CN110416570B - A fuel cell hydrogen heating device - Google Patents
A fuel cell hydrogen heating device Download PDFInfo
- Publication number
- CN110416570B CN110416570B CN201910616489.8A CN201910616489A CN110416570B CN 110416570 B CN110416570 B CN 110416570B CN 201910616489 A CN201910616489 A CN 201910616489A CN 110416570 B CN110416570 B CN 110416570B
- Authority
- CN
- China
- Prior art keywords
- hydrogen
- cavity
- compressed air
- heat exchange
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 138
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 138
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 134
- 239000000446 fuel Substances 0.000 title claims abstract description 46
- 238000010438 heat treatment Methods 0.000 title claims abstract description 32
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 238000005485 electric heating Methods 0.000 abstract description 4
- 238000005192 partition Methods 0.000 abstract description 4
- 239000002918 waste heat Substances 0.000 abstract description 4
- 238000010248 power generation Methods 0.000 abstract description 3
- 239000003570 air Substances 0.000 description 49
- 239000007789 gas Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
一种燃料电池氢气加热装置,涉及燃料电池领域;包括壳体、2排换热翅片、2n个氢气分流挡板和隔板;壳体的顶端分别设置有热交换剂进口和热交换剂出口;壳体的侧壁处设置有氢气进口和压缩空气进口;壳体底端的侧壁处,设置有氢气出口和压缩空气出口;隔板将壳体内腔分为氢气腔体和压缩空气腔体;2排换热翅片分布竖直设置在氢气腔体和压缩空气腔体内部的中心处;一排换热翅片与热交换剂进口连通;另一排换热翅片与热交换剂出口连通;氢气分流挡板对称设置在氢气腔体和压缩空气腔体内部;本发明利用燃料电池堆和系统产生的废热对从冷源进入的氢气进行加热,升温均匀可控,避免电加热等较为危险的加热方式,可为燃料电池发电提供温度较高的氢气。
A fuel cell hydrogen heating device relates to the field of fuel cells; it comprises a casing, 2 rows of heat exchange fins, 2n hydrogen gas split baffles and separators; the top of the casing is respectively provided with a heat exchanger inlet and a heat exchanger outlet The side wall of the shell is provided with a hydrogen inlet and a compressed air inlet; the side wall of the bottom end of the shell is provided with a hydrogen outlet and a compressed air outlet; the partition divides the inner cavity of the shell into a hydrogen cavity and a compressed air cavity; Two rows of heat exchange fins are vertically arranged in the center of the hydrogen cavity and the compressed air cavity; one row of heat exchange fins is communicated with the heat exchanger inlet; the other row of heat exchange fins is communicated with the heat exchanger outlet The hydrogen distribution baffle is symmetrically arranged inside the hydrogen cavity and the compressed air cavity; the invention uses the waste heat generated by the fuel cell stack and the system to heat the hydrogen entering from the cold source, and the temperature rise is uniform and controllable, avoiding the danger of electric heating and the like The heating method can provide high-temperature hydrogen for fuel cell power generation.
Description
技术领域technical field
本发明涉及一种燃料电池领域,特别是一种燃料电池氢气加热装置。The invention relates to the field of fuel cells, in particular to a hydrogen heating device for fuel cells.
背景技术Background technique
质子交换膜燃料电池(Proton Exchange membrane Fuel Cell,PEMFC)和传统的内燃机反应机理不同,它直接将化学能转换为电能,不受卡诺循环的限制,能量的转化效率高达40%~60%。作为一种新型清洁的能源,具有低噪音、零污染、启动快,效率高、输出电流大、工作温度低等优点,并在便携式电源、固定式电源及车载电源方面得到了广泛应用。Proton Exchange Membrane Fuel Cell (PEMFC) is different from the traditional internal combustion engine reaction mechanism. It directly converts chemical energy into electrical energy, which is not limited by the Carnot cycle, and the energy conversion efficiency is as high as 40% to 60%. As a new type of clean energy, it has the advantages of low noise, zero pollution, fast startup, high efficiency, large output current, and low operating temperature, and has been widely used in portable power supplies, stationary power supplies and vehicle power supplies.
质子交换膜燃料电池燃料受测试条件的影响较大,其中主要包括空气、氢气和冷却剂的压力、温度和空气侧湿度等因素。现阶段大多数燃料电池系统控制主要对空气、氢气和冷却剂的压力,空气湿度和温度以及氢气循环等因素进行控制。但通常为降低系统复杂程度对氢气的温度和湿度不进行控制和管理。现有研究表明,氢气的温度和湿度对燃料电池性能的影响较小。Proton exchange membrane fuel cell fuel is greatly affected by test conditions, which mainly include factors such as pressure, temperature and air side humidity of air, hydrogen and coolant. At this stage, most fuel cell system controls mainly control factors such as air, hydrogen and coolant pressure, air humidity and temperature, and hydrogen circulation. However, the temperature and humidity of hydrogen are usually not controlled and managed in order to reduce the complexity of the system. Existing studies have shown that the temperature and humidity of hydrogen have little effect on fuel cell performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的上述不足,提供一种燃料电池氢气加热装置,利用燃料电池堆和系统产生的废热对从冷源进入的氢气进行加热,升温均匀可控,避免电加热等较为危险的加热方式,可为燃料电池发电提供温度较高的氢气。The purpose of the present invention is to overcome the above-mentioned deficiencies of the prior art, and provide a fuel cell hydrogen heating device, which utilizes the waste heat generated by the fuel cell stack and the system to heat the hydrogen entering from the cold source, and the temperature rise is uniform and controllable, avoiding electric heating, etc. A more dangerous heating method, which can provide high-temperature hydrogen for fuel cells to generate electricity.
本发明的上述目的是通过如下技术方案予以实现的:Above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种燃料电池氢气加热装置,包括壳体、2排换热翅片、2n个氢气分流挡板和隔板;其中,壳体为竖直放置的中空柱状结构;壳体的顶端分别水平设置有热交换剂进口和热交换剂出口;壳体顶端的侧壁处,水平设置有氢气进口和压缩空气进口;氢气进口和压缩空气进口相对设置;壳体底端的侧壁处,水平设置有氢气出口和压缩空气出口;其中,氢气出口竖直方向与氢气进口对应;压缩空气出口竖直方向与压缩空气进口对应;隔板竖直设置在壳体中部,将壳体内腔分为氢气腔体和压缩空气腔体;2排换热翅片分布竖直设置在氢气腔体和压缩空气腔体内部的中心处;其中一排换热翅片的顶端与热交换剂进口连通;另一排换热翅片的顶端与热交换剂出口连通;2排换热翅片的底部连通;2n个氢气分流挡板对称设置在氢气腔体和压缩空气腔体内部;n为大于等于2的整数。A fuel cell hydrogen heating device comprises a casing, 2 rows of heat exchange fins, 2n hydrogen splitting baffles and baffles; wherein the casing is a vertically placed hollow columnar structure; the tops of the casing are respectively provided with horizontal The heat exchanger inlet and the heat exchanger outlet; the side wall at the top end of the casing is provided with a hydrogen inlet and a compressed air inlet horizontally; the hydrogen inlet and the compressed air inlet are arranged oppositely; the side wall at the bottom end of the casing is horizontally provided with a hydrogen outlet and the compressed air outlet; wherein, the vertical direction of the hydrogen outlet corresponds to the hydrogen inlet; the vertical direction of the compressed air outlet corresponds to the compressed air inlet; Air cavity; 2 rows of heat exchange fins are vertically arranged in the center of the hydrogen cavity and the compressed air cavity; the top of one row of heat exchange fins is communicated with the heat exchanger inlet; the other row of heat exchange fins The top of the sheet is communicated with the heat exchanger outlet; the bottoms of the two rows of heat exchange fins are communicated; 2n hydrogen split baffles are symmetrically arranged inside the hydrogen cavity and the compressed air cavity;
在上述的一种燃料电池氢气加热装置,所述的外部热交换剂从热交换剂进口进入压缩空气腔体;竖直向下填充满压缩空气腔体中的换热翅片;经壳体底部,进入氢气腔体的换热翅片,并从热交换剂出口流出。In the above-mentioned fuel cell hydrogen heating device, the external heat exchanger enters the compressed air cavity from the heat exchanger inlet; fills the heat exchange fins in the compressed air cavity vertically downward; passes through the bottom of the casing , enter the heat exchange fins of the hydrogen cavity, and flow out from the heat exchanger outlet.
在上述的一种燃料电池氢气加热装置,氢气腔体和压缩空气腔体分别对应n个氢气分流挡板;n个氢气分流挡板腔体竖直方向交错均匀固定安装在腔体的内壁上;其中n个氢气分流挡板将氢气腔体分成S形流道;另外n个氢气分流挡板将压缩空气腔体分成S形流道。In the above-mentioned fuel cell hydrogen heating device, the hydrogen cavity and the compressed air cavity respectively correspond to n hydrogen split baffles; the n hydrogen split baffle cavities are staggered vertically and evenly and fixedly installed on the inner wall of the cavity; Among them, n hydrogen split baffles divide the hydrogen cavity into S-shaped flow channels; the other n hydrogen split baffles divide the compressed air cavity into S-shaped flow channels.
在上述的一种燃料电池氢气加热装置,所述外部待加热氢气从氢气进口进入氢气腔体;竖直向下沿S形流道流至氢气腔体的底部,经换热翅片中的外部热交换剂加热后从氢气出口流出。In the above-mentioned fuel cell hydrogen heating device, the external hydrogen to be heated enters the hydrogen cavity from the hydrogen inlet; flows vertically downward along the S-shaped flow channel to the bottom of the hydrogen cavity, and passes through the external heat exchange fins. The heat exchanger flows out from the hydrogen outlet after being heated.
在上述的一种燃料电池氢气加热装置,所述外部压缩空气从压缩空气进口进入压缩空气腔体;竖直向下沿S形流道流至压缩空气腔体底部;经换热翅片中的外部热交换剂加热后从压缩空气出口流出。In the above-mentioned fuel cell hydrogen heating device, the external compressed air enters the compressed air cavity from the compressed air inlet; flows vertically downward along the S-shaped flow channel to the bottom of the compressed air cavity; The external heat exchanger is heated and flows out from the compressed air outlet.
在上述的一种燃料电池氢气加热装置,设定换热翅片的宽度为D;腔体宽度为D;相邻分隔板之间距离为l;换热翅片与腔体内壁之间距离为h;氢气进口截面积为S;换热翅片厚度为H;则:In the above-mentioned fuel cell hydrogen heating device, the width of the heat exchange fins is set as D; the width of the cavity is D; the distance between adjacent partition plates is l; the distance between the heat exchange fins and the inner wall of the cavity is h; the cross-sectional area of the hydrogen inlet is S; the thickness of the heat exchange fin is H; then:
1.5S≤D×l≤12S1.5S≤D×l≤12S
1.5S≤h×l≤12S1.5S≤h×l≤12S
0.3H≤h≤5H。0.3H≤h≤5H.
在上述的一种燃料电池氢气加热装置,外部热交换剂初始温度为75℃~85℃;外部待加热氢气温度为-40℃~40℃;外部压缩空气初始温度为20℃~100℃。In the above fuel cell hydrogen heating device, the initial temperature of the external heat exchanger is 75°C to 85°C; the temperature of the external hydrogen to be heated is -40°C to 40°C; the initial temperature of the external compressed air is 20°C to 100°C.
在上述的一种燃料电池氢气加热装置,其特征在于:所述压缩空气腔体和氢气腔体采用铝合金或铜材料;换热翅片采用铝合金或铜材料。The above-mentioned fuel cell hydrogen heating device is characterized in that: the compressed air cavity and the hydrogen cavity are made of aluminum alloy or copper material; and the heat exchange fins are made of aluminum alloy or copper material.
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明有效地利用燃料电池系统和电堆产生的废热对循环回来的氢气中的液态水和气源氢气加热,避免使用电加热等较为危险的加热方式,可为燃料电池发电提供温度较高的氢气;(1) The present invention effectively uses the waste heat generated by the fuel cell system and the stack to heat the liquid water and gas source hydrogen in the circulating hydrogen, avoids the use of more dangerous heating methods such as electric heating, and can provide temperature for fuel cell power generation. higher hydrogen;
(2)本发明中氢气尾气循环回燃料电池堆前进入该装置,可将尾气或较冷氢气与尾气混合后产生的少量液态水蒸发,一方面避免液态水进入电堆,造成部分单电池气路阻塞,影响电堆均一性和稳定性;另一方面,可以增大氢气入口湿度,降低燃料电池内阻,提高燃料电池性能;(2) In the present invention, the hydrogen tail gas enters the device before being circulated back to the fuel cell stack, and a small amount of liquid water generated after the tail gas or cooler hydrogen is mixed with the tail gas can be evaporated. road blockage, which affects the uniformity and stability of the stack; on the other hand, it can increase the humidity of the hydrogen inlet, reduce the internal resistance of the fuel cell, and improve the performance of the fuel cell;
(3)本发明中空气压缩腔体、氢气换热腔体和冷却剂腔体由铝合金、铜、换热效果好材料中任意一种铸造而成,换热翅片采用铝合金、铜等换热效果好材料。氢气换热后温度可以提升到60℃左右,可提高5%~10%燃料电池性能,同时可以避免温度较低的氢气进与循环回电堆的温度和湿度较高的氢气混合产生液态水进入电堆,对电堆造成不良影响。(3) In the present invention, the air compression cavity, the hydrogen heat exchange cavity and the coolant cavity are cast from any one of aluminum alloy, copper, and materials with good heat exchange effect, and the heat exchange fins are made of aluminum alloy, copper, etc. Material with good heat transfer effect. After the hydrogen heat exchange, the temperature can be raised to about 60 °C, which can improve the performance of the fuel cell by 5% to 10%. stack, causing adverse effects on the stack.
附图说明Description of drawings
图1为本发明氢气加热装置剖视图;Fig. 1 is the sectional view of the hydrogen heating device of the present invention;
图2为本发明换热翅片示意图。FIG. 2 is a schematic diagram of a heat exchange fin of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细的描述:Below in conjunction with accompanying drawing and specific embodiment, the present invention is described in further detail:
本发明提供一种用于燃料电池氢气加热的装置,可适用于各种功率的燃料电池堆和燃料电池系统,有效地利用燃料电池系统和电堆产生的废热对循环回来的氢气中的液态水和气源氢气加热,避免使用电加热等较为危险的加热方式,可为燃料电池发电提供温度较高的氢气;同时,氢气尾气循环回燃料电池堆前进入该装置,可将尾气或较冷氢气与尾气混合后产生的少量液态水蒸发,一方面避免液态水进入电堆,造成部分单电池气路阻塞,影响电堆均一性和稳定性;另一方面,可以增大氢气入口湿度,降低燃料电池内阻,提高燃料电池性能。The invention provides a device for hydrogen heating of fuel cells, which can be applied to fuel cell stacks and fuel cell systems of various powers, and effectively utilizes the waste heat generated by the fuel cell systems and the stacks to heat the liquid water in the circulating hydrogen gas. Heating with gas source hydrogen, avoiding the use of more dangerous heating methods such as electric heating, can provide high-temperature hydrogen for fuel cell power generation; at the same time, the hydrogen tail gas enters the device before being circulated back to the fuel cell stack, which can convert the tail gas or cooler hydrogen The evaporation of a small amount of liquid water generated after mixing with the exhaust gas prevents liquid water from entering the stack, causing blockage of some single-cell gas paths, affecting the uniformity and stability of the stack; on the other hand, it can increase the humidity of the hydrogen inlet and reduce the fuel consumption. The internal resistance of the battery improves the performance of the fuel cell.
如图1所示为氢气加热装置剖视图,由图可知,一种燃料电池氢气加热装置,包括壳体16、2排换热翅片6、2n个氢气分流挡板7和隔板8;其中,壳体16为竖直放置的中空柱状结构;壳体16的顶端分别水平设置有热交换剂进口1和热交换剂出口2;壳体16顶端的侧壁处,水平设置有氢气进口3和压缩空气进口9;氢气进口3和压缩空气进口9相对设置;壳体16底端的侧壁处,水平设置有氢气出口4和压缩空气出口10;其中,氢气出口4竖直方向与氢气进口3对应;压缩空气出口10竖直方向与压缩空气进口9对应;隔板8竖直设置在壳体16中部,将壳体16内腔分为氢气腔体5和压缩空气腔体11;2排换热翅片6分布竖直设置在氢气腔体5和压缩空气腔体11内部的中心处;其中一排换热翅片6的顶端与热交换剂进口1连通;另一排换热翅片6的顶端与热交换剂出口2连通;2排换热翅片6的底部连通;2n个氢气分流挡板7对称设置在氢气腔体5和压缩空气腔体11内部;n为大于等于2的整数。Figure 1 is a cross-sectional view of a hydrogen heating device. It can be seen from the figure that a fuel cell hydrogen heating device includes a
外部热交换剂从热交换剂进口1进入压缩空气腔体11;竖直向下填充满压缩空气腔体11中的换热翅片6;经壳体16底部,进入氢气腔体5的换热翅片6,并从热交换剂出口2流出。外部热交换剂由热交换剂进口1进入换热装置,流经换热翅片6所在的氢气腔体5由热交换剂出口2流出换热装置。热量通过换热翅片6将热量传导给由氢气进口3进入氢气腔体5的温度较低的氢气,达到换热温度后,氢气由氢气出口4流出换热装置,进入电堆内部参与电堆反应。The external heat exchanger enters the compressed air cavity 11 from the heat exchanger inlet 1; the
氢气腔体5和压缩空气腔体11分别对应n个氢气分流挡板7;n个氢气分流挡板7腔体竖直方向交错均匀固定安装在腔体的内壁上;其中n个氢气分流挡板7将氢气腔体5分成S形流道;另外n个氢气分流挡板7将压缩空气腔体11分成S形流道。由于氢气的热容较高,需要较大的换热面积,为降低氢气加热装置的体积,提高氢气加热装置的加热效率,在氢气换热腔体内部增加;n个氢气分流挡板7,强制改变氢气流动方向,增加换热面积。The
外部待加热氢气从氢气进口3进入氢气腔体5;竖直向下沿S形流道流至氢气腔体5的底部,经换热翅片6中的外部热交换剂加热后从氢气出口4流出。The external hydrogen to be heated enters the
在仅氢气加热装置的基础上增加空气的压缩空气腔体11。经空压机压缩后的空气温度较高,在进入电堆前,压缩空气由压缩空气进口9进入换热装置,与热交换剂换热后,由压缩空气出口10流出进入电堆。冷却剂与高温空气换热后,温度升高后对氢气加热。外部压缩空气从压缩空气进口9进入压缩空气腔体11;竖直向下沿S形流道流至压缩空气腔体11底部;经换热翅片6中的外部热交换剂加热后从压缩空气出口10流出。On the basis of the hydrogen-only heating device, a compressed air cavity 11 for air is added. The temperature of the air compressed by the air compressor is high. Before entering the stack, the compressed air enters the heat exchange device from the compressed air inlet 9, and after exchanging heat with the heat exchanger, it flows out from the
如图2所示为换热翅片示意图,由图可知,换热翅片的宽度为D;腔体宽度为D;相邻分隔板之间距离为l;换热翅片与腔体内壁之间距离为h;氢气进口3截面积为S;换热翅片厚度为H;则:Figure 2 shows the schematic diagram of the heat exchange fins. It can be seen from the figure that the width of the heat exchange fins is D; the width of the cavity is D; the distance between adjacent partition plates is l; the heat exchange fins and the inner wall of the cavity are The distance between them is h; the cross-sectional area of the
1.5S≤D×l≤12S1.5S≤D×l≤12S
1.5S≤h×l≤12S1.5S≤h×l≤12S
0.3H≤h≤5H。0.3H≤h≤5H.
外部热交换剂初始温度为75℃~85℃;外部待加热氢气温度为-40℃~40℃;外部压缩空气初始温度为20℃~100℃。The initial temperature of the external heat exchanger is 75°C to 85°C; the temperature of the external hydrogen to be heated is -40°C to 40°C; the initial temperature of the external compressed air is 20°C to 100°C.
压缩空气腔体11、氢气腔体5采用铝合金、铜、换热效果好材料中任意一种铸造而成,换热翅片6采用铝合金、铜等换热效果好材料。氢气换热后温度可以提升到60℃左右,可提高5%~10%燃料电池性能,同时可以避免温度较低的氢气进与循环回电堆的温度和湿度较高的氢气混合产生液态水进入电堆,对电堆造成不良影响。The compressed air cavity 11 and the
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The content not described in detail in the specification of the present invention belongs to the well-known technology of those skilled in the art.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910616489.8A CN110416570B (en) | 2019-07-09 | 2019-07-09 | A fuel cell hydrogen heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910616489.8A CN110416570B (en) | 2019-07-09 | 2019-07-09 | A fuel cell hydrogen heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110416570A CN110416570A (en) | 2019-11-05 |
CN110416570B true CN110416570B (en) | 2020-11-20 |
Family
ID=68360837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910616489.8A Active CN110416570B (en) | 2019-07-09 | 2019-07-09 | A fuel cell hydrogen heating device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110416570B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110970638B (en) * | 2019-12-11 | 2024-04-16 | 浙江氢谷新能源汽车有限公司 | Fuel cell heat balance gas-gas three-phase heat exchange system |
CN111092244B (en) * | 2019-12-11 | 2025-06-13 | 上海哈克雷斯新能源科技集团有限公司 | A fuel cell thermal balance "gas-gas-liquid" three-phase heat exchange system |
CN114843546A (en) * | 2021-02-01 | 2022-08-02 | 无锡诚瑜信息科技有限公司 | A structure of hydrogen injector with heating function |
CN114361513B (en) * | 2022-01-13 | 2024-04-16 | 潍柴动力股份有限公司 | System and method for heating hydrogen by hydrogen fuel cell engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1291949A2 (en) * | 2001-09-07 | 2003-03-12 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system, method of controlling the same, and vehicle mounted with the same |
WO2010120565A2 (en) * | 2009-03-31 | 2010-10-21 | Enerfuel, Inc. | Method and apparatus for pem fuel cell freezing protection |
CN107901772A (en) * | 2017-10-27 | 2018-04-13 | 江苏理工学院 | A kind of fuel cell temperature difference electricity generation device applied to automobile combines energy supplying system |
CN207426027U (en) * | 2018-01-31 | 2018-05-29 | 安徽明天氢能科技股份有限公司 | A kind of fuel cell hydrogen-feeding system with integrated heating function |
CN109888330A (en) * | 2019-02-01 | 2019-06-14 | 清华大学 | Fuel cell control system and fuel cell device |
-
2019
- 2019-07-09 CN CN201910616489.8A patent/CN110416570B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1291949A2 (en) * | 2001-09-07 | 2003-03-12 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system, method of controlling the same, and vehicle mounted with the same |
WO2010120565A2 (en) * | 2009-03-31 | 2010-10-21 | Enerfuel, Inc. | Method and apparatus for pem fuel cell freezing protection |
CN107901772A (en) * | 2017-10-27 | 2018-04-13 | 江苏理工学院 | A kind of fuel cell temperature difference electricity generation device applied to automobile combines energy supplying system |
CN207426027U (en) * | 2018-01-31 | 2018-05-29 | 安徽明天氢能科技股份有限公司 | A kind of fuel cell hydrogen-feeding system with integrated heating function |
CN109888330A (en) * | 2019-02-01 | 2019-06-14 | 清华大学 | Fuel cell control system and fuel cell device |
Also Published As
Publication number | Publication date |
---|---|
CN110416570A (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110416570B (en) | A fuel cell hydrogen heating device | |
CN112886098A (en) | Energy storage battery combined cooling device | |
JP3823181B2 (en) | Fuel cell power generation system and waste heat recirculation cooling system for power generation system | |
CN109037731B (en) | A liquid-cooled module for heat transfer and temperature equalization in high-power fuel cells | |
CN109037726A (en) | A kind of air-cooled module for fuel cell heat transfer samming | |
CN105244517B (en) | A kind of flow field of Active Drainage dual polar plates of proton exchange membrane fuel cell | |
CN203674322U (en) | Integrated operation system for middle and high-temperature fuel cell | |
CN112952163B (en) | A modular fuel processor and its application | |
CN111244523A (en) | A manifold arrangement for a fuel cell stack | |
CN112909295A (en) | Fuel cell stack cooling system applying spray cooling | |
CN208806305U (en) | A kind of fuel battery anode flow field board | |
Yu et al. | Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution | |
CN101210750A (en) | Method for driving air-conditioner by utilizing fuel battery waste heat | |
CN106025309B (en) | Space MEA constructed fuel cells | |
CN114597452A (en) | Hybrid low-temperature cold-start control method for fuel cell self-start and assisted start | |
CN111952632B (en) | A High Fuel Utilization Internal Cascaded Solid Oxide Fuel Cell Stack | |
CN113611894A (en) | Hydrogen fuel cell waste heat utilization system | |
CN208722999U (en) | A liquid-phase cooling module for high-power fuel cells | |
CN105720288A (en) | Internally-reformed fuel cell stack | |
CN217426799U (en) | Novel fuel cell cooling system | |
CN112803037B (en) | Fuel cell with energy recovery function | |
CN114927719A (en) | A constant temperature control device for hydrogen fuel cells | |
CN222257875U (en) | Heat exchanger of fuel cell system | |
CN216389451U (en) | Vehicle-mounted hydrogen fuel cell cooling device | |
CN204216144U (en) | Fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |