JPS61144880A - Production of field effect transistor - Google Patents

Production of field effect transistor

Info

Publication number
JPS61144880A
JPS61144880A JP26784084A JP26784084A JPS61144880A JP S61144880 A JPS61144880 A JP S61144880A JP 26784084 A JP26784084 A JP 26784084A JP 26784084 A JP26784084 A JP 26784084A JP S61144880 A JPS61144880 A JP S61144880A
Authority
JP
Japan
Prior art keywords
gate
layer
gate electrode
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26784084A
Other languages
Japanese (ja)
Other versions
JPH0666336B2 (en
Inventor
Keiichi Ohata
恵一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26784084A priority Critical patent/JPH0666336B2/en
Publication of JPS61144880A publication Critical patent/JPS61144880A/en
Publication of JPH0666336B2 publication Critical patent/JPH0666336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To reduce the source and gate resistance by a method wherein an active layer and a gate electrode on a semiconductor substrate, and a contact region is formed with the electrode used as a mask, the whole surface is coated with a metallic film, Au is plated on the gate electrode which has been coated with resin and made to a film and exposed, and then unnecessary metallic film is removed. CONSTITUTION:Si ion is injected onto a GaAs substrate 11 to form an N-type active layer 12, the WSi gate 13 is formed. Si ion is injected with the gate 13 used as a mask to form a n<+> contact regions 14 and 15. A Ni film 20 is evaporated on the whole surface. The hole surface is coated with a photo-resist layer 21, and the layer is uniformly thinned to expose the upper surface of the gate 13. An Au plating layer 22 is formed on the upper surface, and then, the photo-resist layer 21 and the Ni film 20 outside of the gate 13 are removed to complete the gate electrode. An AuGeNi 19 is evaporated with the layer 22 used as a mask to form a source electrode 16, drain electrode 17, thereby completing an FET.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、寄生抵抗の小さな電果効果トランジスタの製
造方法に関する。” (従来技術とその問題点) G a A sショットキゲート電界効果トランジスタ
は、近年高速ICを指向してその集積化が進められてい
る。ここで最近試みられている製造プロセスは、特にノ
ーマリオフ型において重要なソース抵抗を低減させるた
めのセルファラインプロセスであシ、これを第3図を用
いて説明する。まず半絶縁性基板11上の能動層12上
に耐熱性のゲー計電極13例えばW合金を用いたゲート
を形成しく第3図(、) ) 、該ゲート電極13をマ
スクにし、ソースおよびドレイン領域にドナーイオンの
イオン注入を行い、さらにアニールを行りてn中領域1
4゜15を形成しく第3図(b) ) 、次いでソース
電極16およびドレイン電極17を形成する(第3図(
C))プロセスである。かかるプロセスによればソース
抵抗はかなシ小さくなる。しかしながら、ソースおよび
ドレイン電極は通常目金せで形成され、ゲート端つまJ
)n十領域端に近接させることはできないため、素子の
微細化に限度があるばかシでなく、ゲートが微細化され
るに従ってソース抵抗は無視できない大きさとなる。さ
らにこの場合、耐熱性ゲート金属、例えばTiW−?W
シリサイドの抵抗率は比較的大きいので、ゲート抵抗も
大きく増大する。この点を改善したプロセスが本出願人
による特開昭57−152168−特開FM357−1
52166に提案されている。例えば第4図に示すよう
に、耐熱性ゲート13上にAu層18が被着された電極
をマスクにイオン注入を行い、アニールを行ってn+領
域14t15を形成しく第4図(a))、AU層18を
マスクにしてソース16およびドレイン電極17を被着
形成する(第4図(b))プロセスである。なお19は
AU層上に被着されたオーム性電極金属である。該プロ
セスによれば確かにソース抵抗およびゲート抵抗は極め
て小さい値に低減できる。しかしながら、該プロセスで
は、耐熱性金属上にAuが被着された状態でアニールを
行うため、人Uが拡散し、GaAsと反応しないように
耐熱性金属の厚さ、およびアニール条件を最適化する必
要がある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a field effect transistor with low parasitic resistance. (Prior art and its problems) GaAs Schottky gate field effect transistors have been increasingly integrated in recent years with the aim of producing high-speed ICs. This is a self-line process for reducing the source resistance, which is important in the process, and this will be explained using FIG. To form a gate using an alloy, donor ions are implanted into the source and drain regions using the gate electrode 13 as a mask, and annealing is performed to form the n-middle region 1.
Then, a source electrode 16 and a drain electrode 17 are formed (see FIG. 3(b)).
C)) process. According to such a process, the source resistance can be significantly reduced. However, the source and drain electrodes are usually formed with metal fittings, and the gate end
) Since it cannot be brought close to the edge of the n0 region, there is no limit to the miniaturization of the element, and as the gate is miniaturized, the source resistance increases to a size that cannot be ignored. Furthermore, in this case a refractory gate metal, for example TiW-? W
Since the resistivity of silicide is relatively high, the gate resistance also increases significantly. A process that improved this point was published by the applicant in JP-A-57-152168-JP-A-FM357-1.
52166. For example, as shown in FIG. 4, ions are implanted using the electrode on which the Au layer 18 is deposited on the heat-resistant gate 13 as a mask, and annealing is performed to form an n+ region 14t15 (FIG. 4(a)). This is a process in which the source 16 and drain electrodes 17 are deposited and formed using the AU layer 18 as a mask (FIG. 4(b)). Note that 19 is an ohmic electrode metal deposited on the AU layer. According to this process, the source resistance and gate resistance can certainly be reduced to extremely low values. However, in this process, since annealing is performed with Au deposited on the heat-resistant metal, the thickness of the heat-resistant metal and the annealing conditions must be optimized to prevent Au from diffusing and reacting with GaAs. There is a need.

また該プロセスにおいてTfiSiゲート側の耐熱性金
属のサイドエツチングによって形成するため、実際のゲ
ート長がプロセス中に観測できないという不都合さもあ
る。
Furthermore, since the TfiSi gate is formed by side etching of a heat-resistant metal on the side of the TfiSi gate in this process, there is also the disadvantage that the actual gate length cannot be observed during the process.

(発明の目的) 本発明の目的は、改善されたプロセスでの以上のような
不都合さも解消する、ソース抵抗およびゲート抵抗の極
めて小さい電界効果トランジスタの製造方法を提供する
ことにある。
(Objective of the Invention) An object of the present invention is to provide a method for manufacturing a field effect transistor with extremely low source resistance and gate resistance, which eliminates the above-mentioned disadvantages with an improved process.

(発明の構成) 本発明によれば半絶縁性基板上に能動層を形成した後、
該能動層上にゲート電極を形成し、必要に応じて該ゲー
ト電極をマスクとして、高ドープコンタクト領域を形成
した後、給電用の金属膜を全面に被着し、次いで表面の
平坦性が増すように絶縁性の樹脂層を全面に被覆し、さ
らに該樹脂層を薄化し、前記ゲート電極の上面を露出さ
せ、該露出させたゲート電極の上面にAuあるいはAg
めっき層を形成した後、前記樹脂層およびゲート外の金
属膜を除去することを特徴とする電界効果トランジスタ
の製造方法が得られる。
(Structure of the Invention) According to the present invention, after forming an active layer on a semi-insulating substrate,
After forming a gate electrode on the active layer and forming a highly doped contact region using the gate electrode as a mask if necessary, a metal film for power supply is deposited on the entire surface, and then the surface flatness is increased. The entire surface is covered with an insulating resin layer, the resin layer is further thinned, the upper surface of the gate electrode is exposed, and the exposed upper surface of the gate electrode is coated with Au or Ag.
A method for manufacturing a field effect transistor is obtained, which comprises removing the resin layer and the metal film outside the gate after forming the plating layer.

さらに本発明によれば、動作域を兼ねる半絶縁性基板上
に絶縁膜を形成し、該絶縁膜上にゲート電極を形成し、
該ゲート電極をマスクとして高ドープコンタクト領域を
形成した後、給電用の金属膜を全面に被着し、次いで表
面の平坦性が増すように絶縁性の樹脂層を全面に被覆し
、さらに該樹脂層を薄化し、前記ゲート電極の上面を露
出させ、該露出させたゲート電極の上面に人Uあるいは
Agめ−)き層を形成した後、前記樹脂層およびゲート
外の金属膜を除去することを特徴とする電界効果トラン
ジスタの製造方法が得られる。
Furthermore, according to the present invention, an insulating film is formed on a semi-insulating substrate that also serves as an operating region, a gate electrode is formed on the insulating film,
After forming a highly doped contact region using the gate electrode as a mask, a metal film for power supply is deposited on the entire surface, then an insulating resin layer is coated on the entire surface to increase the flatness of the surface, and then the resin layer is coated on the entire surface. After thinning the layer to expose the upper surface of the gate electrode, and forming a layer containing U or Ag on the exposed upper surface of the gate electrode, removing the resin layer and the metal film outside the gate. A method for manufacturing a field effect transistor is obtained.

(構成の詳細な説明) 以下本発明についてそれぞれ一実施例をもって詳細に説
明する。
(Detailed Description of Configuration) The present invention will be described in detail below with reference to one embodiment.

第1の発明の一実施例としてGaAsシ、ットキゲート
電界効果トランジスタを製作した場合について第1図を
用いて説明する。まず半絶縁性GaAs基板ll上に%
 83イオンを例えば注入エネルギー50 keVp 
)’ −5fj/(2X 10” an−”注入L、s
o。
As an embodiment of the first invention, a case where a GaAs gate field effect transistor is fabricated will be described with reference to FIG. First, on a semi-insulating GaAs substrate
83 ions with an implantation energy of 50 keVp, for example.
)' -5fj/(2X 10"an-" injection L, s
o.

℃ 10分間アニールを行って、n型能動層12を形成
する(第1図(2))。次いでゲート長0.5μms厚
さ0.6μmのWS i耐熱性グー)13をドライエツ
チングによって形成する。(第1図(bン)。このWS
iゲートをマスクとしてSiイオンを例えば注入エネル
ギー100 keV tドース量I X I Q” c
m−3でもってゲートの両側に注入し、950℃2秒間
短時間アニールを行りてn+コンタクト領域14115
を形成する(第4図(C))。次にめっき時の給電量と
して0.1μmの厚さのNi膜20をウェハー全面に蒸
着する(第1図(d))。次に表面が平坦になシやすい
樹脂層例えばホトレジスト層31で全面を被覆する(第
1図(e))。すなわちゲート部分ではホトレジスト層
が他より薄く力るようにする。
C. for 10 minutes to form an n-type active layer 12 (FIG. 1(2)). Next, a WS i heat-resistant film 13 having a gate length of 0.5 μm and a thickness of 0.6 μm is formed by dry etching. (Figure 1 (b). This WS
Using the i gate as a mask, implant Si ions at, for example, an energy of 100 keV and a dose of I
m-3 on both sides of the gate and briefly annealed at 950°C for 2 seconds to form n+ contact regions 14115.
(Fig. 4(C)). Next, a Ni film 20 having a thickness of 0.1 μm is deposited on the entire surface of the wafer as the amount of power supplied during plating (FIG. 1(d)). Next, the entire surface is covered with a resin layer, such as a photoresist layer 31, which has a flat surface and is easy to remove (FIG. 1(e)). In other words, the photoresist layer is made thinner in the gate area than in other areas.

これは例えば1μmの厚さにポジ型ホトレジストを塗布
し、高温でベーキングを行って流動化させることにより
て容易に実現できる。次いで、酸素の反応性イオンエツ
チングによシ上方よりレジストを一様に薄化し、Niが
上面に被着されたW8 iゲートの上面のみ露出させる
(第1図(f))。露出したゲート上面に0.4μmの
厚さにAuめりき層22を形成する(第1図ω)。ここ
でNi膜20はめっき時の電流供給路となると共にWS
i上へのめっきの付着性を改善する効果も有する。この
時横方間へも厚さと同程度めっき層が成長する結果、T
型電極が形成される。次いでホトレジスト層およびゲー
ト外のNi膜20を除去すればゲート電極が完成する(
第1図(h))。さらに該Auめっき層22をマスクに
して、上方よジオ−ミック金属のA u G e Ni
9を蒸着し、熱処理を行ってソース電極16およびドレ
インを極17を形成すれば電界効果トランジスタが完成
する。(第1図(i))。
This can be easily achieved, for example, by applying a positive photoresist to a thickness of 1 μm and baking it at a high temperature to make it fluid. Next, the resist is uniformly thinned from above by oxygen reactive ion etching to expose only the upper surface of the W8 i gate on which Ni is deposited (FIG. 1(f)). An Au plated layer 22 is formed to a thickness of 0.4 μm on the exposed upper surface of the gate (ω in FIG. 1). Here, the Ni film 20 serves as a current supply path during plating and also serves as a WS
It also has the effect of improving the adhesion of plating onto i. At this time, as a result of the plating layer growing laterally to the same extent as the thickness, T
A mold electrode is formed. Next, by removing the photoresist layer and the Ni film 20 outside the gate, the gate electrode is completed (
Figure 1 (h)). Furthermore, using the Au plating layer 22 as a mask, geomic metal AuGeNi is applied from above.
A field effect transistor is completed by vapor depositing 9 and performing heat treatment to form a source electrode 16 and a drain pole 17. (Figure 1(i)).

以上よシ明らかなように、本発明による製造方法では、
リソグラフィ技術を用いた微細加工はゲート電極形成の
1回行うだけであシ、シかもこのときは精密な位置合せ
は不要であシ、他の工程は極めて簡単なセル7アライン
プロセスで寄生抵抗の小さな微細構造の電界効果トラン
ジスタを製造できる。すなわち上記例では、ゲート長0
.5μmに対して、実際のゲート電極の配線部分は、抵
抗率の小さいAuの1.3μm長の電極が使え、ゲート
抵抗は極めて小さくなる。さらにソース−ゲート間隔が
0.4μmと短く、ソース抵抗も極めて小さい。
As is clear from the above, in the manufacturing method according to the present invention,
Microfabrication using lithography technology only needs to be performed once to form the gate electrode, and precise alignment may not be necessary at this time. Field effect transistors with small microstructures can be manufactured. In other words, in the above example, the gate length is 0
.. In contrast to 5 μm, for the actual wiring portion of the gate electrode, a 1.3 μm long electrode made of Au having low resistivity can be used, and the gate resistance becomes extremely small. Furthermore, the source-gate distance is as short as 0.4 μm, and the source resistance is also extremely low.

なお、ソース−ゲート間隔はAuめりきの成長量によっ
て制御できる。さらに本発明の製法において   ゛は
、Au層の形成前にアニール工程を行うことができるの
で、アニールの許容温度範囲および時間範囲を広くとる
ことができる。
Note that the source-gate distance can be controlled by the amount of Au plating grown. Furthermore, in the manufacturing method of the present invention, since the annealing step can be performed before forming the Au layer, the permissible temperature range and time range for annealing can be widened.

以上ではイオン注入によるn+コンタクト領域を形成し
た場合について説明したが、エピタキシャル成長による
ロ+コンタクト層を用いてもよいしn+コンタクト領域
の形成を行わなければ、通常の構造ではおるがソース−
ゲート問およびゲート−ドレイン間の短いショットキゲ
ートを界効果トランジスタがセルファラインプロセスで
容易に製作できる。この場合にも以上で説明した寄生抵
抗の小さい効果は発揮できる。またソースおよびドレイ
ン電極、16y17は通常の位置合わせの方法でも形成
できることはいうまでもない。
The case where the n+ contact region is formed by ion implantation has been described above, but it is also possible to use a low+ contact layer by epitaxial growth, or if the n+ contact region is not formed, the normal structure is obtained, but the source-
Field-effect transistors with short Schottky gates between gates and between gates and drains can be easily manufactured using a self-line process. In this case as well, the effect of reducing parasitic resistance as described above can be achieved. Further, it goes without saying that the source and drain electrodes 16y17 can be formed by a normal alignment method.

本発明の第2の発明の一実施例としてエンハンスメント
型InP絶縁ゲート%界効果トランジスタを製作した場
合について第4図を用いて説明する。
A case where an enhancement type InP insulated gate field effect transistor is fabricated as an embodiment of the second aspect of the present invention will be described with reference to FIG.

まず動作域を兼ねる半絶縁性InP基板23上に、ゲー
ト絶縁膜としテCVD Sin、膜24を600Xの厚
さに被着し、さらにゲート長1μmj  厚さ0.5μ
mのWのグー)1極13を形成し、ゲート電極をマスク
にしてSNイオンを注入、アニールを行ってn+コンタ
クト領域14y 15を形成する(第2図(a) )。
First, on a semi-insulating InP substrate 23 which also serves as an operating region, a CVD Sin film 24 as a gate insulating film is deposited to a thickness of 600×, and the gate length is 1 μm and the thickness is 0.5 μm.
A single pole 13 of W of m is formed, SN ions are implanted using the gate electrode as a mask, and annealing is performed to form an n+ contact region 14y15 (FIG. 2(a)).

以下第1の実施例と同じく、給電用として500Xの厚
さのTi膜20を被着、ホトレジスト層21被覆、平坦
化、ゲート電極上面の露出、人Uめりき層22形成を行
う(第2図(b))。
Thereafter, in the same manner as in the first embodiment, a Ti film 20 with a thickness of 500X is deposited for power supply, a photoresist layer 21 is coated, planarized, the upper surface of the gate electrode is exposed, and a human U-cutting layer 22 is formed (second Figure (b)).

次いでホトレジスト層21およびゲート外のTi[20
を除去すればゲート電極が完成する。(第2図(C))
。さらに通常のレジスト工程によりて8i0z膜を除去
オーミック金属の人uGeNiを蒸着し、熱処理を行っ
てソース電極16およびドレイン電極17を形成すれば
(第2図(d))、寄生抵抗の小さな高性能絶縁ゲート
電界効果トランジスタが完成する。なお以上ではエンハ
ンスメント型トランジスタについて説明したが、半絶縁
性InP基板上にn型InP能動層を形成し、その上に
ゲート絶縁膜を介してゲート電極が形成されたディプリ
ーション型絶縁ゲート電界効果トランジスタの製作にも
有効であることは明らかである。、!た本工程において
、基板23の代わシに半絶縁性GaAs基板上に高純度
G a A sを成長させたものを、さらにゲート絶縁
膜42の代わシに該高純度G a A s層上に連続成
長させたn型あるいはアンドープのGaAIAs層を用
いれば、GaAlAsと高純度G a A sとのへテ
ロ接合のG a A s側に蓄積される2次元電子層の
キャリア数をゲート13で制御する電界効果トランジス
タと表る。
Next, the photoresist layer 21 and Ti[20
By removing , the gate electrode is completed. (Figure 2 (C))
. Furthermore, if the 8i0z film is removed by a normal resist process and the ohmic metal uGeNi is deposited, and then heat treated to form the source electrode 16 and drain electrode 17 (Fig. 2(d)), high performance with low parasitic resistance can be achieved. An insulated gate field effect transistor is completed. Although the enhancement-type transistor has been described above, the depletion-type insulated gate field effect transistor has an n-type InP active layer formed on a semi-insulating InP substrate and a gate electrode formed on top of the n-type InP active layer via a gate insulating film. It is clear that this method is also effective in manufacturing transistors. ,! In this step, high-purity GaAs was grown on a semi-insulating GaAs substrate in place of the substrate 23, and further, in place of the gate insulating film 42, high-purity GaAs was grown on the high-purity GaAs layer. If a continuously grown n-type or undoped GaAIAs layer is used, the number of carriers in the two-dimensional electron layer accumulated on the GaAs side of the heterojunction between GaAlAs and high-purity GaAs can be controlled by the gate 13. It is expressed as a field effect transistor.

また以上の各実施例ではAuめつき層を用いたが、同じ
く抵抗率の小さいAgめつき層も用いることができる。
Furthermore, although an Au plating layer was used in each of the above embodiments, an Ag plating layer having a low resistivity may also be used.

(発明の効果) 以上述べた様に本発明によれば、寄生抵抗の小さい電界
効果トランジスタを製作でき、マイクロ波低雑音・高出
力デバイスの高性能化を推進することができる。また本
発明の製法は電界効果トランジスタのゲート電極ばかシ
でなく、半導体装置の電極の低抵抗化に有効である。
(Effects of the Invention) As described above, according to the present invention, a field effect transistor with low parasitic resistance can be manufactured, and it is possible to promote high performance of microwave low noise and high output devices. Furthermore, the manufacturing method of the present invention is effective for reducing the resistance of the electrodes of semiconductor devices, not just the gate electrodes of field effect transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第3図(、)〜(C)および第4図(、)(b)は従来
の電界効果トランジスタのセルファラインプロセスの工
程を説明するための図である。第1図(、)〜(i)お
よび第2図(a)〜(d)は本発明による第1および第
2の発明の各−実施例の工程を説明するための図である
。 ここで1に半絶縁性基板、12:能動層、13:ゲート
電極、14および15:n+コンタクト領域、16:ソ
ース電極、17:ドレイン電極、18 : Au層、 
19:オーム性電極金属、20:給電用金属膜、21:
樹脂層、22:Auめりき層、23:動作域を兼ねる半
絶縁性基板、24:ゲート絶縁膜である。 第1図 (e) 第1図  才2図 第3図 (a) (b) (C) 第4図 (a) (b)
FIGS. 3(,) to (C) and FIGS. 4(,)(b) are diagrams for explaining the steps of the conventional self-line process for field effect transistors. FIGS. 1(a)-(i) and FIGS. 2(a)-(d) are diagrams for explaining the steps of each embodiment of the first and second inventions according to the present invention. Here, 1 is a semi-insulating substrate, 12: active layer, 13: gate electrode, 14 and 15: n + contact region, 16: source electrode, 17: drain electrode, 18: Au layer,
19: Ohmic electrode metal, 20: Power supply metal film, 21:
Resin layer, 22: Au plated layer, 23: Semi-insulating substrate which also serves as an operating region, 24: Gate insulating film. Figure 1 (e) Figure 1 Figure 2 Figure 3 (a) (b) (C) Figure 4 (a) (b)

Claims (1)

【特許請求の範囲】 1、半絶縁性基板上に能動層を形成した後、該能動層上
にゲート電極を形成し、必要に応じて該ゲート電極をマ
スクとして高ドープコンタクト領域を形成した後、給電
用の金属膜を全面に被着し、次いで表面の平坦性が増す
ように絶縁性の樹脂層を全面に被覆し、さらに該樹脂層
を薄化し、前記ゲート電極の上面を露出させ、該露出さ
せたゲート電極の上面にAuあるいはAgめっき層を形
成した後前記樹脂層およびゲート外の金属膜を除去する
ことを特徴とする電界効果トランジスタの製造方法。 2、動作域を兼ねる半絶縁性基板上に絶縁膜を形成し、
該絶縁膜上にゲート電極を形成し、該ゲート電極をマス
クとして高ドープコンタクト領域を形成した後、給電用
の金属膜を全面に被着し、次いで表面の平坦性が増すよ
うに絶縁性の樹脂層を全面に被覆し、さらに該樹脂層を
薄化し、前記ゲート電極の上面を露出させ、該露出させ
たゲート電極の上面にAuあるいはAgめっき層を形成
した後、前記樹脂層およびゲート外の金属膜を除去する
ことを特徴とする電界効果トランジスタの製造方法。
[Claims] 1. After forming an active layer on a semi-insulating substrate, forming a gate electrode on the active layer, and forming a highly doped contact region using the gate electrode as a mask if necessary. , depositing a metal film for power supply over the entire surface, then covering the entire surface with an insulating resin layer to increase the flatness of the surface, and further thinning the resin layer to expose the upper surface of the gate electrode, A method for manufacturing a field effect transistor, comprising forming an Au or Ag plating layer on the exposed upper surface of the gate electrode, and then removing the resin layer and the metal film outside the gate. 2. Form an insulating film on a semi-insulating substrate that also serves as the operating area,
After forming a gate electrode on the insulating film and forming a highly doped contact region using the gate electrode as a mask, a metal film for power supply is deposited on the entire surface, and then an insulating film is formed to increase the flatness of the surface. After covering the entire surface with a resin layer, thinning the resin layer to expose the upper surface of the gate electrode, and forming an Au or Ag plating layer on the exposed upper surface of the gate electrode, the resin layer and the outside of the gate are coated. A method for manufacturing a field effect transistor, comprising removing a metal film.
JP26784084A 1984-12-19 1984-12-19 Method for manufacturing field effect transistor Expired - Lifetime JPH0666336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26784084A JPH0666336B2 (en) 1984-12-19 1984-12-19 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26784084A JPH0666336B2 (en) 1984-12-19 1984-12-19 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JPS61144880A true JPS61144880A (en) 1986-07-02
JPH0666336B2 JPH0666336B2 (en) 1994-08-24

Family

ID=17450349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26784084A Expired - Lifetime JPH0666336B2 (en) 1984-12-19 1984-12-19 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JPH0666336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244642A (en) * 1989-03-16 1990-09-28 Sanyo Electric Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244642A (en) * 1989-03-16 1990-09-28 Sanyo Electric Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0666336B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
KR920002090B1 (en) Method of manufacturing field effect transistor
US4997778A (en) Process for forming a self-aligned FET having a T-shaped gate structure
US4712291A (en) Process of fabricating TiW/Si self-aligned gate for GaAs MESFETs
JPS61144880A (en) Production of field effect transistor
JPH0543291B2 (en)
JPS61248570A (en) Mesfet device and manufacture thereof
JPS61187277A (en) Manufacture of field-effect transistor
JPS6038884A (en) Manufacture of field effect transistor
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
JPH0439772B2 (en)
JPS58135678A (en) Manufacture of field effect transistor
JPH0737905A (en) Manufacture of semiconductor device
JPS6155967A (en) Manufacture of field-effect transistor
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPS6070772A (en) Manufacture of field-effect transistor
JPS58145161A (en) Manufacture of semiconductor device
JPS6347982A (en) Semiconductor device
JPS60779A (en) Manufacture of semiconductor device
JPS60777A (en) Manufacture of semiconductor device
JPH01293571A (en) Manufacture of semiconductor element
JPH04352333A (en) Manufacture of semiconductor device
JPH1116925A (en) Manufacture of semiconductor device
JPS6240782A (en) Manufacture of semiconductor device
JPH03248437A (en) Manufacture of compound semiconductor device
JPH10223768A (en) Manufacture of semiconductor device and semiconductor device