container 425 to the anode-side current collector 120 through the fuel supply line 435, when the fuel 124 is methanol, the fuel is represented by the above reaction formula [1]. Since the reaction mainly occurs, a gas mainly including carbon dioxide is generated. The generated gas, together with the unconsumed fuel 1 24, is guided from the fuel flow path 4 3 3 through the fuel return line 4 3 7 to the fuel container 4 25. Then, the internal pressure of the fuel container 4 25 rises due to the gas led from the fuel electrode 102. Due to this increase in the internal pressure, the fuel 124 is pumped out of the fuel container 425 to the fuel supply line 435.
  • the fuel flow path 4 33 is formed in the fuel electrode side current collector 120, and the collection path of the fuel 124 is excellent in sealing property. Is recirculated from the fuel container 4 25 again, so that the fuel 124 can be efficiently supplied to the fuel electrode 102 without using a fuel delivery member such as a pump. The gas generated at the fuel electrode 102 can be quickly removed. Therefore, it is small and has high output stability.
  • the battery of FIG. 1 can be suitably used for a direct methanol fuel cell.
  • gas mainly composed of carbon dioxide generated at the fuel electrode 102 is efficiently collected in the fuel container 425.
  • the internal pressure of the fuel container 425 rises due to the collected gas, the internal pressure of the fuel container 425 becomes a driving force, and the aqueous methanol solution in the fuel container 425 is pressed out to the fuel electrode 102.
  • FIG. 3 is a diagram showing an example of another configuration of the fuel cell 100.
  • FIG. 4 is a cross-sectional view of the fuel electrode 102 in FIG. 3 in the AA ′ direction.
  • the base body 104 and the base body 110 are respectively joined to the fuel electrode side current collector plate 421, and the oxidizer electrode side current collector plate 423. Configuration. Further, the outer periphery of the fuel electrode 102 is covered with a fuel leakage prevention member 445 to ensure hermeticity.
  • a fuel supply line 4 35 and a fuel return line 4 37 are connected to the fuel electrode side current collector plate 4 21, and fuel 124 is supplied from the fuel container 4 25.
  • the fuel leakage prevention member 445 for example, a metal thin film film or a laminate film composed of a metal thin film and a heat-fusible resin film can be used.
  • the fuel electrode side current collector plate 421 and the oxidant electrode side current collector plate 423 for example, a porous plate-mesh of a conductive metal or an alloy thereof can be used.
  • the oxidizer electrode 108 can be provided with an oxidizer electrode side terminal 449 as appropriate.
  • a line opening / closing member such as a valve linked to the power supply of a device on which the fuel cell is mounted is provided in the fuel supply line 435 or the fuel return line 437.
  • a material having corrosion resistance to organic liquid fuel can be used for the fuel container 4 25, the fuel supply line 4 35, and the fuel return line 4 37. Further, it is preferable that the weight is as light as possible. Further, it is preferable to provide a pressure release member 439 on the outer wall of the fuel container 425. By doing so, when the internal pressure of the fuel container 4 25 reaches a certain value, for example, 2 atm, the gas inside the fuel container 4 25 can be automatically released, so that the fuel container 4 25 The internal pressure can be kept constant.
  • a pressure release valve or a permeable membrane of gas generated at the fuel electrode 102 can be used as the pressure release member 439.
  • a carbon dioxide permeable membrane can be provided.
  • the side surface of the fuel electrode 102 and the periphery of the circulation path of the fuel 124 may be appropriately sealed with a sealing material.
  • the supply of the fuel 124 to the fuel container 425 may be performed, for example, by injection. it can. In addition, it is also possible to use a cartridge containing fuel and replace it.
  • a method of starting the fuel cell 100 in the initial stage for example, a method of using a spare power supply can be used.
  • a small liquid supply pump can be driven by a spare power supply mounted on the device to supply fuel 124 to fuel electrode 102.
  • a small piezoelectric pump such as a bimorph type piezoelectric pump can be used.
  • the fuel container 4 25 has a two-chamber structure, and the fuel electrode 102 is provided with a fuel absorbing material 45 1 for absorbing the fuel 124 so that the fuel 124 is It can also be supplied after being absorbed by the pole 102.
  • the fuel absorber 4 51 is provided in contact with the fuel electrode side current collector 4 21. By doing so, the fuel 124 can be efficiently supplied to the entire surface of the fuel electrode side current collector plate 421.
  • the material of the fuel absorber 451 is no particular limitation on the material of the fuel absorber 451, but for example, urethane or the like can be used.
  • the solid electrolyte membrane 114 has a role of separating the fuel electrode 102 and the oxidant electrode 108 and of transferring hydrogen ions between the two.
  • the solid electrolyte membrane 114 is preferably a membrane having high conductivity of hydrogen ions. Further, it is preferable that it is chemically stable and has high mechanical strength.
  • an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphate group or a weak acid group such as a carboxyl group is preferably used.
  • organic polymers examples include aromatic condensed polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole; Perfluorocarbon containing (Nafion (DuPont) (registered trademark), Aspirex (Asahi Kasei Corporation)); perfluorocarbon containing carboxyl group (Flemion S membrane (Asahi Glass Co., Ltd.) (registered trademark)); Etc. are exemplified.
  • the fuel electrode 102 and the oxidant electrode 108 are respectively formed of a catalyst layer 106 and a catalyst layer 112 each containing carbon particles carrying a catalyst and fine particles of a solid electrolyte, as a substrate 104 and a substrate, respectively.
  • a structure formed on 110 can be adopted.
  • the surfaces of the substrate 104 and the substrate 110 may be subjected to a water-repellent treatment. Platinum, gold, silver, ruthenium, orifice, palladium, osmium, iridium, cobalt, nickel, rhenium, lithium, lanthanum, strontium, yttrium, or these Alloys etc. are shown.
  • the same catalyst as that for the catalyst layer 106 on the fuel electrode 102 side can be used, and the above-mentioned exemplified substances can be used. You.
  • the catalysts of the catalyst layer 106 and the catalyst layer 112 may be the same or different.
  • Examples of the carbon particles supporting the catalyst include acetylene black (Denka Black (manufactured by Denki Kagaku) (registered trademark), XC72 (manufactured by Vulcan), etc.), Ketjen Black, carbon nanotubes, carbon nanohorn, etc. Is done.
  • the fine particles of the solid electrolyte in the catalyst layer 106 and the catalyst layer 112 may be the same or different.
  • the solid electrolyte fine particles the same material as the solid electrolyte membrane 114 can be used, but a material different from the solid electrolyte membrane 114 or a plurality of materials can also be used.
  • the base material 104 and the base material 110 are made of carbon paper, molded carbon, sintered carbon, sintered metal, foamed metal, etc. Substrates can be used. Further, a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate 104 and the substrate 110.
  • the method of manufacturing the fuel cell 100 is not particularly limited, but can be manufactured, for example, as follows.
  • the fuel electrode 102 and the oxidant electrode 108 can be obtained, for example, by the following method. First, a catalyst is supported on carbon particles by a generally used impregnation method. Next, the carbon particles carrying the catalyst and the fine particles of the solid electrolyte are dispersed in a solvent to form a paste, which is then applied to the substrate 104 or the substrate 110 that has been subjected to the water-repellent treatment.
  • the method for applying the paste to the substrate 104 or 110 is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used.
  • the fuel electrode 102 and the oxidizer electrode 108 are obtained by drying at a heating temperature of 100 ° C. to 25 O and a heating time of 30 seconds to 30 minutes. It is.
  • the solid electrolyte membrane 114 when the solid electrolyte membrane 114 is composed of an organic polymer material, the solid electrolyte membrane 114 may be formed of a liquid obtained by dissolving or dispersing the organic polymer material in a solvent by using a peelable sheet such as polytetrafluoroethylene. It can be obtained by casting and drying on the like.
  • the solid electrolyte membrane 114 is sandwiched between the fuel electrode 102 and the oxidant electrode 108 and hot-pressed to obtain a catalyst electrode-solid electrolyte membrane assembly 101.
  • the catalyst layer 106 and the catalyst layer 112 are in contact with the solid electrolyte membrane 114.
  • the hot pressing conditions are the softening temperature of these organic polymers. Or a temperature exceeding the glass transition temperature. Specifically, for example, temperature 100 T: ⁇ 25 O: pressure 1 kg Z cm 2 ⁇ l 0 kg Z cm 2 , time 10 seconds ⁇
  • the catalyst electrode-solid electrolyte membrane assembly 101 formed as described above has a single cell structure, and is stacked via the fuel electrode side current collector 120 and the oxidant electrode side current collector 122 Thus, a fuel cell stack in which a plurality of single cell structures are connected in series can be provided.
  • the fuel 124 is supplied to the fuel electrode 102 by the pressure of the gas collected in the fuel tank 4, high output is stably exhibited, and the fuel cell is small and lightweight.
  • the use of the fuel cell according to the present embodiment is not particularly limited, for example, a portable type such as a mobile phone, a notebook computer, a PDA (Personal Digital Assistant), various cameras, a navigation system, a portable music player, etc. Suitable for small electrical equipment.
  • a portable type such as a mobile phone, a notebook computer, a PDA (Personal Digital Assistant), various cameras, a navigation system, a portable music player, etc. Suitable for small electrical equipment.
  • a direct methanol fuel cell for a mobile phone having the configuration shown in FIG. 1 was manufactured.
  • 0.19 mm thick carbon paper manufactured by Toray Industries, Inc.
  • a catalyst layer was formed on the carbon paper surface as follows.
  • a colloidal dispersion of the solid polymer electrolyte was prepared.
  • the catalyst used for the fuel electrode is carbon fine particles (denka black; manufactured by Denki Kagaku Co., Ltd.) using 50% by weight of a platinum-ruthenium alloy catalyst with a particle diameter of 3 to 5 nm supported by catalyst.
  • catalyst-supported carbon fine particles in which 50% by weight of a platinum catalyst having a particle diameter of 3 to 5 nm was supported on carbon fine particles (Denka Black; manufactured by Denki Kagaku) in a weight ratio of 50% were used.
  • the catalyst-supporting carbon fine particles were added to a colloidal dispersion of a solid polymer electrolyte, and the mixture was made into a paste using an ultrasonic disperser.
  • the mixing was performed so that the weight ratio of the solid polymer electrolyte and the catalyst was 1: 1.
  • This paste was applied on carbon paper by 2 mgZcm 2 by screen printing, and then heated and dried to produce a fuel cell electrode.
  • This electrode was hot-pressed on both sides of a solid electrolyte membrane Naphion 112 manufactured by DuPont at a temperature of 130 and a pressure of 10 kgZcm 2 to produce a catalyst electrode-solid electrolyte membrane assembly 101.
  • the obtained catalyst electrode-solid electrolyte membrane assembly 101 was sandwiched between a fuel electrode side current collector 120 and an oxidant electrode side current collector 122, and fastened with a port and a nut.
  • carbon was used for the fuel electrode side current collector 120 and the oxidant electrode side current collector 122.
  • the fuel electrode side current collector 120 was provided with a fuel flow channel 433 shown in FIG. 2 by machining on a carbon plate having a thickness of 1 mm. Thus, a fuel cell body was obtained.
  • a fuel supply line 435 and one end of a fuel return line 437 were connected to the obtained fuel cell body, and the other end of these lines was connected to a fuel container 425 made of aluminum.
  • a pressure relief valve designed to release pressure at 2.0265 ⁇ 10 5 Pa was installed as a pressure relief member 439 on the upper part of the aluminum fuel container 425.
  • the fuel supply line 435 and the fuel return line 437 have a 1 mm inner diameter Teflon (registered (Trademark) tube was used.
  • a 5 v / v% methanol aqueous solution was injected as fuel 124 into the fuel container 425 of the fuel cell 100 thus obtained. Then, the time change of the voltage of the fuel cell 100 was measured under a load condition of a current of 500 mA.
  • the voltage fluctuation with respect to the output voltage of 3.5 V was 0.2 V or less. Therefore, in this example, it was confirmed that the fuel cell 100 exhibited a stable output. Further, the internal pressure of the fuel container 4 2 5 at this time, it was also confirmed to be stable at around 2 xl 0 5 P a.
  • a fuel cell 100 was manufactured and evaluated in the same manner as in Example 1.
  • the fuel electrode side current collector 120 was used as the substrate 104. That is, a fuel flow channel 433 having the shape shown in FIG. 2 was formed in the carbon current collector, and the catalyst layer 106 was formed directly on the surface where the fuel flow channel 433 was provided.
  • the obtained fuel cell 100 was subjected to a continuous load test for 24 hours under the same conditions as in Example 1. As a result, the maximum voltage variation with respect to the output voltage of 3.5 V was 0.25 V. Therefore, also in this example, it was confirmed that the fuel cell 100 exhibited a stable output. Further, the internal pressure of the fuel container 4 2 5 at this time, it was also confirmed to be stable at around 2 xl 0 5 P a.
  • the fuel container 4 25 was directly connected to the fuel electrode 102 without providing the fuel flow path 4 33, the fuel supply line 4 35 5 and the fuel recovery line 4 37 in the fuel electrode 102.
  • a fuel cell for supplying fuel was manufactured by contact. The fabrication of the fuel cell was performed in the same manner as in Example 1.
  • Example 2 The obtained fuel cell was subjected to a continuous load test for 24 hours under the same conditions as in Example 1. As a result, the maximum voltage fluctuation with respect to the output voltage of 3.5 V was 2.5 V. In the fuel cell according to this comparative example, since the fuel flow path 433, the fuel supply line 435, and the fuel recovery line 433 are not provided, carbon dioxide generated at the fuel electrode 102, etc. Gas could not be removed, leading to a decrease in output. (Comparative Example 2)
  • a fuel cell was manufactured in the same manner as in Example 1, except that the fuel return line 437 was not provided between the fuel electrode 102 and the fuel container 425.
  • the obtained fuel cell was subjected to a continuous load test for 24 hours under the same conditions as in Example 1.
  • a voltage fluctuation of a maximum of 2.5 V was observed with respect to the output voltage of 3.5 V.
  • the fuel return line 4 is provided between the fuel electrode 102 and the fuel container 4 25.
  • Example 1 a fuel cell having a configuration in which a fuel pump with power consumption of 1 W is provided between the fuel container 4 25 and the catalyst electrode-solid electrolyte membrane assembly 101 without the provision of 3 7 was provided. It was made.
  • the obtained fuel cell was subjected to a continuous load test for 24 hours under the same conditions as in Example 1. As a result, the voltage fluctuation with respect to the output voltage of 3.5 V was 0.2 V or less.
  • the fuel supply line 435 and the fuel return line 433 are provided between the fuel electrode 102 and the fuel container 425.
  • the inside of the fuel container 4 25 was naturally pressurized by gas such as carbon dioxide generated at the fuel electrode 102, and the same level of output stability as when a liquid feed pump was used was secured. .

Abstract

In a fuel cell (100), a fuel electrode (102) is provided with a fuel channel. One end of the fuel channel is connected to one end of a fuel supply line (435), and the other end is connected to one end of a fuel return line (437). The other ends of the fuel supply line (435) and fuel return line (437) are connected to a fuel container (425). Meanwhile, a fuel (124) is hermetically sealed in a route from the fuel channel to the fuel container (425) through the fuel return line (437).

Description

明 細 書 燃料電池および燃料電池の駆動方法 技術分野  Description Fuel cell and fuel cell driving method
本発明は、 燃料電池および燃料電池の駆動方法に関する。 背景技術  The present invention relates to a fuel cell and a driving method of the fuel cell. Background art
固体電解質型燃料電池は、パーフルォロスルフォン酸膜等の固体電解質膜を電解 質とし、 この膜の両面に燃料極および酸化剤極を接合して構成され、燃料極に水素 やメタノール、酸化剤極に酸素を供給して電気化学反応により発電する装置である。 各電極で生じる電気化学反応は、 燃料極では、 メタノールを用いた場合、  A solid oxide fuel cell is composed of a solid electrolyte membrane such as a perfluorosulfonate membrane as an electrolyte, and a fuel electrode and an oxidizer electrode joined to both sides of the membrane. This is a device that supplies oxygen to the drug electrode and generates power by an electrochemical reaction. The electrochemical reaction that occurs at each electrode is as follows:
CH3OH + H20→6H + +C02+ 6 e- [1] CH 3 OH + H 2 0 → 6H + + C0 2 + 6 e- [1]
であり、 また、 酸化剤極では、 And at the oxidant electrode,
3/202+6H + +6 e-→3H20 [2] 3/20 2 + 6H + +6 e- → 3H 2 0 [2]
である。この反応を起こすために両電極は触媒物質が担持された炭素微粒子と固体 高分子電解質との混合体より構成されている。 It is. In order to cause this reaction, both electrodes are composed of a mixture of carbon fine particles carrying a catalyst substance and a solid polymer electrolyte.
この構成において燃料としてメタノールを用いた場合、燃料極に供給されたメタ ノールは、電極中の細孔を通過して触媒に達し、触媒によりメタノールが分解され て、 上記反応式 [1] の反応で電子と水素イオンが生成される。 水素イオンは電極 中の電解質及び両電極間の固体電解質膜を通って酸化剤極に達し、酸化剤極に供給 された酸素と外部回路より流れ込む電子と反応して上記反応式 [2]のように水を 生じる。一方、 メタノールより放出された電子は電極中の触媒担体および電極基体 を通って外部回路へ導き出され、 外部回路より酸化剤極に流れ込む。 この結果、 外 部回路では燃料極から酸化剤極へ向かって電子が流れ電力が取り出される。  When methanol is used as the fuel in this configuration, the methanol supplied to the fuel electrode passes through the pores in the electrode and reaches the catalyst, where the methanol is decomposed and the reaction represented by the reaction formula [1] is performed. Generates electrons and hydrogen ions. The hydrogen ions reach the oxidizer electrode through the electrolyte in the electrode and the solid electrolyte membrane between the electrodes, and react with oxygen supplied to the oxidizer electrode and electrons flowing from an external circuit, as shown in the above reaction equation [2]. Generates water. On the other hand, the electrons emitted from methanol are led to the external circuit through the catalyst carrier in the electrode and the electrode substrate, and flow from the external circuit to the oxidant electrode. As a result, in the external circuit, electrons flow from the fuel electrode to the oxidizer electrode, and power is extracted.
このように、直接型の燃料電池では、 メタノール水溶液から水素イオンを得るこ とができるので、 改質器等が不要になり、 小型化および軽量化を図ることができ、 携帯型の電子機器へ適用することの利点が大きい。 また、液体のメタノール水溶液 を燃料とするため、 エネルギー密度が非常に高いという特徴がある。 As described above, in a direct fuel cell, hydrogen ions can be obtained from an aqueous methanol solution, so that a reformer or the like is not required, and the size and weight can be reduced. The benefits of applying are great. In addition, liquid methanol aqueous solution As a fuel, the energy density is very high.
ところが、従来のダイレクトメタノール型燃料電池においては、上記反応式 [ 1 ] で生成した二酸化炭素、 または反応式 [ 1 ] の中間生成物である一酸化炭素が燃料 極電極中の細孔に溜まり燃料の供給を阻害するため、発電効率が低下したり、有効 な触媒の表面を減少させて出力の低下が生じる。 このため、電極表面に泡状に吸着 した気体の排出の措置が必要である。  However, in a conventional direct methanol fuel cell, carbon dioxide generated by the above reaction formula [1] or carbon monoxide, which is an intermediate product of the reaction formula [1], accumulates in pores in the fuel electrode and the fuel As a result, the power generation efficiency is reduced and the effective catalyst surface is reduced, resulting in a decrease in output. Therefore, it is necessary to take measures to discharge the gas adsorbed in the form of bubbles on the electrode surface.
電極表面に泡状に吸着した気体を排出する方法として、燃料極の触媒層と、 固体 高分子電解質膜との界面部分に液体燃料を供給するための流路溝を形成し、この溝 を流れる液体燃料中に気体を拡散させ、電池外部に排出するという方法が提案され ている (特許文献 1 )。  As a method of discharging the gas adsorbed in a bubble shape on the electrode surface, a flow channel for supplying liquid fuel is formed at the interface between the catalyst layer of the fuel electrode and the solid polymer electrolyte membrane, and flows through this groove. A method has been proposed in which a gas is diffused in a liquid fuel and discharged outside the cell (Patent Document 1).
しかし、特許文献 1に記載の方法では、燃料を送液ポンプによって供給すること により、燃料極中に発生した気泡を電極から取り除いていたため、携帯型の電子機 器への適用が困難であるという課題を有していた。なぜなら、たとえば携帯電話用 電源など、 携帯型の電子機器に適用する場合、 電源の容積が小さく、 また、 利用可 能な電力に制限があるため、比較的大型で消費電力の大きいポンプを機器内に設け て燃料の送液を行うことが困難だからである。  However, in the method described in Patent Document 1, since bubbles generated in the fuel electrode are removed from the electrode by supplying the fuel by the liquid feed pump, it is difficult to apply the method to a portable electronic device. Had issues. This is because, when applied to portable electronic devices, such as power supplies for mobile phones, the capacity of the power supply is small and the available power is limited. This is because it is difficult to feed the fuel by setting it up at the same time.
一方、 ポンプなどを用いずに液体燃料を供給する方法として、液体燃料を燃料収 容容器から毛管力によってセル内に導入し、これを気化して燃料極に供給する方法 が提案されている (特許文献 2 )。  On the other hand, as a method for supplying liquid fuel without using a pump or the like, a method has been proposed in which liquid fuel is introduced from a fuel storage container into a cell by capillary force, and is vaporized and supplied to a fuel electrode ( Patent Document 2).
しかし、特許文献 2に記載の方法では、燃料電池本体において発生したガスを燃 料収容容器内に導くためのガス導入細管を設けることができるものの、ガスが燃料 極から外圧等によって排出される構成になっていないため、ガスの除去効果が充分 ではなかった。 さらに、 燃料収容容器に導かれるガスは、 燃料収容容器が負圧とな らないためのものであるため、燃料収容容器から燃料電池本体への燃料の供給力も 不充分であり、 高い出力を安定的に発揮させることが困難であった。  However, in the method described in Patent Document 2, although a gas introduction thin tube for guiding gas generated in the fuel cell body into the fuel container can be provided, the gas is discharged from the fuel electrode by external pressure or the like. Therefore, the gas removal effect was not sufficient. Furthermore, since the gas introduced into the fuel container is for preventing the fuel container from becoming a negative pressure, the fuel supply from the fuel container to the fuel cell body is insufficient, and a high output is stabilized. It was difficult to make it manifest.
特許文献 1 特開 2 0 0 2 - 5 6 8 5 6号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 2000-5626-856
特許文献 2 特開 2 0 0 1 - 9 3 5 5 1号公報 発明の開示 Patent Document 2 Japanese Patent Application Laid-Open No. 2000-1930531 Disclosure of the invention
本発明は上記事情に鑑みなされたものであり、 薄型、 小型軽量であって、 かつ高 い出力が安定的に発揮される燃料電池を提供することを目的とする。本発明の別の 目的は、燃料電池の出力を簡便に安定させる、燃料電池の駆動方法を提供すること にある。  The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a fuel cell that is thin, small, lightweight, and stably exhibits a high output. Another object of the present invention is to provide a driving method of a fuel cell that stabilizes the output of the fuel cell easily.
本発明によれば、燃料極を備える燃料電池本体と、液体燃料を貯蔵する燃料容器 とを有し、前記燃料容器から前記燃料極に供給された前記液体燃料の一部が、前記 燃料極で発生した気体とともに前記燃料容器に回収されるように構成されたこと を特徴とする燃料電池が提供される。  According to the present invention, there is provided a fuel cell main body having a fuel electrode, and a fuel container for storing liquid fuel, and a part of the liquid fuel supplied from the fuel container to the fuel electrode is a fuel electrode. A fuel cell is provided which is configured to be collected in the fuel container together with the generated gas.
本発明に係る燃料電池によれば、燃料極における電気化学反応により生じた二酸 化炭素等の気体を、未使用の液体燃料などの一部の液体燃料とともに燃料容器へ排 出することができる。 こうすることにより、燃料極に付着した気泡を効率よく除去 することができるため、燃料極における触媒の利用効率を向上させることができる。 よって、 燃料電池の出力を向上させることができる。  According to the fuel cell of the present invention, a gas such as carbon dioxide generated by an electrochemical reaction at a fuel electrode can be discharged to a fuel container together with a part of liquid fuel such as unused liquid fuel. . This makes it possible to efficiently remove bubbles adhering to the fuel electrode, thereby improving the utilization efficiency of the catalyst at the fuel electrode. Therefore, the output of the fuel cell can be improved.
本発明によれば、燃料極を備える燃料電池本体と、液体燃料を貯蔵する燃料容器 と、前記燃料極と前記燃料容器とを接続する燃料供給流路ぉよび燃料回収流路とを 有し、前記燃料容器から前記燃料極に供給された前記液体燃料の一部が、前記燃料 極で発生した気体とともに前記燃料容器に回収されるように構成されたことを特 徵とする燃料電池が提供される。  According to the present invention, there is provided a fuel cell main body having a fuel electrode, a fuel container for storing liquid fuel, and a fuel supply channel and a fuel recovery channel connecting the fuel electrode and the fuel container, A fuel cell is provided, wherein a part of the liquid fuel supplied from the fuel container to the fuel electrode is collected in the fuel container together with a gas generated at the fuel electrode. You.
本発明に係る燃料電池においては、燃料極における電気化学反応により生じた二 酸化炭素等の気体が、未使用の液体燃料などの一部の液体燃料とともに燃料回収流 路へと排出され、燃料容器に回収される。 こうすることによって、 燃料極に付着し た気泡を効率よく除去することができるため、燃料極における触媒の利用効率を向 上させることができる。 よって、 燃料電池の出力を向上させることができる。  In the fuel cell according to the present invention, the gas such as carbon dioxide generated by the electrochemical reaction at the fuel electrode is discharged into the fuel recovery channel together with a part of the liquid fuel such as unused liquid fuel, and the fuel container Will be collected. By doing so, it is possible to efficiently remove bubbles attached to the fuel electrode, so that the efficiency of use of the catalyst at the fuel electrode can be improved. Therefore, the output of the fuel cell can be improved.
本発明の燃料電池において、前記燃料極から前記燃料回収流路を経由して前記燃 料容器に至る経路が密閉されている構成とすることができる。 こうすれば、燃料極 に付着した気泡を、液体燃料の一部とともにより一層効率よく燃料容器へ排出する ことができるため、燃料極における触媒の利用効率を向上させることができる。よ つて、 燃料電池の出力を向上させることができる。 The fuel cell according to the present invention may be configured such that a path from the fuel electrode to the fuel container via the fuel recovery flow path is sealed. In this case, the air bubbles adhering to the fuel electrode can be more efficiently discharged to the fuel container together with a part of the liquid fuel, so that the utilization efficiency of the catalyst at the fuel electrode can be improved. Yo Thus, the output of the fuel cell can be improved.
本発明の燃料電池において、前記燃料容器から前記燃料供給流路、前記燃料回収 流路および前記燃料極を経由して前記燃料容器に戻る経路が、密閉系循環経路であ る構成とすることができる。  In the fuel cell according to the aspect of the invention, a path from the fuel container to the fuel container via the fuel supply flow path, the fuel recovery flow path, and the fuel electrode may be a closed system circulation path. it can.
本発明に係る燃料電池は、燃料容器から燃料極に供給される燃料のうち、未使用 のものが再び燃料極に導入される循環式の構成となっており、循環経路中に燃料が 密閉されている。 したがって、燃料極における電気化学反応により生じた二酸化炭 素等の気体を、未使用の燃料とともに燃料容器へ排出することができる。 こうする ことによって、燃料極に付着した気泡を効率よく除去することができるため、燃料 極における触媒の利用効率を向上させることができる。 よって、燃料電池の出力を 向上させることができる。 さらに、 液体燃料の通過経路が密閉されているため、 燃 料極から燃料容器へと回収された気体により、燃料容器の内圧が上昇する。 この内 圧により、燃料容器中の燃料を、 燃料極へと圧出することができる。 こうすること により、 ポンプ等の駆動手段が不要となる。 したがって、 燃料電池をより小型軽量 化することができる。 また駆動手段に用いるのに必要な電力が不要となるため、省 電力化することができる。  The fuel cell according to the present invention has a circulating configuration in which unused fuel, which is supplied from the fuel container to the fuel electrode, is again introduced into the fuel electrode, and the fuel is sealed in the circulation path. ing. Therefore, gas such as carbon dioxide generated by the electrochemical reaction at the fuel electrode can be discharged to the fuel container together with the unused fuel. This makes it possible to efficiently remove bubbles attached to the fuel electrode, thereby improving the efficiency of using the catalyst at the fuel electrode. Therefore, the output of the fuel cell can be improved. Furthermore, since the passage of the liquid fuel is closed, the internal pressure of the fuel container increases due to the gas collected from the fuel electrode to the fuel container. By this internal pressure, the fuel in the fuel container can be pumped out to the fuel electrode. This eliminates the need for a driving means such as a pump. Therefore, the fuel cell can be made smaller and lighter. Further, power required for use in the driving means is not required, so that power can be saved.
本発明の燃料電池において、前記燃料極に設けられた、前記燃料供給流路および 前記燃料回収流路に連通する燃料流路をさらに有する構成とすることができる。 こうすることにより、燃料供給流路から燃料極に供給された燃料が、燃料極を流 れ、燃料回収流路へと排出される際に、燃料極において発生した気体をより効率よ く排出することができる。 したがって、燃料極の触媒利用効率をより一層高めるこ とができる。 なお、燃料極内を液体燃料が流れる構成であって、 流れとともに気体 を除去することができる構成であれば、燃料極に設ける燃料流路の位置、形状に特 に制限はない。 たとえば、 前記燃料極に集電体が設けられ、 前記集電体に前記燃料 流路が形成された構成とすることができる。 こうすれば、燃料極全体に効率よく燃 料を供給することができるとともに、燃料流路の密閉性を確保し、気体の排出を効 率よく行うことができる。  In the fuel cell according to the aspect of the invention, the fuel cell may further include a fuel flow path provided in the fuel electrode and communicating with the fuel supply flow path and the fuel recovery flow path. By doing so, when the fuel supplied from the fuel supply flow path to the fuel electrode flows through the fuel electrode and is discharged to the fuel recovery flow path, the gas generated at the fuel electrode is more efficiently discharged. be able to. Therefore, the catalyst utilization efficiency of the fuel electrode can be further improved. Note that there is no particular limitation on the position and shape of the fuel flow path provided in the fuel electrode as long as the liquid fuel flows through the fuel electrode and gas can be removed along with the flow. For example, a configuration may be adopted in which a current collector is provided on the fuel electrode, and the fuel flow path is formed in the current collector. In this way, fuel can be efficiently supplied to the entire fuel electrode, and the airtightness of the fuel flow path can be ensured, so that gas can be discharged efficiently.
本発明の燃料電池において、前記燃料容器に放圧部材が設けられた構成とするこ とができる。 In the fuel cell according to the present invention, the fuel container may be provided with a pressure release member. Can be.
こうすることにより、燃料容器の内圧が過度に上昇し、燃料容器および燃料電池 に損傷をもたらす危険性を回避することができる。したがって、燃料容器の内圧を、 燃料の圧出に充分でかつ安全性の高い内圧に調節することができる。  By doing so, it is possible to avoid a risk that the internal pressure of the fuel container excessively increases and damages the fuel container and the fuel cell. Therefore, the internal pressure of the fuel container can be adjusted to an internal pressure that is sufficient for extruding the fuel and that is highly safe.
本発明によれば、燃料極を備える燃料電池本体と、液体燃料を貯蔵する燃料容器 とを有する燃料電池の駆動方法であって、燃料極で生成した気体を前記燃料極に供 給された液体燃料の一部とともに燃料容器に回収し、前記燃料容器に回収された気 体の圧力によって前記燃料極に前記液体燃料を供給することを特徴とする燃料電 池の駆動方法が提供される。  According to the present invention, there is provided a method of driving a fuel cell including a fuel cell main body having an anode and a fuel container storing a liquid fuel, wherein a gas generated at the anode is supplied to the anode. A fuel cell driving method is provided, wherein the fuel is collected in a fuel container together with a part of the fuel, and the liquid fuel is supplied to the fuel electrode by the pressure of the gas collected in the fuel container.
本発明に係る燃料電池の駆動方法によれば、燃料極における電気化学反応により 生じた二酸化炭素等の気体が、未使用の液体燃料などの一部の液体燃料とともに燃 料容器へ排出される。 このようにすれば、燃料極に付着した気泡を効率よく除去す ることができるため、 燃料極における触媒の利用効率を向上させることができる。 よって、 燃料電池の出力を向上させ、 安定させることができる。 さらに、 液体燃料 の通過経路が密閉されているため、燃料極から燃料容器へと回収された気体により 燃料容器の内圧が上昇する。 この内圧により、 燃料容器中の燃料を、 燃料極へと圧 出することができる。 こうすることにより、 ポンプ等の駆動手段を用いずに燃料電 池を運転することができる。 したがって、燃料電池をより小型軽量化することがで きる。 また駆動手段に用いるのに必要な電力が不要となるため、省電力化すること ができる。  According to the driving method of the fuel cell according to the present invention, gas such as carbon dioxide generated by the electrochemical reaction at the fuel electrode is discharged to the fuel container together with some liquid fuel such as unused liquid fuel. In this way, the bubbles attached to the fuel electrode can be efficiently removed, so that the utilization efficiency of the catalyst at the fuel electrode can be improved. Therefore, the output of the fuel cell can be improved and stabilized. Furthermore, since the passage of the liquid fuel is sealed, the internal pressure of the fuel container increases due to the gas collected from the fuel electrode to the fuel container. By this internal pressure, the fuel in the fuel container can be pumped out to the fuel electrode. By doing so, the fuel cell can be operated without using a driving means such as a pump. Therefore, the size and weight of the fuel cell can be further reduced. In addition, since power required for use in the driving means is not required, power can be saved.
本発明によれば、燃料極を備える燃料電池本体と、液体燃料を貯蔵する燃料容器 と、前記燃料極と前記燃料容器とを接続する燃料供給流路ぉよび燃料回収流路とを 有する燃料電池の駆動方法であって、燃料極で生成した気体を、前記燃料極に供給 された液体燃料の一部とともに前記燃料回収流路を経由して燃料容器に回収し、前 記燃料容器に回収された気体の圧力によって、前記燃料供給流路を経由して前記燃 料極に前記液体燃料を供給することを特徴とする燃料電池の駆動方法が提供され る。  According to the present invention, a fuel cell including a fuel cell main body including a fuel electrode, a fuel container storing liquid fuel, and a fuel supply flow path and a fuel recovery flow path connecting the fuel electrode and the fuel container is provided. Wherein the gas generated at the fuel electrode is recovered in the fuel container via the fuel recovery flow path together with a part of the liquid fuel supplied to the fuel electrode, and is recovered in the fuel container. A method for driving a fuel cell is provided, wherein the liquid fuel is supplied to the fuel electrode via the fuel supply channel by the pressure of the gas.
本発明に係る燃料電池の駆動方法によれば、燃料極における電気化学反応により 生じた二酸化炭素等の気体が、未使用の液体燃料などの一部の液体燃料とともに燃 料回収流路へと排出され、 燃料容器に回収される。 こうすることによって、 燃料極 に付着した気泡を効率よく除去することができるため、燃料極における触媒の利用 効率を向上させることができる。 よって、 燃料電池の出力を向上させ、 安定させる ことができる。 さらに、液体燃料の通過経路が密閉されているため、 燃料極から燃 料容器へと回収された気体により、 燃料容器の内圧が上昇する。 この内圧により、 燃料容器中の燃料を、 燃料供給流路を経由して燃料極へと圧出することができる。 こうすることにより、ポンプ等の駆動手段を用いずに燃料電池を運転することがで きる。 したがって、 燃料電池をより小型軽量化することができる。 また駆動手段に 用いるのに必要な電力が不要となるため、 省電力化することができる。 According to the driving method of the fuel cell according to the present invention, the electrochemical reaction at the fuel electrode The generated gas such as carbon dioxide is discharged to the fuel recovery channel together with some liquid fuel such as unused liquid fuel, and is recovered in the fuel container. This makes it possible to efficiently remove bubbles attached to the fuel electrode, thereby improving the efficiency of use of the catalyst at the fuel electrode. Therefore, the output of the fuel cell can be improved and stabilized. Furthermore, since the passage of the liquid fuel is closed, the internal pressure of the fuel container rises due to the gas collected from the fuel electrode to the fuel container. With this internal pressure, the fuel in the fuel container can be pumped out to the fuel electrode via the fuel supply channel. By doing so, the fuel cell can be operated without using driving means such as a pump. Therefore, the fuel cell can be made smaller and lighter. In addition, since power required for use in the driving means is not required, power can be saved.
本発明の燃料電池の駆動方法において、前記燃料容器の内圧を、前記燃料容器に 設けられた放圧部材によって制御する構成とすることができる。  In the driving method for a fuel cell according to the present invention, the internal pressure of the fuel container may be controlled by a pressure release member provided in the fuel container.
このようにすれば、燃料極から発生する気体の増加により燃料容器の内圧が過度 に上昇し、燃料容器や燃料電池本体に損傷をもたらす危険性を回避することができ る。 したがって、燃料容器の内圧を、 燃料の圧出に充分でかつ安全性の高い内圧に 制御することができるため、燃料電池を安全に運転し、かつ高い出力を発揮させる ことができる。  With this configuration, it is possible to avoid a danger that the internal pressure of the fuel container excessively increases due to an increase in the gas generated from the fuel electrode, thereby causing damage to the fuel container and the fuel cell body. Therefore, the internal pressure of the fuel container can be controlled to an internal pressure that is high enough to express the fuel and high in safety, so that the fuel cell can operate safely and exhibit a high output.
以上説明したように本発明によれば、燃料容器から燃料極に供給された液体燃料 の一部が、燃料極で発生した気体とともに燃料容器に回収されることにより、薄型、 小型軽量であって、力つ高い出力が安定的に発揮される燃料電池が実現される。 ま た、本発明によれば、燃料極で生成した気体を燃料極に供給された液体燃料の一部 とともに燃料容器に回収し、燃料容器に回収された気体の圧力によって燃料極に液 体燃料を供給することにより、燃料電池の出力を簡便に安定させる、燃料電池の駆 動方法が実現される。 図面の簡単な説明  As described above, according to the present invention, a part of the liquid fuel supplied from the fuel container to the fuel electrode is collected in the fuel container together with the gas generated at the fuel electrode, thereby achieving a thin, small, and lightweight structure. Thus, a fuel cell in which a powerful output is stably exhibited is realized. Further, according to the present invention, the gas generated at the fuel electrode is recovered in the fuel container together with a part of the liquid fuel supplied to the fuel electrode, and the liquid fuel is supplied to the fuel electrode by the pressure of the gas recovered in the fuel container. By supplying the fuel cell, a driving method of the fuel cell that stabilizes the output of the fuel cell easily is realized. BRIEF DESCRIPTION OF THE FIGURES
上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好適な実 施の形態、 およびそれに付随する以下の図面によってさらに明らかになる。 図 1は、 本発明に係る燃料電池の構成の一例を示す図である。 The above and other objects, features and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings. FIG. 1 is a diagram showing an example of a configuration of a fuel cell according to the present invention.
図 2は、 本発明に係る燃料電池の燃料極側集電体の構成の一例を示す図である。 図 3は、 本発明に係る燃料電池の構成の一例を示す図である。  FIG. 2 is a diagram showing an example of the configuration of the fuel electrode side current collector of the fuel cell according to the present invention. FIG. 3 is a diagram showing an example of the configuration of the fuel cell according to the present invention.
図 4は、 図 3中に示される燃料極の A— A ' 方向の断面図である。  FIG. 4 is a cross-sectional view of the fuel electrode shown in FIG. 3 in the AA ′ direction.
図 5は、 本発明に係る燃料電池の構成の一例を示す図である。 発明を実施するための最良の形態  FIG. 5 is a diagram showing an example of the configuration of the fuel cell according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の具体的構成について図面を参照しながら説明する。  Hereinafter, a specific configuration of the present invention will be described with reference to the drawings.
図 1は本実施形態に係る燃料電池 1 0 0の構造を模式的に表した断面図である。 また、 図 2は、 図 1における燃料極 1 0 2の A— A ' 方向の断面図である。 触媒電 極一固体電解質膜接合体 1 0 1は、 燃料極 1 0 2、 酸化剤極 1 0 8、 固体電解質膜 1 1 4から構成される。燃料極と酸化剤極とをあわせて触媒電極と呼ぶ。燃料極 1 0 2は基体 1 0 4および触媒層 1 0 6から構成される。酸化剤極 1 0 8は基体 1 1 0および触媒層 1 1 2から構成される。単数または複数の触媒電極—固体電解質膜 接合体 1 0 1が、燃料極側集電体 1 2 0および酸化剤極側集電体 1 2 2を介して電 気的に接続される。  FIG. 1 is a sectional view schematically showing the structure of a fuel cell 100 according to the present embodiment. FIG. 2 is a cross-sectional view of the fuel electrode 102 in FIG. 1 in the AA ′ direction. The catalyst electrode-solid electrolyte membrane assembly 101 is composed of a fuel electrode 102, an oxidizer electrode 108, and a solid electrolyte membrane 114. The fuel electrode and the oxidant electrode are collectively called a catalyst electrode. The fuel electrode 102 includes a substrate 104 and a catalyst layer 106. The oxidant electrode 108 is composed of a base 110 and a catalyst layer 112. One or more catalyst electrode-solid electrolyte membrane assemblies 101 are electrically connected via a fuel electrode side current collector 120 and an oxidant electrode side current collector 122.
燃料電池を携帯機器へ応用する場合、 出力が大きく、安定であるという基本的な 性能に加えて、 燃料電池が小型で薄く、 かつ、 軽量であるということが必要とされ る。そこで、図 1の燃料電池においては、以下の構成が採用されている。すなわち、 燃料容器 4 2 5と燃料極側集電体 1 2 0との間には、燃料供給ライン 4 3 5および 燃料戻りライン 4 3 7が設けられている。燃料極側集電体 1 2 0には、燃料流路 4 3 3が形成されており、燃料流路 4 3 3の一端と燃料供給ライン 4 3 5の一端とが 接続され、 燃料流路の他端と燃料戻りライン 4 3 7の一端が接続されている。  When a fuel cell is applied to portable equipment, in addition to the basic performance of high output and stability, it is necessary for the fuel cell to be small, thin and lightweight. Therefore, the following configuration is employed in the fuel cell of FIG. That is, a fuel supply line 435 and a fuel return line 437 are provided between the fuel container 425 and the fuel electrode side current collector 120. A fuel flow path 4 33 is formed in the fuel electrode side current collector 120, and one end of the fuel flow path 4 33 is connected to one end of the fuel supply line 4 35, and the fuel flow path 4 The other end is connected to one end of the fuel return line 437.
燃料極側集電体 1 2 0には、たとえばカーボンや金属などを用いることができる。 燃料極側集電体 1 2 0への燃料流路 4 3 3の形成方法に特に制限はないが、たとえ ば燃料極側集電体 1 2 0を板状に成形する際に同時に形成する方法や、板状の材料 に機械加工により形成する方法等を挙げることができる。  As the fuel electrode side current collector 120, for example, carbon or metal can be used. There is no particular limitation on the method of forming the fuel flow path 4 33 to the anode-side current collector 120, but, for example, a method of forming the anode-side current collector 120 at the same time as forming the plate into a plate shape And a method of forming a plate-shaped material by machining.
以上のように構成された燃料電池 1 0 0において、各触媒電極一固体電解質膜接 合体 1 0 1の燃料極 1 0 2には、燃料極側集電体 1 2 0を介して燃料 1 2 4が供給 される。 また、 触媒電極一固体電解質膜接合体 1 0 1の酸化剤極 1 0 8には、 酸化 剤極側集電体 1 2 2を介して酸化剤 1 2 6が供給される。燃料 1 2 4としては、 メ 夕ノール、 エタノール、 ジメチルエーテル、 または他のアルコール類、 あるいはシ クロパラフィン等の液体炭化水素等の有機液体燃料を用いることができる。有機液 体燃料は、 水溶液とすることができる。 酸化剤 1 2 6としては、 通常、 空気を用い ることができるが、 酸素ガス等を供給してもよい。 In the fuel cell 100 configured as described above, each catalyst electrode was connected to the solid electrolyte membrane. Fuel 124 is supplied to the fuel electrode 102 of the combined unit 101 via the fuel electrode-side current collector 120. Further, the oxidant electrode 126 of the catalyst electrode-solid electrolyte membrane assembly 101 is supplied with the oxidant 126 via the oxidant electrode side current collector 122. As the fuel 124, organic liquid fuel such as methanol, ethanol, dimethyl ether, other alcohols, or liquid hydrocarbon such as cycloparaffin can be used. The organic liquid fuel can be an aqueous solution. As the oxidizing agent 126, air can be usually used, but oxygen gas or the like may be supplied.
燃料容器 4 2 5から燃料 1 2 4が燃料供給ライン 4 3 5を通じて燃料極側集電 体 1 2 0に供給されると、 燃料 1 2 4がメタノールの場合上記反応式 [ 1 ] に示さ れる反応が主として生じるため、二酸化炭素を主とする気体が発生する。発生した 気体は、未消費の燃料 1 2 4とともに、燃料流路 4 3 3から燃料戻りライン 4 3 7 を通り、 燃料容器 4 2 5に導かれる。すると、 燃料容器 4 2 5の内圧は、 燃料極 1 0 2から導かれた気体によって上昇する。 この内圧上昇により、燃料容器 4 2 5か ら燃料 1 2 4が燃料供給ライン 4 3 5へと圧出される。  When the fuel 124 is supplied from the fuel container 425 to the anode-side current collector 120 through the fuel supply line 435, when the fuel 124 is methanol, the fuel is represented by the above reaction formula [1]. Since the reaction mainly occurs, a gas mainly including carbon dioxide is generated. The generated gas, together with the unconsumed fuel 1 24, is guided from the fuel flow path 4 3 3 through the fuel return line 4 3 7 to the fuel container 4 25. Then, the internal pressure of the fuel container 4 25 rises due to the gas led from the fuel electrode 102. Due to this increase in the internal pressure, the fuel 124 is pumped out of the fuel container 425 to the fuel supply line 435.
このように、燃料電池 1 0 0は、燃料極側集電体 1 2 0に燃料流路 4 3 3が形成 され、燃料 1 2 4の回収経路の密閉性に優れており、 回収された燃料が再び燃料容 器 4 2 5から圧出される循環式の構成となっているため、ポンプ等の燃料送出部材 を用いずに、燃料 1 2 4を効率よく燃料極 1 0 2に供給すると共に、燃料極 1 0 2 で生じた気体を速やかに除去することができる。 したがって、小型でかつ出力安定 性が高い。  As described above, in the fuel cell 100, the fuel flow path 4 33 is formed in the fuel electrode side current collector 120, and the collection path of the fuel 124 is excellent in sealing property. Is recirculated from the fuel container 4 25 again, so that the fuel 124 can be efficiently supplied to the fuel electrode 102 without using a fuel delivery member such as a pump. The gas generated at the fuel electrode 102 can be quickly removed. Therefore, it is small and has high output stability.
たとえば、図 1の電池はダイレクトメタノール型の燃料電池に好適に用いること ができる。ダイレクトメ夕ノール型の燃料電池に適用した場合、燃料極 1 0 2で発 生する二酸化炭素を主とする気体が効率よく燃料容器 4 2 5に回収される。回収さ れた気体によって燃料容器 4 2 5の内圧が上昇すると、これが駆動力となって燃料 容器 4 2 5中のメタノール水溶液が燃料極 1 0 2へと圧出される。  For example, the battery of FIG. 1 can be suitably used for a direct methanol fuel cell. When applied to a direct methanol fuel cell, gas mainly composed of carbon dioxide generated at the fuel electrode 102 is efficiently collected in the fuel container 425. When the internal pressure of the fuel container 425 rises due to the collected gas, the internal pressure of the fuel container 425 becomes a driving force, and the aqueous methanol solution in the fuel container 425 is pressed out to the fuel electrode 102.
図 3は、 燃料電池 1 0 0の別の構成の一例を示す図である。 また図 4は、 図 3に おける燃料極 1 0 2の A— A '方向の断面図である。図 3においては、基体 1 0 4、 基体 1 1 0がそれぞれ燃料極側集電板 4 2 1、酸化剤極側集電板 4 2 3に接合され た構成となっている。 また燃料極 1 0 2は、その外周部を燃料漏洩防止部材 4 4 5 によって被覆されており、 密閉性が担保されている。 燃料極側集電板 4 2 1には、 燃料供給ライン 4 3 5および燃料戻りライン 4 3 7が接続されており、燃料容器 4 2 5から燃料 1 2 4が供給される。燃料漏洩防止部材 4 4 5には、たとえば金属薄 膜フィルムまたは金属薄膜と熱融着性樹脂フィルムからなるラミネートフィルム などを用いることができる。 また、燃料極側集電板 4 2 1、 酸化剤極側集電板 4 2 3には、たとえば導電性金属またはその合金の多孔質板ゃメッシュを用いることが できる。燃料極 1 0 2においては、燃料極側集電板 4 2 1に接続された燃料極側端 子 4 4 7から電力を取り出すことができる。酸化剤極 1 0 8にも同様に適宜酸化剤 極側端子 4 4 9を設けることができる。燃料電池 1 0 0をこのような構成とするこ とにより、 より一層の薄型、 小型軽量化が可能となる。 FIG. 3 is a diagram showing an example of another configuration of the fuel cell 100. As shown in FIG. FIG. 4 is a cross-sectional view of the fuel electrode 102 in FIG. 3 in the AA ′ direction. In FIG. 3, the base body 104 and the base body 110 are respectively joined to the fuel electrode side current collector plate 421, and the oxidizer electrode side current collector plate 423. Configuration. Further, the outer periphery of the fuel electrode 102 is covered with a fuel leakage prevention member 445 to ensure hermeticity. A fuel supply line 4 35 and a fuel return line 4 37 are connected to the fuel electrode side current collector plate 4 21, and fuel 124 is supplied from the fuel container 4 25. As the fuel leakage prevention member 445, for example, a metal thin film film or a laminate film composed of a metal thin film and a heat-fusible resin film can be used. Further, as the fuel electrode side current collector plate 421 and the oxidant electrode side current collector plate 423, for example, a porous plate-mesh of a conductive metal or an alloy thereof can be used. In the fuel electrode 102, electric power can be extracted from the fuel electrode side terminal 447 connected to the fuel electrode side current collector plate 421. Similarly, the oxidizer electrode 108 can be provided with an oxidizer electrode side terminal 449 as appropriate. With the fuel cell 100 having such a configuration, it is possible to further reduce the thickness, size, and weight.
なお、 図 1または図 3の燃料電池 1 0 0において、燃料供給ライン 4 3 5または 燃料戻りライン 4 3 7に、燃料電池の搭載された機器の電源に連動する弁などのラ イン開閉部材を設置することができる。 このようにすれば、たとえば機器の電源を 切った際には燃料 1 2 4の供給が遮断され、再び機器の電源を入れた際に燃料 1 2 4の供給が再開される構成とすることができる。  In the fuel cell 100 shown in FIG. 1 or FIG. 3, a line opening / closing member such as a valve linked to the power supply of a device on which the fuel cell is mounted is provided in the fuel supply line 435 or the fuel return line 437. Can be installed. In this way, for example, the supply of fuel 124 is cut off when the equipment is turned off, and the supply of fuel 124 is restarted when the equipment is turned on again. it can.
燃料電池 1 0 0において、燃料容器 4 2 5および燃料供給ライン 4 3 5、燃料戻 りライン 4 3 7には、有機液体燃料に対する耐食性を有する材料を用いることがで きる。 また、 できるだけ軽量であることが好ましい。 また、 燃料容器 4 2 5の外壁 には、 放圧部材 4 3 9を設けることが好ましい。 こうすることにより、 燃料容器 4 2 5の内圧が一定値、たとえば 2気圧に達した際に、燃料容器 4 2 5内部の気体を 自動的に放出することができるため、燃料容器 4 2 5の内圧を一定に保持すること ができる。 放圧部材 4 3 9としては、 放圧弁、 または、 燃料極 1 0 2で生成する気 体の透過膜を用いることができる。たとえば燃料 1 2 4にメタノールを用いる場合、 二酸化炭素透過膜を設けることができる。燃料 1 2 4の密閉性をさらに向上させる ために、燃料極 1 0 2の側面や、燃料 1 2 4の循環経路の周囲を適宜シール材によ りシールしてもよい。  In the fuel cell 100, a material having corrosion resistance to organic liquid fuel can be used for the fuel container 4 25, the fuel supply line 4 35, and the fuel return line 4 37. Further, it is preferable that the weight is as light as possible. Further, it is preferable to provide a pressure release member 439 on the outer wall of the fuel container 425. By doing so, when the internal pressure of the fuel container 4 25 reaches a certain value, for example, 2 atm, the gas inside the fuel container 4 25 can be automatically released, so that the fuel container 4 25 The internal pressure can be kept constant. As the pressure release member 439, a pressure release valve or a permeable membrane of gas generated at the fuel electrode 102 can be used. For example, when methanol is used as the fuel 124, a carbon dioxide permeable membrane can be provided. In order to further improve the sealing property of the fuel 124, the side surface of the fuel electrode 102 and the periphery of the circulation path of the fuel 124 may be appropriately sealed with a sealing material.
また、燃料容器 4 2 5への燃料 1 2 4の供給は、 たとえば注入により行うことが できる。 また、 燃料の入ったカートリッジを用い、 これを交換する構成とすること もできる。 In addition, the supply of the fuel 124 to the fuel container 425 may be performed, for example, by injection. it can. In addition, it is also possible to use a cartridge containing fuel and replace it.
なお、燃料電池 1 0 0の初期段階の起動方法としては、たとえば予備の電源を用 レ る方法が挙げられる。 すなわち、 機器に搭載された予備の電源により、 小型の送 液ポンプを駆動し、燃料極 1 0 2に燃料 1 2 4を供給することができる。小型の送 液ポンプとしては、 たとえばバイモルフ型圧電ポンプなど、小型の圧電ポンプを用 いることができる。  In addition, as a method of starting the fuel cell 100 in the initial stage, for example, a method of using a spare power supply can be used. In other words, a small liquid supply pump can be driven by a spare power supply mounted on the device to supply fuel 124 to fuel electrode 102. As the small liquid pump, for example, a small piezoelectric pump such as a bimorph type piezoelectric pump can be used.
また、 図 5に示すように、 燃料容器 4 2 5を二室構造とし、 燃料極 1 0 2に燃料 1 2 4を吸収させる燃料吸収材 4 5 1を設けることにより、燃料 1 2 4を燃料極 1 0 2に吸収させて供給することもできる。図 5では、燃料吸収材 4 5 1が燃料極側 集電板 4 2 1に接して設けられている。 こうすることにより、燃料極側集電板 4 2 1全面に効率よく燃料 1 2 4を供給することができる。燃料吸収材 4 5 1の材料に 特に制限はないが、 たとえばウレ夕ン材などを用いることができる。  Also, as shown in FIG. 5, the fuel container 4 25 has a two-chamber structure, and the fuel electrode 102 is provided with a fuel absorbing material 45 1 for absorbing the fuel 124 so that the fuel 124 is It can also be supplied after being absorbed by the pole 102. In FIG. 5, the fuel absorber 4 51 is provided in contact with the fuel electrode side current collector 4 21. By doing so, the fuel 124 can be efficiently supplied to the entire surface of the fuel electrode side current collector plate 421. There is no particular limitation on the material of the fuel absorber 451, but for example, urethane or the like can be used.
燃料電池 1 0 0において、 固体電解質膜 1 1 4は、燃料極 1 0 2と酸化剤極 1 0 8を隔てるとともに、両者の間で水素イオンを移動させる役割を有する。このため、 固体電解質膜 1 1 4は、水素イオンの伝導性が高い膜であることが好ましい。また、 化学的に安定であって機械的強度が高いことが好ましい。固体電解質膜 1 1 4を構 成する材料としては、 スルフォン基、 リン酸基等の強酸基や、 カルボキシル基等の 弱酸基等の極性基を有する有機高分子が好ましく用いられる。こうした有機高分子 として、 スルフォン化ポリ (4—フエノキシベンゾィル一 1, 4—フエ二レン)、 ァ ルキルスルフォン化ポリベンゾィミダゾ一ル等の芳香族縮合系高分子;スルフォン 基含有パーフルォロカーボン (ナフイオン (デュポン社製) (登録商標)、 ァシプレ ックス (旭化成社製));カルボキシル基含有パーフルォロカーボン (フレミオン S 膜 (旭硝子社製) (登録商標));等が例示される。  In the fuel cell 100, the solid electrolyte membrane 114 has a role of separating the fuel electrode 102 and the oxidant electrode 108 and of transferring hydrogen ions between the two. For this reason, the solid electrolyte membrane 114 is preferably a membrane having high conductivity of hydrogen ions. Further, it is preferable that it is chemically stable and has high mechanical strength. As a material constituting the solid electrolyte membrane 114, an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphate group or a weak acid group such as a carboxyl group is preferably used. Examples of such organic polymers include aromatic condensed polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoimidazole; Perfluorocarbon containing (Nafion (DuPont) (registered trademark), Aspirex (Asahi Kasei Corporation)); perfluorocarbon containing carboxyl group (Flemion S membrane (Asahi Glass Co., Ltd.) (registered trademark)); Etc. are exemplified.
燃料極 1 0 2および酸化剤極 1 0 8は、それぞれ、触媒を担持した炭素粒子と固 体電解質の微粒子とを含む触媒層 1 0 6および触媒層 1 1 2をそれぞれ基体 1 0 4および基体 1 1 0上に形成した構成とすることができる。基体 1 0 4および基体 1 1 0の表面は撥水処理してもよい。 燃料極 1 0 2側の触媒層 1 0 6の触媒としては、 白金、 金、 銀、 ルテニウム、 口 ジゥム、 パラジウム、 オスミウム、 イリジウム、 コバルト、 ニッケル、 レニウム、 リチウム、 ランタン、 ストロンチウム、 イットリウム、 またはこれらの合金等が例 示される。酸化剤極 1 0 8側の触媒層 1 1 2の触媒としては、燃料極 1 0 2側の触 媒層 1 0 6と同様のものを用いることができ、上記例示物質を使用することができ る。なお、触媒層 1 0 6および触媒層 1 1 2の触媒は同じものを用いても異なるも のを用いてもどちらでもよい。 The fuel electrode 102 and the oxidant electrode 108 are respectively formed of a catalyst layer 106 and a catalyst layer 112 each containing carbon particles carrying a catalyst and fine particles of a solid electrolyte, as a substrate 104 and a substrate, respectively. A structure formed on 110 can be adopted. The surfaces of the substrate 104 and the substrate 110 may be subjected to a water-repellent treatment. Platinum, gold, silver, ruthenium, orifice, palladium, osmium, iridium, cobalt, nickel, rhenium, lithium, lanthanum, strontium, yttrium, or these Alloys etc. are shown. As the catalyst for the catalyst layer 112 on the oxidizer electrode 108 side, the same catalyst as that for the catalyst layer 106 on the fuel electrode 102 side can be used, and the above-mentioned exemplified substances can be used. You. The catalysts of the catalyst layer 106 and the catalyst layer 112 may be the same or different.
触媒を担持する炭素粒子としては、 アセチレンブラック (デンカブラック (電気 化学社製) (登録商標)、 X C 7 2 (Vulcan社製) 等)、 ケッチェンブラック、 力一 ボンナノチューブ、 カーボンナノホーン等が例示される。  Examples of the carbon particles supporting the catalyst include acetylene black (Denka Black (manufactured by Denki Kagaku) (registered trademark), XC72 (manufactured by Vulcan), etc.), Ketjen Black, carbon nanotubes, carbon nanohorn, etc. Is done.
触媒層 1 0 6、触媒層 1 1 2における固体電解質の微粒子は、 同一のものであつ ても異なるものであってもよい。 ここで、 固体電解質の微粒子は、 固体電解質膜 1 1 4と同じ材料を用いることができるが、 固体電解質膜 1 1 4とは異なる材料や、 複数の材料を用いることもできる。  The fine particles of the solid electrolyte in the catalyst layer 106 and the catalyst layer 112 may be the same or different. Here, as the solid electrolyte fine particles, the same material as the solid electrolyte membrane 114 can be used, but a material different from the solid electrolyte membrane 114 or a plurality of materials can also be used.
燃料極 1 0 2、 酸化剤極 1 0 8ともに、 基体 1 0 4および基体 1 1 0としては、 カーボンペーパー、 カーボンの成形体、 カーボンの焼結体、 焼結金属、 発泡金属等 の多孔性基体を用いることができる。また、基体 1 0 4および基体 1 1 0の撥水処 理にはポリテトラフルォロエチレン等の撥水剤を用いることができる。  For both the fuel electrode 102 and the oxidizer electrode 108, the base material 104 and the base material 110 are made of carbon paper, molded carbon, sintered carbon, sintered metal, foamed metal, etc. Substrates can be used. Further, a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate 104 and the substrate 110.
次に、燃料電池 1 0 0の製造方法について説明する。燃料電池 1 0 0の製造方法 に特に制限はないが、 たとえば以下のようにして作製することができる。  Next, a method for manufacturing the fuel cell 100 will be described. The method of manufacturing the fuel cell 100 is not particularly limited, but can be manufactured, for example, as follows.
燃料極 1 0 2および酸化剤極 1 0 8は、たとえば以下の方法で得ることができる。 まず、一般的に用いられている含浸法によって炭素粒子に触媒を担持させる。次に 触媒を担持させた炭素粒子と固体電解質の微粒子を溶媒に分散させ、ペースト状と したのち、撥水化処理を行った基体 1 0 4または基体 1 1 0に塗布する。基体 1 0 4または 1 1 0へのペーストの塗布方法については特に制限がないが、 たとえば、 刷毛塗り、スプレー塗布、およびスクリーン印刷法等の方法を用いることができる。 ペーストを塗布した後、 たとえば、 加熱温度 1 0 0 Ό〜2 5 O 、 加熱時間 3 0秒 間〜 3 0分で乾燥させることによって燃料極 1 0 2および酸化剤極 1 0 8が得ら れる。 The fuel electrode 102 and the oxidant electrode 108 can be obtained, for example, by the following method. First, a catalyst is supported on carbon particles by a generally used impregnation method. Next, the carbon particles carrying the catalyst and the fine particles of the solid electrolyte are dispersed in a solvent to form a paste, which is then applied to the substrate 104 or the substrate 110 that has been subjected to the water-repellent treatment. The method for applying the paste to the substrate 104 or 110 is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used. After the paste is applied, for example, the fuel electrode 102 and the oxidizer electrode 108 are obtained by drying at a heating temperature of 100 ° C. to 25 O and a heating time of 30 seconds to 30 minutes. It is.
たとえば固体電解質膜 1 1 4を有機高分子材料で構成する場合、固体電解質膜 1 1 4は、有機高分子材料を溶媒に溶解ないし分散した液体を、 ポリテトラフルォロ エチレン等の剥離性シート等の上にキャストして乾燥させることにより得ること ができる。  For example, when the solid electrolyte membrane 114 is composed of an organic polymer material, the solid electrolyte membrane 114 may be formed of a liquid obtained by dissolving or dispersing the organic polymer material in a solvent by using a peelable sheet such as polytetrafluoroethylene. It can be obtained by casting and drying on the like.
次に、 固体電解質膜 1 1 4を、 燃料極 1 0 2および酸化剤極 1 0 8で挟み、 ホッ 卜プレスすることにより、触媒電極一固体電解質膜接合体 1 0 1を得る。このとき、 触媒層 1 0 6および触媒層 1 1 2が固体電解質膜 1 1 4と接するようにする。たと えば固体電解質膜 1 1 4や触媒層 1 0 6、触媒層 1 1 2中の固体電解質の微粒子を 有機高分子で構成する場合、 ホットプレスの条件は、 これらの有機高分子の軟化温 度やガラス転位温度を超える温度とすることができる。具体的には、 たとえば、 温 度 1 0 0 T:〜 2 5 O :、 圧力 1 k g Z c m2〜l 0 0 k g Z c m2 , 時間 1 0秒〜Next, the solid electrolyte membrane 114 is sandwiched between the fuel electrode 102 and the oxidant electrode 108 and hot-pressed to obtain a catalyst electrode-solid electrolyte membrane assembly 101. At this time, the catalyst layer 106 and the catalyst layer 112 are in contact with the solid electrolyte membrane 114. For example, when the fine particles of the solid electrolyte in the solid electrolyte membrane 114, the catalyst layer 106, and the catalyst layer 112 are composed of organic polymers, the hot pressing conditions are the softening temperature of these organic polymers. Or a temperature exceeding the glass transition temperature. Specifically, for example, temperature 100 T: ~ 25 O: pressure 1 kg Z cm 2 ~ l 0 kg Z cm 2 , time 10 seconds ~
3 0 0秒とする。 Set to 300 seconds.
以上のようにして形成された触媒電極—固体電解質膜接合体 1 0 1を単セル構 造とし、燃料極側集電体 1 2 0および酸化剤極側集電体 1 2 2を介して積み重ねる ことにより、複数の単セル構造が直列に接続された燃料電池セルスタツクとするこ ともできる。  The catalyst electrode-solid electrolyte membrane assembly 101 formed as described above has a single cell structure, and is stacked via the fuel electrode side current collector 120 and the oxidant electrode side current collector 122 Thus, a fuel cell stack in which a plurality of single cell structures are connected in series can be provided.
以上により得られた燃料電池 1 0 0は、燃料極 1 0 2において、触媒層 1 0 6の 表面に発生した二酸化炭素、一酸化炭素などの気泡が速やかに除去され、燃料極 1 0 2の有効な表面積を維持されるとともに、燃料極 1 0 2から除去され、燃料容器 In the fuel cell 100 obtained as described above, bubbles such as carbon dioxide and carbon monoxide generated on the surface of the catalyst layer 106 in the fuel electrode 102 are promptly removed, and the fuel electrode 100 While maintaining an effective surface area, it is removed from the anode 102 and the fuel container
4 2 5に回収された気体の圧力によって燃料 1 2 4が燃料極 1 0 2に供給される ため、 高出力が安定的に発揮され、 かつ小型、 軽量である。 Since the fuel 124 is supplied to the fuel electrode 102 by the pressure of the gas collected in the fuel tank 4, high output is stably exhibited, and the fuel cell is small and lightweight.
本実施形態に係る燃料電池の用途は特に限定されないが、 たとえば、 携帯電話、 ノートパソコン、 P D A (Personal Digi tal Ass i s tant) , 各種カメラ、 ナビゲ一 シヨンシステム、ポータブル音楽再生プレーヤ一等、携帯型の小型電気機器に適切 に用いられる。  Although the use of the fuel cell according to the present embodiment is not particularly limited, for example, a portable type such as a mobile phone, a notebook computer, a PDA (Personal Digital Assistant), various cameras, a navigation system, a portable music player, etc. Suitable for small electrical equipment.
(実施例)  (Example)
本実施例では、 図 1に示される構成の燃料電池 1 0 0を作製し、 評価した。 (実施例 1 ) In this example, a fuel cell 100 having the configuration shown in FIG. 1 was manufactured and evaluated. (Example 1)
図 1に示される構成の携帯電話用ダイレクトメ夕ノール型燃料電池を作製した。 まず、触媒電極用、すなわち燃料極 102および酸化剤極 108に用いる炭素系 材料として、 厚さ 0. 19mmのカーボンペーパー (東レ社製) を用いた。 カーボ ンぺ一パー表面に、 次のようにして触媒層を形成した。 まず、 固体高分子電解質と してアルドリツチ ·ケミカル社製の 5 w t %ナフイオンアルコール溶液を選択し、 固体高分子電解質量が 0. 1〜0. 4mgZcm3となるように n—酢酸ブチルと 混合攪拌して固体高分子電解質のコロイド状分散液を調製した。燃料極の触媒には 炭素微粒子(デンカブラック;電気化学社製) に粒子径 3〜5 nmの白金一ルテニ ゥム合金触媒を重量比で 50%担持させた触媒担持炭素微粒子を使用し、酸化剤極 の触媒には、 炭素微粒子(デンカブラック;電気化学社製) に粒子径 3〜5 nmの 白金触媒を重量比で 50 %担持させた触媒担持炭素微粒子を使用した。触媒担持炭 素微粒子を固体高分子電解質のコロイド状分散液に添加し、超音波分散器を用いて ペースト状にした。 このとき、 固体高分子電解質と触媒の重量比が 1 : 1になるよ うに混合した。このペーストをカーボンペーパー上にスクリーン印刷法で 2mgZ cm2塗布した後、 加熱乾燥して燃料電池用電極を作製した。 この電極を、 デュポ ン社製固体電解質膜ナフイオン 1 12の両面に温度 130で、圧力 l O kgZcm 2でホットプレスして触媒電極—固体電解質膜接合体 101を作製した。 A direct methanol fuel cell for a mobile phone having the configuration shown in FIG. 1 was manufactured. First, 0.19 mm thick carbon paper (manufactured by Toray Industries, Inc.) was used as a carbon-based material for the catalyst electrode, that is, for the fuel electrode 102 and the oxidizer electrode 108. A catalyst layer was formed on the carbon paper surface as follows. First, as a solid polymer electrolyte select 5 wt% naphthoquinone ion alcohol solution of Arudoritsuchi Chemical Co., and n- butyl acetate as a solid polymer electrolyte mass is 0. 1~0. 4mgZcm 3 mixture By stirring, a colloidal dispersion of the solid polymer electrolyte was prepared. The catalyst used for the fuel electrode is carbon fine particles (denka black; manufactured by Denki Kagaku Co., Ltd.) using 50% by weight of a platinum-ruthenium alloy catalyst with a particle diameter of 3 to 5 nm supported by catalyst. As the catalyst of the agent electrode, catalyst-supported carbon fine particles in which 50% by weight of a platinum catalyst having a particle diameter of 3 to 5 nm was supported on carbon fine particles (Denka Black; manufactured by Denki Kagaku) in a weight ratio of 50% were used. The catalyst-supporting carbon fine particles were added to a colloidal dispersion of a solid polymer electrolyte, and the mixture was made into a paste using an ultrasonic disperser. At this time, the mixing was performed so that the weight ratio of the solid polymer electrolyte and the catalyst was 1: 1. This paste was applied on carbon paper by 2 mgZcm 2 by screen printing, and then heated and dried to produce a fuel cell electrode. This electrode was hot-pressed on both sides of a solid electrolyte membrane Naphion 112 manufactured by DuPont at a temperature of 130 and a pressure of 10 kgZcm 2 to produce a catalyst electrode-solid electrolyte membrane assembly 101.
次に、得られた触媒電極一固体電解質膜接合体 101を、燃料極側集電体 120 および酸化剤極側集電体 122で挟持し、 ポルトとナツ卜で締結した。 ここで、燃 料極側集電体 120および酸化剤極側集電体 122には、カーボンを用いた。また、 燃料極側集電体 120は、厚さ 1mmのカーボン板に、機械加工によって図 2に示 される燃料流路 433を設けた。 以上により、 燃料電池本体が得られた。  Next, the obtained catalyst electrode-solid electrolyte membrane assembly 101 was sandwiched between a fuel electrode side current collector 120 and an oxidant electrode side current collector 122, and fastened with a port and a nut. Here, carbon was used for the fuel electrode side current collector 120 and the oxidant electrode side current collector 122. Further, the fuel electrode side current collector 120 was provided with a fuel flow channel 433 shown in FIG. 2 by machining on a carbon plate having a thickness of 1 mm. Thus, a fuel cell body was obtained.
得られた燃料電池本体に、燃料供給ライン 435および燃料戻しライン 437の 一端を接続し、 これらのラインの他端を、 アルミニウム製の燃料容器 425に接続 した。 また、 アルミニウム製の燃料容器 425の上部に、 2. 0265x105P a で放圧するように設計された放圧弁を、 放圧部材 439として設置した。 なお、燃 料供給ライン 435および燃料戻りライン 437には内径 lmmのテフロン(登録 商標) 製チューブを用いた。 One end of a fuel supply line 435 and one end of a fuel return line 437 were connected to the obtained fuel cell body, and the other end of these lines was connected to a fuel container 425 made of aluminum. In addition, a pressure relief valve designed to release pressure at 2.0265 × 10 5 Pa was installed as a pressure relief member 439 on the upper part of the aluminum fuel container 425. The fuel supply line 435 and the fuel return line 437 have a 1 mm inner diameter Teflon (registered (Trademark) tube was used.
こうして得られた燃料電池 1 0 0の燃料容器 4 2 5に、 5 v / v %メタノール水 溶液を燃料 1 2 4として注;^した。そして、 電流 5 0 0 mAの負荷条件で、 燃料電 池 1 0 0の電圧の時間変化を測定した。  A 5 v / v% methanol aqueous solution was injected as fuel 124 into the fuel container 425 of the fuel cell 100 thus obtained. Then, the time change of the voltage of the fuel cell 100 was measured under a load condition of a current of 500 mA.
その結果、 2 4時間の連続負荷試験において、 出力電圧 3 . 5 Vに対する電圧変 動は、 0 . 2 V以下となった。 したがって、 本実施例において燃料電池 1 0 0は安 定な出力を示すことが確認された。 また、 このときの燃料容器 4 2 5の内圧は、 2 x l 05P a付近で安定していることも確認された。 As a result, in a 24-hour continuous load test, the voltage fluctuation with respect to the output voltage of 3.5 V was 0.2 V or less. Therefore, in this example, it was confirmed that the fuel cell 100 exhibited a stable output. Further, the internal pressure of the fuel container 4 2 5 at this time, it was also confirmed to be stable at around 2 xl 0 5 P a.
(実施例 2 )  (Example 2)
本実施例においては、実施例 1と同様にして燃料電池 1 0 0を作製し、評価した。 ただし、 本実施例においては、 燃料極側集電体 1 2 0を基体 1 0 4として用いた。 すなわち、 カーボン製の集電体に図 2に示す形状の燃料流路 4 3 3を形成し、燃料 流路 4 3 3の設けられた表面に直接触媒層 1 0 6を形成した。  In this example, a fuel cell 100 was manufactured and evaluated in the same manner as in Example 1. However, in this example, the fuel electrode side current collector 120 was used as the substrate 104. That is, a fuel flow channel 433 having the shape shown in FIG. 2 was formed in the carbon current collector, and the catalyst layer 106 was formed directly on the surface where the fuel flow channel 433 was provided.
得られた燃料電池 1 0 0を、実施例 1と同様の条件で 2 4時間の連続負荷試験に 供した。 その結果、 出力電圧 3 . 5 Vに対する電圧変動は、 最大 0 . 2 5 Vとなつ た。 したがって、 本実施例においても、 燃料電池 1 0 0は安定な出力を示すことが 確認された。 また、 このときの燃料容器 4 2 5の内圧は、 2 x l 05 P a付近で安定 していることも確認された。 The obtained fuel cell 100 was subjected to a continuous load test for 24 hours under the same conditions as in Example 1. As a result, the maximum voltage variation with respect to the output voltage of 3.5 V was 0.25 V. Therefore, also in this example, it was confirmed that the fuel cell 100 exhibited a stable output. Further, the internal pressure of the fuel container 4 2 5 at this time, it was also confirmed to be stable at around 2 xl 0 5 P a.
(比較例 1 )  (Comparative Example 1)
本比較例においては、 燃料極 1 0 2に燃料流路 4 3 3、 燃料供給ライン 4 3 5、 および燃料回収ライン 4 3 7を設けず、燃料容器 4 2 5を燃料極 1 0 2に直接接触 させ、 燃料を供給する燃料電池を作製した。燃料電池の作製は、 実施例 1と同様に して行った。  In this comparative example, the fuel container 4 25 was directly connected to the fuel electrode 102 without providing the fuel flow path 4 33, the fuel supply line 4 35 5 and the fuel recovery line 4 37 in the fuel electrode 102. A fuel cell for supplying fuel was manufactured by contact. The fabrication of the fuel cell was performed in the same manner as in Example 1.
得られた燃料電池を、実施例 1と同様の条件で 2 4時間の連続負荷試験に供した。 その結果、 出力電圧 3 . 5 Vに対する電圧変動は、 最大 2 . 5 Vとなった。 本比較 例に係る燃料電池においては、 燃料流路 4 3 3、 燃料供給ライン 4 3 5、 および燃 料回収ライン 4 3 7が設けられていないため、燃料極 1 0 2で発生する二酸化炭素 等の気体を除去することができず、 出力の低下につながつたものと考えられる。 (比較例 2 ) The obtained fuel cell was subjected to a continuous load test for 24 hours under the same conditions as in Example 1. As a result, the maximum voltage fluctuation with respect to the output voltage of 3.5 V was 2.5 V. In the fuel cell according to this comparative example, since the fuel flow path 433, the fuel supply line 435, and the fuel recovery line 433 are not provided, carbon dioxide generated at the fuel electrode 102, etc. Gas could not be removed, leading to a decrease in output. (Comparative Example 2)
本比較例においては、燃料極 1 0 2と燃料容器 4 2 5との間に燃料戻りライン 4 3 7を設けないこと以外は、 実施例 1と同様にして燃料電池を作製した。  In this comparative example, a fuel cell was manufactured in the same manner as in Example 1, except that the fuel return line 437 was not provided between the fuel electrode 102 and the fuel container 425.
得られた燃料電池を、実施例 1と同様の条件で 2 4時間の連続負荷試験に供した。 その結果、 本比較例においても、 出力電圧 3 . 5 Vに対し、 最大 2 . 5 Vの電圧変 動が認められた。本比較例に係る燃料電池においては、燃料極 1 0 2と燃料容器 4 The obtained fuel cell was subjected to a continuous load test for 24 hours under the same conditions as in Example 1. As a result, also in this comparative example, a voltage fluctuation of a maximum of 2.5 V was observed with respect to the output voltage of 3.5 V. In the fuel cell according to this comparative example, the fuel electrode 102 and the fuel container 4
2 5との間に燃料戻りライン 4 3 7が設けられていないため、燃料容器 4 2 5から 燃料 1 2 4を安定的に燃料極 1 0 2に供給することができないため、出力の低下が 生じたものと考えられる。 Since the fuel return line 4 3 7 is not provided between the fuel tank 4 and the fuel tank 4 2 5, it is not possible to supply the fuel 1 2 4 from the fuel container 4 2 5 to the fuel electrode 10 2 in a stable manner. Probably caused.
(比較例 3 )  (Comparative Example 3)
本比較例においては、燃料極 1 0 2と燃料容器 4 2 5との間に燃料戻りライン 4 In this comparative example, the fuel return line 4 is provided between the fuel electrode 102 and the fuel container 4 25.
3 7を設けず、 また、燃料容器 4 2 5と触媒電極—固体電解質膜接合体 1 0 1との 間に消費電力 1 Wの送液ポンプを設けた構成の燃料電池を実施例 1と同様にして 作製した。 As in Example 1, a fuel cell having a configuration in which a fuel pump with power consumption of 1 W is provided between the fuel container 4 25 and the catalyst electrode-solid electrolyte membrane assembly 101 without the provision of 3 7 was provided. It was made.
得られた燃料電池を、実施例 1と同様の条件で 2 4時間の連続負荷試験に供した。 その結果、 出力電圧 3 . 5 Vに対する電圧変動は、 0 . 2 V以下となった。  The obtained fuel cell was subjected to a continuous load test for 24 hours under the same conditions as in Example 1. As a result, the voltage fluctuation with respect to the output voltage of 3.5 V was 0.2 V or less.
以上の実施例および比較例より、本実施例に係る燃料電池においては、燃料極 1 0 2と燃料容器 4 2 5との間に 料供給ライン 4 3 5および燃料戻りライン 4 3 7を設けることにより、燃料極 1 0 2で生成した二酸化炭素等の気体によって燃料 容器 4 2 5の内部が自然に加圧され、送液ポンプを用いた場合と同程度の出力の安 定性が確保されていた。  From the above examples and comparative examples, in the fuel cell according to the present example, the fuel supply line 435 and the fuel return line 433 are provided between the fuel electrode 102 and the fuel container 425. As a result, the inside of the fuel container 4 25 was naturally pressurized by gas such as carbon dioxide generated at the fuel electrode 102, and the same level of output stability as when a liquid feed pump was used was secured. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 燃料極を備える燃料電池本体と、 液体燃料を貯蔵する燃料容器とを有し、 前 記燃料容器から前記燃料極に供給された前記液体燃料の一部が、前記燃料極で発生 した気体とともに前記燃料容器に回収されるように構成されたことを特徴とする 燃料電池。 1. A fuel cell body having an anode, and a fuel container for storing liquid fuel, wherein a part of the liquid fuel supplied from the fuel container to the anode is a gas generated at the anode. And a fuel cell configured to be collected in the fuel container.
2 . 燃料極を備える燃料電池本体と、 液体燃料を貯蔵する燃料容器と、 前記燃料 極と前記燃料容器とを接続する燃料供給流路および燃料回収流路とを有し、前記燃 料容器から前記燃料極に供給された前記液体燃料の一部が、前記燃料極で発生した 気体とともに前記燃料容器に回収されるように構成されたことを特徴とする 料 電池。  2. A fuel cell main body having a fuel electrode, a fuel container for storing liquid fuel, a fuel supply flow path and a fuel recovery flow path connecting the fuel electrode and the fuel container, and A fuel cell, wherein a part of the liquid fuel supplied to the fuel electrode is collected in the fuel container together with a gas generated at the fuel electrode.
3 . 請求の範囲 2に記載の燃料電池において、前記燃料極から前記燃料回収流路 を経由して前記燃料容器に至る経路が密閉されていることを特徴とする燃料電池。 3. The fuel cell according to claim 2, wherein a path from the fuel electrode to the fuel container via the fuel recovery flow path is sealed.
4. 請求の範囲 2または 3に記載の燃料電池において、前記燃料容器から前記燃 料供給流路、前記燃料回収流路および前記燃料極を経由して前記燃料容器に戻る経 路が、 密閉系循環経路であることを特徴とする燃料電池。 4. The fuel cell according to claim 2 or 3, wherein a path returning from the fuel container to the fuel container via the fuel supply flow path, the fuel recovery flow path, and the fuel electrode is a closed system. A fuel cell, which is a circulation path.
5 . 請求の範囲 1乃至 4いずれかに記載の燃料電池において、前記燃料極に設け られた、前記燃料供給流路および前記燃料回収流路に連通する燃料流路をさらに有 することを特徴とする燃料電池。  5. The fuel cell according to any one of claims 1 to 4, further comprising a fuel flow path provided in the fuel electrode and communicating with the fuel supply flow path and the fuel recovery flow path. Fuel cell.
6 . 請求の範囲 1乃至 5いずれかに記載の燃料電池において、前記燃料極に集電 体が設けられ、前記集電体に前記燃料流路が形成されたことを特徴とする燃料電池。 6. The fuel cell according to any one of claims 1 to 5, wherein a current collector is provided on the fuel electrode, and the fuel flow path is formed in the current collector.
7 . 請求の範囲 1乃至 4いずれかに記載の燃料電池において、前記燃料容器に放 圧部材が設けられたことを特徴とする燃料電池。 7. The fuel cell according to claim 1, wherein a pressure release member is provided in the fuel container.
8 . 燃料極を備える燃料電池本体と、液体燃料を貯蔵する燃料容器とを有する燃 料電池の駆動方法であって、燃料極で生成した気体を前記燃料極に供給された液体 燃料の一部とともに燃料容器に回収し、前記燃料容器に回収された気体の圧力によ つて前記燃料極に前記液体燃料を供給することを特徴とする燃料電池の駆動方法。 8. A driving method of a fuel cell including a fuel cell main body having an anode and a fuel container for storing liquid fuel, wherein a part of the liquid fuel supplied to the anode with gas generated at the anode. And a method for driving the fuel cell, wherein the liquid fuel is supplied to the fuel electrode by the pressure of the gas collected in the fuel container.
9 . 燃料極を備える燃料電池本体と、 液体燃料を貯蔵する燃料容器と、 前記燃料 極と前記燃料容器とを接続する燃料供給流路および燃料回収流路とを有する燃料 電池の駆動方法であって、燃料極で生成した気体を、前記燃料極に供給された液体 燃料の一部とともに前記燃料回収流路を経由して燃料容器に回収し、前記燃料容器 に回収された気体の圧力によって、前記燃料供給流路を経由して前記燃料極に前記 液体燃料を供給することを特徴とする燃料電池の駆動方法。 9. A fuel cell body having a fuel electrode, a fuel container for storing a liquid fuel, and the fuel A method for driving a fuel cell having a fuel supply flow path and a fuel recovery flow path connecting an electrode and the fuel container, wherein a part of the liquid fuel supplied to the fuel electrode And collecting the liquid fuel into the fuel container via the fuel supply flow path by using the pressure of the gas recovered in the fuel container through the fuel recovery flow path. Method for driving a fuel cell.
1 0 . 請求の範囲 8または 9に記載の燃料電池の駆動方法において、前記燃料容 器の内圧を、前記燃料容器に設けられた放圧部材によって制御することを特徴とす る燃料電池の駆動方法。 10. The method for driving a fuel cell according to claim 8 or 9, wherein the internal pressure of the fuel container is controlled by a pressure release member provided in the fuel container. Method.
PCT/JP2003/012435 2002-10-01 2003-09-29 Fuel cell and method for driving fuel cell WO2004032270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-288938 2002-10-01
JP2002288938A JP2004127672A (en) 2002-10-01 2002-10-01 Fuel cell and drive method of fuel cell

Publications (1)

Publication Number Publication Date
WO2004032270A1 true WO2004032270A1 (en) 2004-04-15

Family

ID=32063698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012435 WO2004032270A1 (en) 2002-10-01 2003-09-29 Fuel cell and method for driving fuel cell

Country Status (3)

Country Link
JP (1) JP2004127672A (en)
TW (1) TW200406079A (en)
WO (1) WO2004032270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327538A (en) * 2004-05-13 2005-11-24 Mitsubishi Pencil Co Ltd Liquid fuel storage container

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899297B2 (en) * 2004-08-19 2012-03-21 富士通株式会社 Fuel cell
JP2006221828A (en) * 2005-02-08 2006-08-24 Sony Corp Fuel cell system
JP5187608B2 (en) * 2005-11-21 2013-04-24 日本電気株式会社 Fuel cell system
JP5131421B2 (en) * 2006-09-21 2013-01-30 日本電気株式会社 Solid polymer fuel cell and manufacturing method thereof
JP2008218012A (en) * 2007-02-28 2008-09-18 Toshiba Corp Fuel cell
JP5248070B2 (en) * 2007-09-25 2013-07-31 株式会社東芝 Fuel cell power generation system
JP2009205875A (en) * 2008-02-26 2009-09-10 Fujikura Ltd Direct alcohol type fuel cell
JP5968008B2 (en) * 2012-03-30 2016-08-10 ダイハツ工業株式会社 Fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320724B1 (en) * 1964-05-19 1968-09-05
JPS4520261B1 (en) * 1965-09-09 1970-07-10
JPS53146933U (en) * 1977-04-26 1978-11-18
JPS63202861A (en) * 1987-02-18 1988-08-22 Hitachi Ltd Methanol fuel cell
JPH02148657A (en) * 1988-11-30 1990-06-07 Matsushita Electric Ind Co Ltd Alcoholic fuel battery and operating method thereof
JP2003142135A (en) * 2001-10-29 2003-05-16 Hewlett Packard Co <Hp> Fuel supply source for fuel cell
JP2003257466A (en) * 2001-12-28 2003-09-12 Matsushita Electric Ind Co Ltd Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320724B1 (en) * 1964-05-19 1968-09-05
JPS4520261B1 (en) * 1965-09-09 1970-07-10
JPS53146933U (en) * 1977-04-26 1978-11-18
JPS63202861A (en) * 1987-02-18 1988-08-22 Hitachi Ltd Methanol fuel cell
JPH02148657A (en) * 1988-11-30 1990-06-07 Matsushita Electric Ind Co Ltd Alcoholic fuel battery and operating method thereof
JP2003142135A (en) * 2001-10-29 2003-05-16 Hewlett Packard Co <Hp> Fuel supply source for fuel cell
JP2003257466A (en) * 2001-12-28 2003-09-12 Matsushita Electric Ind Co Ltd Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327538A (en) * 2004-05-13 2005-11-24 Mitsubishi Pencil Co Ltd Liquid fuel storage container

Also Published As

Publication number Publication date
TW200406079A (en) 2004-04-16
JP2004127672A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP5118372B2 (en) Direct methanol fuel cell
JP2006140152A (en) Electrode for fuel cell, and membrane/electrode assembly and fuel cell system including it
JP4781626B2 (en) Fuel cell
WO2003069709A1 (en) Liquid fuel cell
WO2004032270A1 (en) Fuel cell and method for driving fuel cell
US20070111085A1 (en) Electrocatalyst for fuel cell-electrode, membrane-electrode assembly using the same and fuel cell
CN111095641B (en) Method for producing membrane electrode assembly and laminate
JP2007329072A (en) Method of manufacturing electrode for fuel cell
EP2284936A1 (en) Fuel battery
WO2008127045A1 (en) Anode catalyst layer and membrane-electrode assembly of direct liquid feed fuel cell and direct liquid feed fuel cell
JP5672645B2 (en) Electrocatalyst ink for fuel cell
WO2007110941A1 (en) Fuel cell
US7655343B2 (en) Liquid fuel supply type fuel cell
JP4018500B2 (en) Fuel cell
JP3575477B2 (en) Fuel cell
KR101170487B1 (en) Method of driving direct methanol fuel cell system at low temperature
JP5272364B2 (en) Fuel cell cartridge
JP5447922B2 (en) FUEL CELL, FUEL CELL STACK, AND ELECTRONIC DEVICE PROVIDED WITH FUEL CELL STACK
JPWO2006064594A1 (en) Polymer electrolyte fuel cell
JP2003323896A (en) Solid electrolyte fuel cell
KR20090039423A (en) Membrane electrode assembly for fuel cell and fuel cell system including same
JP2003317790A (en) Cell for fuel cell, fuel cell system and its manufacturing method
JP2006114349A (en) Cartridge for solid polymer fuel cell, and solid polymer fuel cell
JP5128824B2 (en) Fuel cell system
JP2009238499A (en) Fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase