JPS5879768A - Schottky gate field-effect transistor - Google Patents
Schottky gate field-effect transistorInfo
- Publication number
- JPS5879768A JPS5879768A JP17819381A JP17819381A JPS5879768A JP S5879768 A JPS5879768 A JP S5879768A JP 17819381 A JP17819381 A JP 17819381A JP 17819381 A JP17819381 A JP 17819381A JP S5879768 A JPS5879768 A JP S5879768A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- electrode
- active layer
- gate
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005669 field effect Effects 0.000 title claims description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims 2
- 238000005468 ion implantation Methods 0.000 abstract description 10
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 7
- 150000002500 ions Chemical class 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 58
- 238000009792 diffusion process Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000002513 implantation Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66848—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
- H01L29/66856—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
- H01L29/66863—Lateral single gate transistors
- H01L29/66871—Processes wherein the final gate is made after the formation of the source and drain regions in the active layer, e.g. dummy-gate processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66848—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
- H01L29/66856—Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
- H01L29/66863—Lateral single gate transistors
- H01L29/66878—Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/812—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はマイクロ波特性が良好でしかも製造が容易なシ
ョットキゲート電界効果トランジスタに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Schottky gate field effect transistor that has good microwave characteristics and is easy to manufacture.
本発明は、材料については何ら制限されるものではな(
、Si などの単元素半導体あるいは化合物半導体な
ど広く一般の半導体材料に適用できるものであるが、以
下半導体材料として動作速度の大きい利点をもつ化合物
半導体のうちGaAs を例にとって説明を行う。The present invention is not limited in any way to materials (
The present invention can be applied to a wide range of general semiconductor materials such as single-element semiconductors such as , Si, and compound semiconductors, but the following explanation will be given using GaAs as an example of compound semiconductors that have the advantage of high operating speed as a semiconductor material.
従来のショットキゲート電界効果トランジスタの一般的
な構造は、第1図の断面図に例示するように、 GaA
s なとの半絶縁性半導体基板11の表面にエピタキ
シャル成長やイオン注入によって一様な厚さのn型動作
層IBを形成したのち、この動作層の表面に金属を蒸着
させる方法等によりソース電極18、トレイン電極14
及びショットキゲート電極15を形成したものである。The general structure of a conventional Schottky gate field effect transistor is GaA, as illustrated in the cross-sectional view of FIG.
After forming an n-type active layer IB with a uniform thickness on the surface of the semi-insulating semiconductor substrate 11 by epitaxial growth or ion implantation, the source electrode 18 is formed by depositing metal on the surface of this active layer. , train electrode 14
and a Schottky gate electrode 15 are formed.
このような従来構造のショットキゲート電界効果トラン
ジスタにおいては、ゲート・ソース間抵抗が大きいと、
このトランジスタのマイクロ波特性、特に雑音特性が劣
化することが知られている。マイクロ波特性を改良する
にはゲート・ソース間抵抗を下げることが必要であり、
この目的を達成するには動作層12のキャリア濃度を高
めるか又は動作層を厚くすることが必要であるが、いず
れの方法においてもピンチオフ電圧が過大になるという
問題を生ずる。また、キャリア濃度を高めた場合にはゲ
ートの耐圧が小さくなるという問題がさらに生ずる。In such a conventional Schottky gate field effect transistor, if the gate-source resistance is large,
It is known that the microwave characteristics, particularly the noise characteristics, of this transistor deteriorate. To improve microwave characteristics, it is necessary to lower the gate-source resistance.
To achieve this objective, it is necessary to increase the carrier concentration in the active layer 12 or to increase the thickness of the active layer, but either method causes the problem that the pinch-off voltage becomes excessive. Further, when the carrier concentration is increased, another problem arises in that the breakdown voltage of the gate decreases.
このような問題を解決するため、第2図に例示するよう
に、ピンチオフ電圧を支配するゲート直下の動作層12
′の厚みを所望値に保ったまま、ソース電極近傍の動作
層12’の厚みを大きくする構造が提案されている。こ
の構造は、まずソース電極18及びドレイン電極14直
下の厚みに相当する一様な厚みの動作層を形成したのち
、ゲート電極15の直下となるべき箇所12’のみをエ
ツチング等により薄くしたのち、各電線18.14及び
15を形成している。In order to solve this problem, as illustrated in FIG.
A structure has been proposed in which the thickness of the active layer 12' near the source electrode is increased while maintaining the thickness of the active layer 12' at a desired value. In this structure, first, an active layer with a uniform thickness corresponding to the thickness directly under the source electrode 18 and drain electrode 14 is formed, and then only the portion 12' that should be directly under the gate electrode 15 is thinned by etching or the like. Each electric wire 18, 14 and 15 is formed.
しかしながらこのような構造では、動作層表面が平坦で
ないから電極形成のための微細なホトリソグラフィ等が
困難であるばかりでなく、動作層のエツチング制御に極
めて厳しい精度が要求されるために歩留りが低くなって
しまう欠点がある。However, in such a structure, not only is it difficult to perform fine photolithography for electrode formation because the surface of the active layer is not flat, but also the yield is low because extremely strict precision is required to control the etching of the active layer. There is a drawback that it becomes.
すなわち、MESFETの高周波特性を向上させるため
には、ゲート長を極力小さくする必要があり、そのため
に素子製作上極めて微細な精密加工が要求される。しか
し、従来の゛製造方法においては、ゲート電極15のパ
ターンをレジストに形成する際に、そのゲートパターン
の極く近傍にソース電極18およびドレイン電極14に
よる段差が、動作領域12の段差に加えて存在するため
、平坦面におけるときよりもフォトレジストパターンの
解象度が低下し、1μm程度の短いゲートパターンを確
実に形成することが困難であった。特にGaAs等の化
合物半導体では、ゲート電極5を形成する前にソース電
極8およびドレイン電極4の合金処理を行なって、その
接触抵抗の低下を図ることが一般に行なわれているが、
接触抵抗を充分小さくしようとして充分な高温で、しか
も長時間の合金処理を行なうとソース、ドレイン電極金
属の凝集がおこり、著しく大きな段差が生じ易く、この
ことも、ゲート用フォトレジストパターンの解像度を悪
化させる原因になっている。That is, in order to improve the high frequency characteristics of the MESFET, it is necessary to reduce the gate length as much as possible, which requires extremely fine precision machining in device fabrication. However, in the conventional manufacturing method, when the pattern of the gate electrode 15 is formed in a resist, a step due to the source electrode 18 and the drain electrode 14 is created in the vicinity of the gate pattern in addition to the step in the operating region 12. Due to the existence of these particles, the resolution of the photoresist pattern is lower than that on a flat surface, making it difficult to reliably form a gate pattern as short as about 1 μm. In particular, in compound semiconductors such as GaAs, it is common practice to perform alloy treatment on the source electrode 8 and drain electrode 4 before forming the gate electrode 5 in order to reduce their contact resistance.
If alloying is performed at a sufficiently high temperature and for a long time in order to reduce the contact resistance sufficiently, the source and drain electrode metals will agglomerate, resulting in extremely large steps, which will also reduce the resolution of the gate photoresist pattern. It's causing it to get worse.
また、ゲート電極5は既に形成されているソース電極8
とドレイン電極4の中間に±0.2μm以下の位置精度
で形成する必要がある。さらにソース電極3とゲート電
極50間隔は、MESFETの電気的特性にあって、ソ
ースゲート間の寄生抵抗寄生容量に直接影響するので、
両電極間の距離はできる限り小さく、かつ高精度に制御
する必要があり、上述の位置精度は、この電極間距離の
点でも必要となる。しかしこの様な微細パターンを高精
度で形成することは、従来の技術では極めて困難であり
、従って製造歩留′りが著しく低いという問題点があっ
た。Further, the gate electrode 5 is replaced with the source electrode 8 which has already been formed.
It is necessary to form it between the electrode 4 and the drain electrode 4 with a positional accuracy of ±0.2 μm or less. Furthermore, the distance between the source electrode 3 and the gate electrode 50 is in the electrical characteristics of the MESFET and directly affects the parasitic resistance and capacitance between the source and gate.
The distance between the two electrodes needs to be as small as possible and controlled with high precision, and the above-mentioned positional accuracy is also required in terms of the distance between the electrodes. However, it is extremely difficult to form such fine patterns with high precision using conventional techniques, and therefore there is a problem in that the manufacturing yield is extremely low.
本発明は上述した従来の判題点に鑑みてなされたもので
あり、その目的とするところは、マイクロ波特性及び歩
留りが良好なショットキゲート電界効果トランジスタを
提供することにある。The present invention has been made in view of the above-mentioned conventional problems, and its object is to provide a Schottky gate field effect transistor with good microwave characteristics and good yield.
以下本発明の詳細を実施例によって説明する。The details of the present invention will be explained below with reference to Examples.
第8図(5)及び第8図(B)は本発明の一実施例のシ
ョットキゲート電界効果トランジスタの断面図であ1)
、21はGaAs などの半絶縁性半導体基板、22
はn型動作層、28はソース電極、24はドL’47電
極、25は高耐熱性ショットキゲート電極、26はゲー
ト電極自身からなる絶縁性化合物膜である。本発明の電
界効果トランジスタは第3図(4)及び第8図(ト))
に例示するように、動作層表面が平坦でかつソース・ド
レイン間の動作層22′ノ厚さをゲート直下の動作層2
2′の厚さよりも大きくした構造でかつソース・ドレイ
ン間の動作層22“がゲート電極25をマスクとして形
成され、加えてソース電極ドレイン電極が絶縁性化合物
膜26を介して形成されるいわゆるセルフアライメント
方法を用いる。このためソース電極IQ、ドレイン電極
24、ゲート電極25と第2の動作層部分22′の位置
関係が自動的に決定される。このことから本発明によれ
ば、製造工程が簡便になり歩留りが向上すると同時に微
細な加工が可能になる等の利点を有する。FIG. 8(5) and FIG. 8(B) are cross-sectional views of a Schottky gate field effect transistor according to an embodiment of the present invention1)
, 21 is a semi-insulating semiconductor substrate such as GaAs, 22
28 is an n-type active layer, 28 is a source electrode, 24 is a do L'47 electrode, 25 is a highly heat-resistant Schottky gate electrode, and 26 is an insulating compound film consisting of the gate electrode itself. The field effect transistor of the present invention is shown in FIG. 3 (4) and FIG. 8 (g)).
As illustrated in FIG.
The active layer 22'' between the source and drain is formed using the gate electrode 25 as a mask, and the source and drain electrodes are formed via an insulating compound film 26, which is a so-called self-contained structure. An alignment method is used. Therefore, the positional relationship between the source electrode IQ, the drain electrode 24, the gate electrode 25, and the second active layer portion 22' is automatically determined. Therefore, according to the present invention, the manufacturing process can be It has advantages such as being simple, improving yield, and enabling fine processing.
第4図は、第3図(5)の電界効果トランジスタの製造
方法の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a method for manufacturing the field effect transistor shown in FIG. 3(5).
まず第4図(4)に示すように、GaAs の半絶縁
性基板21の表面にJll、51+のイオンを注入して
一様な厚みの動作層22′を形成する。この動作層の厚
み及びキャリア濃度は所望のピンチオフ電圧を実現する
値に選択される。例えば、ピンチオフ電圧0.2vを実
現するために、キャリア濃度IQ”m−8程度、厚み0
.1μm程度の動作層を形成する必要があり、イオン注
入の条件として、注入エネルギ120KeV 、注入量
2X10”ドーズ/cIn2(ただし活性率を100%
とする。)が選択される。このような条件のもとに得ら
れるキャリア濃度分布の理論値を第6図の一点鎖線81
で示す。First, as shown in FIG. 4(4), ions of Jll, 51+ are implanted into the surface of a GaAs semi-insulating substrate 21 to form an active layer 22' having a uniform thickness. The thickness and carrier concentration of this active layer are selected to achieve the desired pinch-off voltage. For example, in order to achieve a pinch-off voltage of 0.2V, the carrier concentration IQ"m-8 or so and the thickness 0.
.. It is necessary to form an active layer of about 1 μm, and the conditions for ion implantation are: implantation energy: 120KeV, implantation amount: 2×10” dose/cIn2 (however, the activation rate is 100%).
shall be. ) is selected. The theoretical value of the carrier concentration distribution obtained under these conditions is shown by the dashed-dotted line 81 in Figure 6.
Indicated by
第4N0)に例示するように、一様な厚みの動作層22
′を形成したのち、その上に高耐熱性金属からなるゲー
ト電極25を形成する。このゲート電極25をマスクと
して用いて2回目のイオン注入を行い、マスクされない
箇所に新たな動作層22′を形成する。2回目のイオン
注入の条件としては、1面目よりも深く注入するために
注入エネルギが1回目のものよりも大きく、かつ注入量
は最終ピークキャリア濃度が1回目のピークキャリア濃
度に比べて過大にならないような値に選択される。As illustrated in No. 4N0), the operating layer 22 has a uniform thickness.
After forming ', a gate electrode 25 made of a highly heat-resistant metal is formed thereon. A second ion implantation is performed using this gate electrode 25 as a mask to form a new active layer 22' in the unmasked area. The conditions for the second ion implantation are that the implantation energy is higher than the first one in order to implant deeper than the first surface, and the implantation amount is such that the final peak carrier concentration is excessive compared to the first peak carrier concentration. The value is selected such that the
これはゲートに印加される電圧によって絶縁破壊が生じ
ないようにするためである。このような往事
入条件の一例として、注入エネルギを400KeV1注
大量を3.9xH)lit ドーズ/ Cm” の
値に選択した場合のキャリア密度分布の理論値を第5図
の点線82で例示する。動作層22内のマスクされない
部分22“の濃度は1回目のイオン注入による濃度に2
回目のイオン注入による濃度を加算した値となり、その
分布は第6図の実線88で例示される。This is to prevent dielectric breakdown from occurring due to the voltage applied to the gate. As an example of such a forward input condition, the theoretical value of the carrier density distribution when the implantation energy is selected to be 400 KeV1 and the injection amount is selected to a value of 3.9xH)lit dose/Cm'' is illustrated by a dotted line 82 in FIG. The concentration of the unmasked portion 22'' in the active layer 22 is 2 times the concentration of the first ion implantation.
This value is obtained by adding the concentration due to the second ion implantation, and its distribution is illustrated by the solid line 88 in FIG.
第6図から明らかなように、ソース電極28近傍の動作
層22’内のキャリア総数はゲート電極25の直下の動
作層22′内のキャリア総数に比べて約8倍大きく、そ
のため、ゲート・ソース間抵抗は動作層22′が一様に
形成される場合に比べて約8分の1に低下する。一方、
動作層22“内の最大キャリア濃度は動作層22′内の
値に比べて約13%増加しただけであるから、これに伴
なうゲートの逆耐圧の増加およびゲートキャパシタンス
の増加は極めてわずかな量にとどまる。As is clear from FIG. 6, the total number of carriers in the active layer 22' near the source electrode 28 is about eight times larger than the total number of carriers in the active layer 22' directly under the gate electrode 25. The interlayer resistance is reduced to about one-eighth compared to when the active layer 22' is formed uniformly. on the other hand,
Since the maximum carrier concentration in the active layer 22'' has increased by only about 13% compared to the value in the active layer 22', the associated increase in reverse breakdown voltage and gate capacitance of the gate is extremely small. Stay in quantity.
本実施例ではゲート電極25としてTi−W合金を用い
た。スパッタ法で厚さ1.2μmのTi−W膜を形成し
、その上に形成したレジストパターンをマスクトシてC
F410s(5%)混合ガスでプラズマエツチングする
ことにより第4図(B)に示すゲート電極25を得た。In this embodiment, a Ti--W alloy was used as the gate electrode 25. A Ti-W film with a thickness of 1.2 μm was formed using a sputtering method, and a resist pattern formed on the film was masked to remove carbon.
The gate electrode 25 shown in FIG. 4(B) was obtained by plasma etching with F410s (5%) mixed gas.
こうして、同電極をマスクとしてイオン注入により第2
の動作層22’を形成した後はアニールにより注入元素
の活性化を行なう。In this way, the second electrode is implanted by ion implantation using the same electrode as a mask.
After forming the active layer 22', the implanted elements are activated by annealing.
次いで第4図(C)に例示するように、ゲート電極25
の全表面にゲート金属自身を母材とする絶縁性化合物膜
26を形成する。本実施例ではプラズマ陽極酸化により
ゲート電極自身の絶縁化を生せしめgoooX の厚さ
の絶縁性化合物膜を形成した。Next, as illustrated in FIG. 4(C), the gate electrode 25
An insulating compound film 26 whose base material is the gate metal itself is formed on the entire surface of the gate metal. In this example, the gate electrode itself was insulated by plasma anodic oxidation, and an insulating compound film having a thickness of goooX was formed.
この時半導体基板自身も酸化されるがGaAs の酸
化物膜をゲート電極上の絶縁性化合物膜26に対して選
択的に除去することは容易である。At this time, the semiconductor substrate itself is also oxidized, but it is easy to selectively remove the GaAs oxide film with respect to the insulating compound film 26 on the gate electrode.
この後続いて第4図の)に示すように動作層22上に真
空蒸着法等によりオーミック金属膜を形成し、ソース電
極28、ドレイン電極24を形成する。以上で製造プロ
セスを終了する。Subsequently, as shown in FIG. 4), an ohmic metal film is formed on the active layer 22 by vacuum evaporation or the like, and a source electrode 28 and a drain electrode 24 are formed. This completes the manufacturing process.
次にもう一つの第3図[F])の電界効果トランジスタ
の製造方法の一例を第5図で示す。Next, another example of the method for manufacturing the field effect transistor shown in FIG. 3 [F]) is shown in FIG.
まず第4図囚及び第4図(ト))に示すようにしてゲー
ト電極25を形成した後、第5図に)に例示するように
試料表面に無機化合物膜27を形成して、アニールし、
注入元素を活性化する。一実施例では真空蒸着法で形成
した1500XのSiOWKを用いた。ここで、この2
7の材料としては、アニールの際に半導体基板22及び
ゲート電極25と不必要な反応を生じない絶縁性化合物
膜であれば本発明の要求を満たすものであり、材料・形
成法については何ら制限されるものでない。First, the gate electrode 25 is formed as shown in FIGS. ,
Activate the implanted element. In one embodiment, 1500X SiOWK formed by vacuum evaporation was used. Here, these two
As for the material 7, any insulating compound film that does not cause unnecessary reactions with the semiconductor substrate 22 and the gate electrode 25 during annealing satisfies the requirements of the present invention, and there are no restrictions on the material or formation method. It is not something that can be done.
この後、第5図の)に例示するようにプラズマ陽極酸化
を行なうと無機化合物!I27におおわれていないゲー
ト電極25の両側面のみプラズマ酸化が進行し、ゲート
電極25の両側面にそれ自身からなる絶縁性化合物腰2
6が形成される。After this, when plasma anodic oxidation is performed as illustrated in Figure 5), an inorganic compound is formed! Plasma oxidation progresses only on both sides of the gate electrode 25 that are not covered with I27, and an insulating compound layer 2 made of itself is formed on both sides of the gate electrode 25.
6 is formed.
次に第5図(C)に例示するように、無機化合物膜27
を除去した後、オーミック金属を真空蒸着法等で堆積さ
せソース電極28、ドレイン電極24を形成して製作プ
ロセスを終了する。Next, as illustrated in FIG. 5(C), the inorganic compound film 27
After removing, an ohmic metal is deposited by vacuum evaporation or the like to form the source electrode 28 and drain electrode 24, and the manufacturing process is completed.
ここで第4図(B)の工程で第2の動作層22“をイオ
ン注入した後、さらに表面近傍にのみ101s/α8程
度の高濃度層いわゆるn+ 層を形成することもできる
。これはソース電極、ドレイン電極のオーミック特性を
改善するためには有効な手段であることを付言する。After ion-implanting the second active layer 22'' in the step shown in FIG. 4(B), it is also possible to form a high concentration layer of about 101s/α8 only in the vicinity of the surface, so-called n+ layer. It should be added that this is an effective means for improving the ohmic characteristics of electrodes and drain electrodes.
また、ゲート電極25はイオン注入や熱拡散のマスクの
役割を果たし、かつアニール等の高温プロセスに耐性を
有すれば本発明の要求を満たす。Further, the requirements of the present invention are satisfied if the gate electrode 25 serves as a mask for ion implantation and thermal diffusion, and is resistant to high temperature processes such as annealing.
このため材料としてはTi−w合金に何ら限定されるも
のでなく800℃程度の温度でも半導体と不必要な反応
を生じない耐熱性の優れた材料であれば良く他にTa、
Nb、VtMo 等の金属が適用できる。ゲート電極の
表面絶縁化については、本実施例で示したプラズマ酸化
に限定されるものでなく陽極酸化法、熱酸化法等による
酸化膜形成あるいはプラズマ窒化等の窒化物膜の形成も
可能である。Therefore, the material is not limited to the Ti-W alloy, but any material with excellent heat resistance that does not cause unnecessary reactions with semiconductors even at temperatures of about 800°C may be used.In addition, Ta,
Metals such as Nb and VtMo are applicable. The surface insulation of the gate electrode is not limited to the plasma oxidation shown in this example, but it is also possible to form an oxide film by anodic oxidation, thermal oxidation, etc., or to form a nitride film by plasma nitridation. .
以上第8図(4)及び第8図(B)に例示した構造の電
界効果トランジスタをイオン注入法により製造する例を
説明したが、これを熱拡散法により製造することもでき
る。すなわち、まず拡散定数の小さなドーパントを基板
表面に接触させて熱拡散を行なうことにより、第4図囚
の動作層22’に相当する浅い拡散層を形成する。次に
マスク用パターン27を遮蔽物としてゲート直下の領域
以外の箇所に拡散定数の大きなドーパントを接触させて
熱拡散を行なうことにより、第4図(6)の動作層22
’に相当する浅い拡散層と深い拡散層から成る混成拡散
層を形成し、最後に電極28.24及び25を前記実施
例に準じて形成すればよい。あるいはまた、ゲート部分
には拡散定数の小さなドーパントを堆積し、一方ゲート
・ソース間には拡散定数の大きなドーパントを堆積させ
たのち、各領域の同時熱拡散を行わせることにより第8
図(4)及び第8図(B)の構造を実現してもよい。Although the example in which the field effect transistor having the structure illustrated in FIGS. 8(4) and 8(B) is manufactured by the ion implantation method has been described above, it can also be manufactured by the thermal diffusion method. That is, first, by bringing a dopant with a small diffusion constant into contact with the substrate surface and performing thermal diffusion, a shallow diffusion layer corresponding to the active layer 22' of FIG. 4 is formed. Next, using the mask pattern 27 as a shield, a dopant with a large diffusion constant is brought into contact with a region other than the region directly under the gate and thermally diffused, thereby forming the active layer 22 of FIG. 4(6).
A hybrid diffusion layer consisting of a shallow diffusion layer and a deep diffusion layer corresponding to ' is formed, and finally the electrodes 28, 24 and 25 are formed according to the previous embodiment. Alternatively, a dopant with a small diffusion constant is deposited in the gate region, a dopant with a large diffusion constant is deposited between the gate and the source, and then simultaneous thermal diffusion is performed in each region.
The structures shown in FIG. 4 and FIG. 8B may also be realized.
第8図(4)及び第8図(B)における動作層22′の
長さが短いほど、ゲート・ソース間の直列抵抗が小さく
なって特性上有利となる。ただしこの長さを短かくする
ことは、第4図に例示した製造方法においてマスク27
の長さを短かくすることが困難である等の微細加工技術
の限界によってのみ制限されるだけである。The shorter the length of the active layer 22' in FIGS. 8(4) and 8(B), the smaller the series resistance between the gate and the source becomes, which is advantageous in terms of characteristics. However, shortening this length is necessary for the mask 27 in the manufacturing method illustrated in FIG.
It is only limited by the limitations of microfabrication technology, such as the difficulty of reducing the length of the microfabrication technology.
次に、動作層22′の長さとゲート電極25の長さの関
係を説明すれば、動作層22′が比較的厚いノーマリオ
ン型においては、動作層22′の長さがゲート電極25
の長さより多少長くても実用上十分な特性が得られる。Next, to explain the relationship between the length of the active layer 22' and the length of the gate electrode 25, in the normally-on type where the active layer 22' is relatively thick, the length of the active layer 22' is the same as that of the gate electrode 25.
Practically sufficient characteristics can be obtained even if the length is slightly longer than .
これは、動作層22′が比較的厚いため表面から素子内
部に拡がっている空乏層の厚みが動作層22′の全厚み
を占めず、従って動作層22′のゲート直下を除く部分
がゲート・ソース間抵抗を極端に増大させるような問題
を生じないからである。これに対して、表面からの空乏
層厚みが動作層22′の層厚みの全体を占めるようなノ
ーマリオフ型においては、第8図囚及び第8図Φ)に例
示するように動作層22′の長さが電極25の長さより
も大であれば、動作層22′のゲート直下を除く部分に
おいて空乏層が厚み方向一杯ニ形成され、この結果ゲー
ト・ソース間抵抗が著じるしく大となり、極端な場合電
流が完全に阻止されるという問題が生ずる。This is because the active layer 22' is relatively thick, so the thickness of the depletion layer that spreads from the surface into the inside of the device does not account for the entire thickness of the active layer 22'. This is because the problem of extremely increasing source-to-source resistance does not occur. On the other hand, in a normally-off type in which the depletion layer thickness from the surface occupies the entire layer thickness of the active layer 22', the active layer 22' is If the length is longer than the length of the electrode 25, a depletion layer is formed in the entire thickness direction in the portion of the active layer 22' excluding the area directly below the gate, and as a result, the gate-source resistance becomes significantly large. In extreme cases the problem arises that the current is completely blocked.
従ってノーマリオフ型においては、ゲート電極25の長
さが動作層22’よりも大きくなければならない。しか
しながらゲート電極25と、動作層22′との重なり部
分、すなわちゲート電極25において、動作層22′よ
りも長さが過大となる部分は、単に静電容量を過大する
のみで有効な作用をしないので、この過大部分を可能な
限り短くすることが、素子の動作速度を送くする上で有
効である。すなわち、理想的には、第8図囚及び第8図
(B)に例示するように、ゲート電極25の長さと動作
層22′の長さを等しく形成することが特にノーマリオ
フ型においては有効な手段である。Therefore, in the normally-off type, the length of the gate electrode 25 must be longer than the operating layer 22'. However, the overlapping portion of the gate electrode 25 and the active layer 22', that is, the portion of the gate electrode 25 that is longer than the active layer 22', simply increases the capacitance and does not have an effective effect. Therefore, it is effective to shorten this excessive portion as much as possible in order to increase the operating speed of the element. That is, ideally, as illustrated in FIG. 8 and FIG. 8(B), it is effective to form the length of the gate electrode 25 and the length of the active layer 22' to be equal, especially in the normally-off type. It is a means.
本発明においてはゲート電極25を用いてセルファライ
ンにより22′の長さと、ゲート電極25の長さが等し
く、かつ同一位置に形成されるため、ノーマリオフ型の
特性が著しく向上するものである。In the present invention, the length of the gate electrode 25 is made equal to the length of the gate electrode 25 by the self-line, and is formed at the same position, so that the normally-off characteristics are significantly improved.
以上の実施例では半導体結晶としてGaAs を使用
する場合を例示したが、必要に応じてInPその他のI
−V族化合物半導体やSt 等任意の半導体を使用す
ることができる。In the above embodiments, GaAs is used as the semiconductor crystal, but if necessary, InP or other I
Any semiconductor such as a -V group compound semiconductor or St 2 can be used.
以上詳細に説明したように、本発明のショットキゲート
電界効果トランジスタはゲート・ソース間の動作層が厚
く、キャリア濃度は動作層全体にわたってほぼ一定であ
り、しかもゲート電極直下の動作層とゲート電極が同一
位置に形成され、かつソース電極、ドレイン電極がゲー
ト電極に密接して形成される構造であるから、高周波特
性が良く、ゲート逆耐圧が高くかつ歩留りの良好なショ
ットキゲート電界効果トランジスタを従来より簡便な工
程で実現することができる。As explained in detail above, the Schottky gate field effect transistor of the present invention has a thick active layer between the gate and source, the carrier concentration is almost constant throughout the entire active layer, and moreover, the active layer directly below the gate electrode and the gate electrode are thick. Because the source and drain electrodes are formed at the same location and in close contact with the gate electrode, Schottky gate field effect transistors with good high frequency characteristics, high gate reverse breakdown voltage, and good yield can be manufactured more easily than conventional Schottky gate field effect transistors. This can be achieved through a simple process.
第1図、第2図は従来例の断面図、第8図囚及び第8N
0)は本発明の一実施例の断面図、第4図(4)〜(ロ
)及び第5図囚〜(C)はそれぞれ線第8図(6)及び
第31図但め電界効果トランジスタの製造方法の一例を
示す断面図、第6図は第8図(A)の電界効果トランジ
スタの動作層内のキャリア濃度分布図である。
21・・・半絶縁性半導体基板、22・・・動作層、2
2′・・・動作1層の第1の部分、22′・・・動作層
の第2の部分、28・・・ソース電極、24・・・ドレ
イン電極、25・・・ゲート電極、27・・・無機化合
物膜、26・・・絶縁性化合物膜。
代理人 弁理士 上 代 哲 帳、:”覧″
芳6図
潔さCμm)Figures 1 and 2 are cross-sectional views of the conventional example, Figures 8 and 8N.
0) is a sectional view of one embodiment of the present invention, and FIGS. 4(4) to 4(b) and FIGS. 5 to 5(c) are lines, respectively. FIG. 6 is a cross-sectional view showing an example of the manufacturing method of FIG. 21... Semi-insulating semiconductor substrate, 22... Operating layer, 2
2'... First part of the first active layer, 22'... Second part of the active layer, 28... Source electrode, 24... Drain electrode, 25... Gate electrode, 27... ... Inorganic compound film, 26... Insulating compound film. Agent: Patent Attorney, Tetsu Shiro: ``View'' (Cμm)
Claims (1)
された動作層ならびに該動作層上に形成されたソース電
極、ドレイン電線及びショットキゲート電極を備えたシ
ョットキゲート電界効果トランジスタにおいて、前記動
作層が所定のピンチオフ電圧を与えるような厚みを有し
て前記ゲート電極直下に形成されている第1の部分と該
第1の部分内の不純物濃度と略々等しい不純物濃度を有
し、かつ該第1の部分の厚みよりも大きな厚みを有する
第2の部分とから構成されており、かつ高耐熱性金属か
らなるゲート電極の両側面あるいは全面がそれ自身から
なる絶縁性化合物膜でおおわれており該絶縁性化合物膜
を介してソース電極、ドレイン電極が密接して形成され
ていることを特徴とするショットキゲート電界効果トラ
ンジスタ。(1) In a Schottky gate field effect transistor comprising a semi-insulating semiconductor substrate, an active layer formed on the surface of the semiconductor substrate, a source electrode, a drain wire, and a Schottky gate electrode formed on the active layer, the above-mentioned operation The layer has a thickness that provides a predetermined pinch-off voltage and is formed directly under the gate electrode, and has an impurity concentration that is approximately equal to the impurity concentration in the first portion, and and a second part having a thickness greater than the thickness of the first part, and both sides or the entire surface of the gate electrode made of a highly heat-resistant metal are covered with an insulating compound film made of itself. A Schottky gate field effect transistor characterized in that a source electrode and a drain electrode are formed in close contact with each other via the insulating compound film.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17819381A JPS5879768A (en) | 1981-11-05 | 1981-11-05 | Schottky gate field-effect transistor |
EP82300499A EP0057605B1 (en) | 1981-01-29 | 1982-01-29 | A schottky-barrier gate field effect transistor and a process for the production of the same |
DE8282300499T DE3273695D1 (en) | 1981-01-29 | 1982-01-29 | A schottky-barrier gate field effect transistor and a process for the production of the same |
US06/361,070 US4601095A (en) | 1981-10-27 | 1982-03-23 | Process for fabricating a Schottky-barrier gate field effect transistor |
CA000401059A CA1184320A (en) | 1981-10-27 | 1982-04-15 | Schottky-barrier gate field effect transistor and a process for the production of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17819381A JPS5879768A (en) | 1981-11-05 | 1981-11-05 | Schottky gate field-effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5879768A true JPS5879768A (en) | 1983-05-13 |
JPH032340B2 JPH032340B2 (en) | 1991-01-14 |
Family
ID=16044212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17819381A Granted JPS5879768A (en) | 1981-01-29 | 1981-11-05 | Schottky gate field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5879768A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5643768A (en) * | 1979-09-17 | 1981-04-22 | Matsushita Electric Ind Co Ltd | Fet transistor and method of producing the same |
-
1981
- 1981-11-05 JP JP17819381A patent/JPS5879768A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5643768A (en) * | 1979-09-17 | 1981-04-22 | Matsushita Electric Ind Co Ltd | Fet transistor and method of producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH032340B2 (en) | 1991-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5296398A (en) | Method of making field effect transistor | |
US4601095A (en) | Process for fabricating a Schottky-barrier gate field effect transistor | |
US3863330A (en) | Self-aligned double-diffused MOS devices | |
EP0057605B1 (en) | A schottky-barrier gate field effect transistor and a process for the production of the same | |
JPS5834980A (en) | Schottky gate field effect transistor | |
JPS5879768A (en) | Schottky gate field-effect transistor | |
JPS61187277A (en) | Manufacture of field-effect transistor | |
JPH035658B2 (en) | ||
JPS60144980A (en) | Semiconductor device | |
JPS58123778A (en) | Schottky gate field-effect transistor and its manufacture | |
JPH0359578B2 (en) | ||
JPS5840347B2 (en) | Manufacturing method of Schottky barrier gate field effect transistor | |
JPS6332273B2 (en) | ||
JPS59165460A (en) | Semiconductor device and manufacture thereof | |
JPH0737905A (en) | Manufacture of semiconductor device | |
JPS6155967A (en) | Manufacture of field-effect transistor | |
JPS5880873A (en) | Schottky gate field effect transistor and manufacture thereof | |
JPS58123777A (en) | Schottky gate field-effect transistor and its manufacture | |
JPS5879770A (en) | Schottky gate field-effect transistor | |
JPS5879769A (en) | Schottky gate field-effect transistor | |
JPS62171163A (en) | Schottky-gate type field-effect transistor | |
JPS59195874A (en) | Manufacture of field-effect transistor | |
JPS6070772A (en) | Manufacture of field-effect transistor | |
JPH024137B2 (en) | ||
JPS61144880A (en) | Production of field effect transistor |