JPS6322423B2 - - Google Patents

Info

Publication number
JPS6322423B2
JPS6322423B2 JP57010500A JP1050082A JPS6322423B2 JP S6322423 B2 JPS6322423 B2 JP S6322423B2 JP 57010500 A JP57010500 A JP 57010500A JP 1050082 A JP1050082 A JP 1050082A JP S6322423 B2 JPS6322423 B2 JP S6322423B2
Authority
JP
Japan
Prior art keywords
air
reaction
exhaust
cooling
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57010500A
Other languages
Japanese (ja)
Other versions
JPS58128672A (en
Inventor
Masao Kumeta
Kensho Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57010500A priority Critical patent/JPS58128672A/en
Publication of JPS58128672A publication Critical patent/JPS58128672A/en
Publication of JPS6322423B2 publication Critical patent/JPS6322423B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は冷却専用の空気供給経路を備えた空冷
式燃料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-cooled fuel cell equipped with an air supply path dedicated to cooling.

一般に空冷式燃料電池では第1図に示すように
入口マニホルドイを介してスタツクロに導入され
た空気は、反応空気通路と冷却空気通路に分流
し、出口マニホルドハで合流して導出される。こ
の導出空気の大部分は熱回収器(図示せず)を有
する排気路ニに送られるが、その一部は常に循環
路ホを経てスタツクロに環流し、この場合ダンパ
ーヘを有する空気取入口トより導入された新鮮空
気と前記環流空気との混合空気がスタツクロに送
られる。
In general, in an air-cooled fuel cell, as shown in FIG. 1, air introduced into a stack via an inlet manifold is divided into a reaction air passage and a cooling air passage, and is then combined at an outlet manifold and discharged. Most of this discharged air is sent to the exhaust passage 2, which has a heat recovery device (not shown), but a portion of it is always returned to the static air passage 2 through the circulation passage 5, and in this case, from the air intake 2, which has a damper. The mixed air of the introduced fresh air and the recirculated air is sent to the stack.

しかしながらこの方式では反応空気と冷却空気
の供給径路が共通であるため、電池の温度制御が
むつかしくスタツクの温度が不均一になると共に
排出空気中に電解液である酸が含まれ排熱利用時
熱回収器などの腐触をひきおこすという問題があ
つた。
However, in this method, the supply route for reaction air and cooling air is common, making it difficult to control the temperature of the battery, resulting in uneven stack temperatures, and the exhaust air containing acid, which is the electrolyte, resulting in heat generation when exhaust heat is used. There was a problem in that it caused corrosion of the recovery equipment.

本発明はこのような問題点を改善するため、反
応空気と冷却専用空気の各供給径路を分離すると
共に、冷却専用空気の排気流の一部を反応空気と
して反応空気供給径路に導入可能とし、電極反応
の均一化と電池システムの効率化を図るものであ
る。
In order to improve these problems, the present invention separates the reaction air and cooling-only air supply paths, and makes it possible to introduce a part of the cooling-only air exhaust flow into the reaction air supply path as reaction air. This aims to equalize the electrode reaction and improve the efficiency of the battery system.

以下本発明の実施例を第2図について説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

電池スタツク1は単位セルと、反応ガス通路を
有するガス分離板とを交互に積重し、数セル毎に
冷却専用空気通路を有する冷却板(いずれも図示
せず)を介在して構成れる。電池スタツク1の対
向面には反応空気の導入及び導出用の各マニホル
ド2及び3と、反応水素ガス用の各マニホルド4
及び5を有する。
The battery stack 1 is constructed by stacking unit cells and gas separation plates having reactant gas passages alternately, with intervening cooling plates (none of which are shown) having cooling air passages every few cells. On the opposite side of the battery stack 1 are manifolds 2 and 3 for introducing and discharging reaction air, and manifolds 4 for reacting hydrogen gas.
and 5.

前記反応空気用の各マニホルド2,3間を結ぶ
循環供給径路6には、反応済空気の一部を外部へ
排出するためのダンパー7付排出口8と、新鮮な
空気を導入するダンパー9付取入口10とを分岐
形成している。
The circulation supply path 6 connecting each of the reaction air manifolds 2 and 3 has an outlet 8 with a damper 7 for discharging a portion of the reacted air to the outside, and a damper 9 for introducing fresh air. The intake port 10 is branched.

冷却専用空気の入口側及び出口側の分割マニホ
ルド11及び12は夫々スタツク冷却板の各空気
通路に連通し、冷却専用空気はブロワ13を有す
る導入管14よりスタツクに供給され、冷却済の
排気は熱回収器15を設けた排気路16経て排出
される。
The divided manifolds 11 and 12 on the inlet and outlet sides of the cooling air are respectively communicated with the air passages of the stack cooling plates, and the cooling air is supplied to the stack from an inlet pipe 14 having a blower 13, and the cooled exhaust air is The heat is discharged through an exhaust path 16 provided with a heat recovery device 15.

本発明においては、この排気路16よりダンパ
ー17を介して分岐する分岐路18を反応空気の
取入口10に連通し、冷却専用空気の排気の一部
を反応空気として利用するものである。
In the present invention, a branch path 18 branching from the exhaust path 16 via a damper 17 is communicated with the reaction air intake port 10, and a part of the exhaust of the cooling air is used as reaction air.

次に本発明電池の作動を説明する。 Next, the operation of the battery of the present invention will be explained.

反応空気供給径路6を循環している反応空気は
電池反応により酸素分圧が低下するので、循環流
量の約1/4〜1/5の新鮮空気量を常に空気取入口1
0から導入して酸素分圧の低下を補うと共に反応
済空気の一部を排出口8から導出する。しかし外
気温が低い場合にはこの外気導入によりスタツク
入口側の温度が出口側に比して低下し、電池反応
の不均一化の原因となる。電池温度は負荷電流に
より変化するが、負荷電流が小さくなつた場合ス
タツクの温度上昇が抑制され、この状態で低温の
外気導入は入口側の温度を一層低下させることに
なる。
Since the oxygen partial pressure of the reaction air circulating through the reaction air supply path 6 decreases due to the cell reaction, the amount of fresh air that is approximately 1/4 to 1/5 of the circulating flow rate is always supplied to the air intake port 1.
The reacted air is introduced from zero to compensate for the drop in oxygen partial pressure, and a part of the reacted air is led out from the outlet 8. However, when the outside temperature is low, this introduction of outside air causes the temperature on the stack inlet side to be lower than that on the exit side, causing non-uniformity of the battery reaction. The battery temperature changes depending on the load current, but when the load current becomes small, the temperature rise in the stack is suppressed, and in this state, introducing low-temperature outside air will further reduce the temperature on the inlet side.

一方冷却空気はスタツクを冷却するだけである
からその排出空気は昇温しているけれども酸素分
圧は全く変化していない。
On the other hand, since the cooling air only cools the stack, the temperature of the exhaust air has risen, but the oxygen partial pressure has not changed at all.

従つて前記特別な条件下では分岐路18のダン
パーを開くと共に新鮮空気取入口10のダンパー
9を閉じ、冷却済の排気空気の一部を、反応空気
供給径路6の導入側に送り、循環反応空気と混合
してスタツク1に供給する。これによつてスタツ
クへの導入反応空気は昇温し、入口側の温度が所
定温度に達すればこれを検出し、再び分岐路18
のダンパー17を閉じると同時に取入口10のダ
ンパー9を開く。
Therefore, under the above-mentioned special conditions, the damper of the branch passage 18 is opened and the damper 9 of the fresh air intake port 10 is closed, and a part of the cooled exhaust air is sent to the inlet side of the reaction air supply passage 6, and the circulating reaction is carried out. Mixed with air and supplied to stack 1. As a result, the temperature of the reaction air introduced into the stack rises, and when the temperature on the inlet side reaches a predetermined temperature, this is detected and the branch passage 18
At the same time, the damper 9 of the intake port 10 is opened.

以上のように外気温又は電池負荷に応じて反応
空気の循環径路6に外部新鮮空気又は冷却済排気
空気の一部を切換導入し、スタツク入口側と出口
側の温度差が均一化される。又電池起動時反応空
気の空気取入口10及び排出口8の各ダンパー9
及び7を閉じた状態でヒーター19に通電して加
熱された空気をブロワ20で電池内に送り込んで
いるが、本発明では起動後冷却用排気空気が昇温
しているので、これを反応空気として利用出来る
ためヒーター加熱時間を低減し、電力を節約する
ことが可能となる。
As described above, a portion of external fresh air or cooled exhaust air is selectively introduced into the reaction air circulation path 6 according to the outside temperature or battery load, thereby equalizing the temperature difference between the stack inlet and outlet sides. In addition, each damper 9 of the air intake port 10 and the discharge port 8 of the reaction air at the time of battery startup
and 7 are closed, the heater 19 is energized and the heated air is sent into the battery by the blower 20. However, in the present invention, the temperature of the cooling exhaust air increases after startup, so this is used as the reaction air. Since it can be used as a heater, heating time can be reduced and power can be saved.

上述の如く本発明によれば、反応空気供給径路
と分離して形成された冷却専用空気径路には、そ
の排気流の一部を前記反応空気供給径路に導入す
る分岐管を設けたことにより、次のような特徴が
得られる。
As described above, according to the present invention, the dedicated cooling air path formed separately from the reaction air supply path is provided with a branch pipe that introduces a part of the exhaust flow into the reaction air supply path. The following features are obtained.

(1) 反応空気量は冷却を考慮することなく必要量
だけの供給でよいから電解液の損失が少なく寿
命の向上が得られる。
(1) Only the required amount of reaction air can be supplied without considering cooling, so loss of electrolyte is reduced and life is improved.

(2) 冷却専用空気の排気流は酸素分圧に変化がな
いので外気温の低い場合や負荷電流の小さい場
合、外気取入れの代りにこの昇温された排気流
の一部を反応空気として利用し、電池温度の均
一化とに電池起動時のヒーター使用電力の低減
化を図ることができる。
(2) Since the oxygen partial pressure of the cooling air exhaust flow does not change, when the outside temperature is low or the load current is small, a part of this heated exhaust flow can be used as reaction air instead of outside air intake. However, it is possible to equalize the battery temperature and reduce the power consumption of the heater when starting the battery.

(3) 冷却排空気には電解液としての酸を含まない
ので熱回収器などの腐蝕なしに排熱利用ができ
る。
(3) Since the cooled exhaust air does not contain acid as an electrolyte, the exhaust heat can be used without corrosion of heat recovery equipment.

(4) 電池スタツク入口側と出口側の温度差が減少
し、電極反応の均一化により特性の向上が達成
される。
(4) The temperature difference between the inlet and outlet sides of the battery stack is reduced, and the electrode reactions are made more uniform, resulting in improved characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来電池の作動装置を示す径路図、第
2図は本発明電池の作動装置を示す径路図であ
る。 1…電池スタツク、2,3…反応空気マニホル
ド、4,5…反応水素ガス用マニホルド、6…反
応空気供給径路、10…空気取入口、11,12
…冷却空気用分割マニホルド、7,9,17…ダ
ンパー、15…熱回収器、16…排気路、18…
分岐路。
FIG. 1 is a route diagram showing an operating device for a conventional battery, and FIG. 2 is a route diagram showing an operating device for a battery according to the present invention. DESCRIPTION OF SYMBOLS 1... Battery stack, 2, 3... Reaction air manifold, 4, 5... Reaction hydrogen gas manifold, 6... Reaction air supply path, 10... Air intake port, 11, 12
...Divided manifold for cooling air, 7, 9, 17... Damper, 15... Heat recovery device, 16... Exhaust path, 18...
Branching road.

Claims (1)

【特許請求の範囲】 1 反応空気と冷却空気の各供給経路を分離形成
し、前記反応空気の供給経路に外気取入口を有す
る燃料電池において、前記冷却空気の排気流の少
くとも一部を前記反応空気として反応空気供給経
路に導入する分岐路を備えることを特徴とする空
冷式燃料電池。 2 前記外気取入口に吸気ダンパを、前記冷却空
気の排気路に排気ダンパを夫々有し、前記分岐路
は排気ダンパより分岐していることを特徴とする
特許請求の範囲第1項記載の空冷式燃料電池。 3 前記分岐路の排気ダンパと前記外気取入口の
吸気ダンパとは一方が開方向のとき他方が閉方向
に連動するものであることを特徴とする特許請求
の範囲第2項記載の空冷式燃料電池。
[Scope of Claims] 1. In a fuel cell in which reaction air and cooling air supply paths are formed separately, and the reaction air supply path has an outside air intake port, at least a part of the cooling air exhaust flow is An air-cooled fuel cell characterized by comprising a branch path that introduces reaction air as reaction air into a reaction air supply path. 2. The air cooling according to claim 1, wherein the outside air intake port includes an intake damper, and the cooling air exhaust path includes an exhaust damper, and the branch path branches from the exhaust damper. formula fuel cell. 3. The air-cooled fuel according to claim 2, wherein when one of the exhaust damper of the branch passage and the intake damper of the outside air intake port is in the opening direction, the other is in the closing direction. battery.
JP57010500A 1982-01-26 1982-01-26 Air cooling type fuel cell Granted JPS58128672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010500A JPS58128672A (en) 1982-01-26 1982-01-26 Air cooling type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010500A JPS58128672A (en) 1982-01-26 1982-01-26 Air cooling type fuel cell

Publications (2)

Publication Number Publication Date
JPS58128672A JPS58128672A (en) 1983-08-01
JPS6322423B2 true JPS6322423B2 (en) 1988-05-11

Family

ID=11751909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010500A Granted JPS58128672A (en) 1982-01-26 1982-01-26 Air cooling type fuel cell

Country Status (1)

Country Link
JP (1) JPS58128672A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227100B2 (en) * 2008-07-01 2013-07-03 日本電信電話株式会社 Fuel cell power generation system and power generation method
JP2010020965A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP5066020B2 (en) * 2008-07-09 2012-11-07 日本電信電話株式会社 Fuel cell power generation system and operation method thereof
JP2010044960A (en) * 2008-08-13 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and power generation method of fuel cell
CN113299947A (en) * 2020-02-21 2021-08-24 北汽福田汽车股份有限公司 Fuel cell cooling system and fuel cell vehicle

Also Published As

Publication number Publication date
JPS58128672A (en) 1983-08-01

Similar Documents

Publication Publication Date Title
US7410713B2 (en) Integrated fuel cell hybrid power plant with re-circulated air and fuel flow
US6497971B1 (en) Method and apparatus for improved delivery of input reactants to a fuel cell assembly
EP1401042B1 (en) Solid-oxide fuel cell system having means for controlling tail gas combustion temperature
US20060172176A1 (en) Method and apparatus for thermal, mechanical, and electrical optimization of a solid-oxide fuel cell stack
US8822090B2 (en) Internally reforming fuel cell assembly with staged fuel flow and selective catalyst loading for improved temperature uniformity and efficiency
US4686157A (en) Fuel cell power system
JP2004204849A (en) Cooled turbine integrated fuel cell hybrid power plant
CN104380512B (en) Fuel cell system
RU2299500C2 (en) Fuel cell system incorporating built-in spent cathodic gas condenser and fuel-cell battery cooler
US7883810B2 (en) Slow purge for improved water removal, freeze durability, purge energy efficiency and voltage degradation due to shutdown/startup cycling
JPS6322423B2 (en)
JPH11312531A (en) Fuel cell system
CN109923717A (en) Amendment fuel cell for monoblock type reforming fuel cell recycles
US7067209B2 (en) High temperature reactant recycling for PEM fuel cell humidification
JPH097624A (en) Solid electrolytic fuel cell
JP4969040B2 (en) Internal gas controlled fuel cell
CN108808035A (en) The dynamical system for the fuel cell car that energy ultra-low temperature cold starts
JPH04286869A (en) Cooling system of fuel cell
JPS62252075A (en) Temperature control device of air cooling type fuel cell
US20210384532A1 (en) Humidifier and motor vehicle
JPH0656769B2 (en) Fuel cell power generation system
JPH0622149B2 (en) Fuel cell
JPH04144069A (en) Fuel cell
JPH02155170A (en) Fuel cell performing internal reformation
JPS6322425B2 (en)