JPH0656769B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH0656769B2
JPH0656769B2 JP62136121A JP13612187A JPH0656769B2 JP H0656769 B2 JPH0656769 B2 JP H0656769B2 JP 62136121 A JP62136121 A JP 62136121A JP 13612187 A JP13612187 A JP 13612187A JP H0656769 B2 JPH0656769 B2 JP H0656769B2
Authority
JP
Japan
Prior art keywords
air
manifold
fuel gas
introducing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62136121A
Other languages
Japanese (ja)
Other versions
JPS63299058A (en
Inventor
政男 粂田
陽 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62136121A priority Critical patent/JPH0656769B2/en
Publication of JPS63299058A publication Critical patent/JPS63299058A/en
Publication of JPH0656769B2 publication Critical patent/JPH0656769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は可般用の小型燃料電池システムに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a general-purpose small fuel cell system.

(ロ) 従来の技術 りん酸型燃料電池の燃料ガスとして、通常天然ガス・メ
タノール等の燃料をリフオーマで改質した水素リチツガ
スを用いるが、この改質ガス温度はメタノールリフオー
マの場合200〜250℃であるから、燃料電池に供給
する際には改質ガスを熱交換器で適当な温度に低下させ
る必要がある。大型システムの場合には改質ガス量も多
くなるため熱交換器使用の効果があるが、小型システム
の場合スペースの制約を受けると共に改質ガス量も少な
いため熱交換して得られる熱量が少いなどの問題があ
り、熱交換器をおくことは不経済であるばかりでなく、
システムの容積・重量を増大させるという欠点があつ
た。
(B) Conventional technology As a fuel gas for a phosphoric acid fuel cell, hydrogen-rich hydrogen gas obtained by reforming a fuel such as natural gas or methanol with a reformer is usually used. The reformed gas temperature is 200 to 250 in the case of the methanol reformer. Since the temperature is ℃, it is necessary to lower the temperature of the reformed gas to an appropriate temperature in the heat exchanger when supplying it to the fuel cell. In the case of a large system, the amount of reformed gas is large, so the use of a heat exchanger is effective, but in the case of a small system, the amount of reformed gas is limited and the amount of heat obtained by heat exchange is small. Not only is it uneconomical to have a heat exchanger,
There is a drawback that the volume and weight of the system are increased.

(ハ) 発明が解決しようとする問題点 この発明は従来のように熱交換器を用いることなく燃料
ガスとして電池に導入される改質ガスの温度を低下させ
ると共にシステムの簡素化コンパクト化を図るものであ
る。
(C) Problems to be Solved by the Invention This invention aims to reduce the temperature of the reformed gas introduced into the cell as fuel gas without using a heat exchanger as in the conventional case and to simplify the system and make it compact. It is a thing.

(ニ) 問題点を解決するための手段 この発明は空気を反応空気チヤンネル及び冷却空気チヤ
ンネルに共通的に導入するマニホルドの背面に、熱交換
隔壁を介して、リフオーマで改質された燃料ガスの導入
路の一部を構成する拡開通路を形成したものである。
(D) Means for Solving the Problems This invention relates to a fuel gas reformed by a reformer through a heat exchange partition wall on the rear surface of a manifold for introducing air into a reaction air channel and a cooling air channel in common. The expansion passage forming a part of the introduction passage is formed.

(ホ) 作 用 改質ガスの主成分は熱伝導性に優れた水素であり、冷却
ガスを兼ねる空気の流量は充分大きくこれらガスが隔壁
を介して広い面積で接しているので、別途熱交換器を用
いることなく良好に熱交換が行はれ、高温の改質ガスが
適度な温度に低下して電池に導入される。
(E) Operation The main component of the reformed gas is hydrogen, which has excellent thermal conductivity, and the flow rate of air, which also functions as a cooling gas, is sufficiently large that these gases are in contact with each other over a large area via the partition walls, so heat exchange is performed separately. Good heat exchange is performed without using a vessel, and the high temperature reformed gas is cooled to an appropriate temperature and introduced into the battery.

(ヘ) 実施例 電池スタツク(1)は単セル(2)と、表裏各面に燃料ガスチ
ヤンネル(3)及び反応空気チヤンネル(4)を夫々有するガ
ス分離板(5)とを交互に多数積重し、数セル毎に冷却空
気チヤンネル(6)を有する冷却板(7)−ガス分離板兼用−
を介在させ、積重方向に締付けて構成される。この電池
スタツク(1)の反応空気チヤンネル(4)及び冷却空気チヤ
ンネル(6)が開口する一対内周面に、空気の導入及び導
出用の各マニホルド(8)(8)′が夫々取付けられ、又燃料
ガスチヤンネル(3)が開口する電池スタツクの他対向周
面に、燃料ガスの導入及び導出用の各マニホルド(9)
(9)′が夫々取付けられている。
(F) Example A battery stack (1) is composed of a single cell (2) and a plurality of gas separation plates (5) alternately having a fuel gas channel (3) and a reaction air channel (4) on each surface. And a cooling plate (7) having a cooling air channel (6) for every few cells-also for gas separation plate-
And is tightened in the stacking direction. Each of the manifolds (8) (8) 'for introducing and discharging air is attached to a pair of inner peripheral surfaces where the reaction air channel (4) and the cooling air channel (6) of the battery stack (1) are open, In addition, on the other side of the cell stack where the fuel gas channel (3) opens, the manifolds (9) for introducing and discharging the fuel gas are also provided.
(9) 'are attached respectively.

空気の導出マニホルド(8)′と導入マニホルド(8)との間
は、排気ダンパ(10)、外気吸入ダンパ(11)及びブロワ(1
2)を有する循環ダクト(13)で連通している。
An exhaust damper (10), an outside air intake damper (11) and a blower (1) are provided between the air outlet manifold (8) ′ and the inlet manifold (8).
They are communicated by a circulation duct (13) having 2).

燃料ガスは、リフオーマ(14)でメタノールと水の混合液
を気化改質して得られる水素リチツガスである。空気導
入マニホルド(8)の背面には熱交換隔壁(15)を介して、
前記燃料ガスの導入路(16)の一部を構成する拡開通路(1
6)′が形成されている。
The fuel gas is hydrogen-rich gas obtained by vaporizing and reforming a mixed liquid of methanol and water with a reformer (14). At the back of the air introduction manifold (8), through a heat exchange partition (15),
An expansion passage (1) forming a part of the fuel gas introduction passage (16)
6) ′ is formed.

燃料電池は燃料極及び空気極に夫々供給される燃料ガス
中のH2及び空気中のO2がりん酸電解液を介して反応し、
直流電力を発生するもので、反応熱により昇温する電池
は循環ダクト(13)を流れる空気により冷却されて約19
0℃の規定温度に維持される。
In the fuel cell, H 2 in the fuel gas and O 2 in the air supplied to the fuel electrode and the air electrode respectively react through the phosphoric acid electrolyte solution,
DC power is generated, and the battery that heats up due to reaction heat is cooled by the air flowing through the circulation duct (13) to about 19
The specified temperature of 0 ° C is maintained.

ブロワ(12)で導入マニホルド(8)を介して送入された空
気は、電池スタツク(1)の反応空気チヤンネル(4)及び冷
却空気チヤンネル(6)に分配される。一方反応をもつて
導出マニホルド(8)より送出された空気は、約180℃
に昇温しているが、その一部は排気ダンパ(10)より系外
に排出すると同時に他部は排出量に見合つて吸入ダンパ
(11)により取入れた低温の外気と共に再び導入マニホル
ド(8)に送入され、循環空気の冷却とO2濃度の補償を行
う。この時の導入空気温度は約125℃となるよう、外
気温に応じて排出量及び吸入量を各ダンパ(10)(11)によ
り調節される。
The air introduced by the blower (12) through the introduction manifold (8) is distributed to the reaction air channel (4) and the cooling air channel (6) of the battery stack (1). On the other hand, the air discharged from the discharge manifold (8) with a reaction is about 180 ° C.
The temperature rises to a certain level, but part of it is discharged from the exhaust damper (10) to the outside of the system, and at the same time, the other part of the intake damper
It is sent to the introduction manifold (8) again together with the low temperature outside air taken in by (11), and the circulating air is cooled and the O 2 concentration is compensated. The discharge amount and the intake amount are adjusted by the dampers (10) and (11) according to the outside air temperature so that the introduced air temperature at this time is about 125 ° C.

リフオーマ(14)で改質された燃料ガスは約200〜25
0℃であるが、導入空気マニホルド(8)の背面に形成さ
れた拡開通路(16)′を流れる間に導入空気との間で熱交
換が行はれる。この燃料ガスと空気の各流量は1:30
程度と空気流量が著しく多いので、燃料ガスは約140
℃に冷却されるに対し、空気の温度上昇は約5℃で電池
スタツク(1)の入口温度は約130℃となる。燃料ガス
の温度低下度合は、拡開通路(16)′と空気導入マニホル
ド(8)との間の隔壁(15)の面積により熱交換能を変化さ
せて適宜選定することができる。
The fuel gas reformed by the refoma (14) is about 200-25
Although at 0 ° C., heat is exchanged with the introduced air while flowing through the expansion passage (16) 'formed in the back surface of the introduced air manifold (8). Each flow rate of this fuel gas and air is 1:30
The fuel gas is about 140
While the temperature of the air is increased to about 5 ° C, the temperature of the inlet of the battery stack (1) is about 130 ° C. The degree of temperature decrease of the fuel gas can be appropriately selected by changing the heat exchange capacity depending on the area of the partition wall (15) between the expansion passage (16) 'and the air introduction manifold (8).

(ト) 発明の効果 本発明システムによればリフオーマで生成した高温の燃
料ガスは、反応ガス及び冷却ガスとして共通マニホルド
に導入される流量の大きい空気により、電池に供給する
に通した温度まで冷却されるので、別途熱交換器を必要
とせず、システムの簡素化コンパクト化が達成されると
共に、電池スタツクの入口空気の温度上昇はごくわづか
であつて、冷却ガスとして支障をきたすことがない。
(G) Effect of the Invention According to the system of the present invention, the high-temperature fuel gas generated in the reformer is cooled to the temperature at which it is supplied to the battery by the large flow rate air introduced into the common manifold as the reaction gas and the cooling gas. Therefore, a separate heat exchanger is not required, the system can be simplified and the size can be reduced, and the temperature rise of the inlet air of the battery stack is negligible, so that it does not interfere with the cooling gas.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明燃料電池発電システムのフロー図、第2
図は同上電池スタツクの要部斜面図、第3図は同上電池
の外観斜面図である。 (1)……電池スタツク、(2)……単セル、(5)……ガス分
離板、(3)(4)……燃料ガス及び反応空気の各チヤンネ
ル、(6)……冷却空気チヤンネル、(7)……冷却板、
(8)、(8)′……空気の導入・導出マニホルド、(9),
(9)′……燃料ガスの導入・導出マニホルド、(10)……
排気ダンパ、(11)……吸入ダンパ、(12)……ブロワ、(1
4)……リフオーマ、(15)……熱交換隔壁、(16)′……燃
料ガスの拡開通路。
FIG. 1 is a flow chart of the fuel cell power generation system of the present invention, FIG.
FIG. 3 is a perspective view of an essential part of the same battery stack, and FIG. 3 is an external perspective view of the same battery. (1) …… Battery stack, (2) …… Single cell, (5) …… Gas separator, (3) (4) …… Fuel gas and reaction air channels, (6) …… Cooling air channel , (7) …… Cooling plate,
(8), (8) ′ …… Air inlet / outlet manifold, (9),
(9) ′ …… Inlet / outlet manifold for fuel gas, (10) ……
Exhaust damper, (11) …… Intake damper, (12) …… Blower, (1
4) …… Refumaer, (15) …… heat exchange partition, (16) ′ …… fuel gas expansion passage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電池スタツクの反応空気チヤンネル及び冷
却空気チヤンネルが開口する一対向周面に、空気の導入
・導出用マニホルドを、燃料ガスチヤンネルが開口する
他対向周面に、メタノールを改質した燃料ガスの導入導
出用マニホルドを夫々取付け、前記空気の導出マニホル
ドと導入マニホルド間を排気ダンパ、外気吸入ダンパー
及びブロワを有する循環ダクトで連通し、且前記空気の
導入マニホルドの背面に、熱交換隔壁を介して、前記燃
料ガスの導入路の一部を構成する拡開通路を形成したこ
とを特徴とする燃料電池発電システム。
Claims: 1. A manifold for introducing and leading out air is reformed on one opposing peripheral surface where the reaction air channel and the cooling air channel of the battery stack are opened, and methanol is reformed on the other opposing peripheral surface where the fuel gas channel is opened. A manifold for introducing and discharging fuel gas is attached to each of the manifolds, a manifold for communicating the air and a manifold for introducing the air are connected by a circulation duct having an exhaust damper, an outside air intake damper, and a blower, and a heat exchange partition wall is provided on the rear surface of the manifold for introducing the air. The fuel cell power generation system is characterized in that an expansion passage forming a part of the introduction passage of the fuel gas is formed through the above.
JP62136121A 1987-05-29 1987-05-29 Fuel cell power generation system Expired - Fee Related JPH0656769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136121A JPH0656769B2 (en) 1987-05-29 1987-05-29 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136121A JPH0656769B2 (en) 1987-05-29 1987-05-29 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS63299058A JPS63299058A (en) 1988-12-06
JPH0656769B2 true JPH0656769B2 (en) 1994-07-27

Family

ID=15167794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136121A Expired - Fee Related JPH0656769B2 (en) 1987-05-29 1987-05-29 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0656769B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003218A1 (en) * 1999-07-05 2001-01-11 Siemens Aktiengesellschaft Htm fuel cell facility and method for operating an htm fuel cell facility
US6967064B2 (en) * 2002-06-24 2005-11-22 Delphi Technologies, Inc. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly
EP1653539A1 (en) * 2004-11-02 2006-05-03 HTceramix S.A. Solid oxide fuel cell system

Also Published As

Publication number Publication date
JPS63299058A (en) 1988-12-06

Similar Documents

Publication Publication Date Title
US4080487A (en) Process for cooling molten carbonate fuel cell stacks and apparatus therefor
JP3930045B2 (en) Fuel cell module having a multi-fuel cell stack
US20070184310A1 (en) Molten Carbonate Fuel Cell Provided with Indirect Internal Steam Reformer
JPH03210774A (en) Internally improved quality system molten carbonate type fuel cell
JP4906248B2 (en) Fuel cell assembly
JPH03105865A (en) Inside reformed type fuel cell and power plant using it
JP2004204849A (en) Cooled turbine integrated fuel cell hybrid power plant
CN110416570B (en) A fuel cell hydrogen heating device
JP3925756B2 (en) Double-container fuel cell system
JPH11312531A (en) Fuel cell system
JPH097624A (en) Solid electrolytic fuel cell
JPH0656769B2 (en) Fuel cell power generation system
JPH10312821A (en) Fuel cell system
JPH10284107A (en) Fuel cell power generating system
JP3611065B2 (en) Integrated fuel cell power generator
JP2002298898A (en) Solid polymer type fuel cell
CN109742422A (en) A closed proton exchange membrane fuel cell
JPH07109772B2 (en) Internal manifold fuel cell power generator
JPH1167258A (en) Fuel cell
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JPS5975573A (en) Fuel cell
CN114447367A (en) An integrated thermal component, power generation system and solid oxide fuel cell
JPS6322423B2 (en)
JPH0656770B2 (en) Fuel cell power generation system
JP2000294262A (en) Fuel cell power generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees