JPS5879770A - Schottky gate field-effect transistor - Google Patents

Schottky gate field-effect transistor

Info

Publication number
JPS5879770A
JPS5879770A JP17853581A JP17853581A JPS5879770A JP S5879770 A JPS5879770 A JP S5879770A JP 17853581 A JP17853581 A JP 17853581A JP 17853581 A JP17853581 A JP 17853581A JP S5879770 A JPS5879770 A JP S5879770A
Authority
JP
Japan
Prior art keywords
gate electrode
active layer
gate
electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17853581A
Other languages
Japanese (ja)
Inventor
Kenichi Kikuchi
健一 菊地
Hideki Hayashi
秀樹 林
Toshiki Ehata
敏樹 江畑
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17853581A priority Critical patent/JPS5879770A/en
Priority to DE8282300499T priority patent/DE3273695D1/en
Priority to EP82300499A priority patent/EP0057605B1/en
Priority to US06/361,070 priority patent/US4601095A/en
Priority to CA000401059A priority patent/CA1184320A/en
Publication of JPS5879770A publication Critical patent/JPS5879770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66871Processes wherein the final gate is made after the formation of the source and drain regions in the active layer, e.g. dummy-gate processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • H01L29/66863Lateral single gate transistors
    • H01L29/66878Processes wherein the final gate is made before the formation, e.g. activation anneal, of the source and drain regions in the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Abstract

PURPOSE:To reduce resistance between a gate and a source, and to improve a microwave characteristic by forming an operating layer in the vicinity of a gate electrode in shape that its thickness is made thicker than an operating layer just under the gate electrode and its impurity concentration is made higher than that of the operating layer just under the gate electrode. CONSTITUTION:<28>Si<+> Ions are implanted in the surface of a semi-insulating semiconductor substrate 21 made of GaAs, etc. and the operating layer 22' with uniform thickness is formed. A high-melting point metal is evaporated onto the operating layer 22', and a resist pattern is shaped onto the metal. A metallic layer is etched by using the resist pattern, and the gate electrode 25 is molded. Layers 26, 27 with high concentration are formed through the second ion implantation while employing the resist pattern as a mask. The resist pattern is removed, and the operating layer 22'' is shaped through the third ion implantation by using the gate electrode 25 as a mask.

Description

【発明の詳細な説明】 本発明はマイクロ波特性が良好でしかも製造が容易なシ
ョットキゲート電界効果トランジスタに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Schottky gate field effect transistor that has good microwave characteristics and is easy to manufacture.

本発明は、材料については何ら制限されるものではなく
、St などの単元素半導体あるいは化合物半導体など
広く一般の半導体材料に適用できるものであるが、以下
半導体材料として動作速度の大きい利点をもつ化合物半
導体のうちGa Asを例にとって説明を行う。
The present invention is not limited in any way to materials, and can be applied to a wide range of general semiconductor materials such as single-element semiconductors such as St or compound semiconductors. Explanation will be given by taking GaAs among semiconductors as an example.

従来のショットキゲート電界効果トランジスタの一般的
な構造は、第1図の断面図に例示するように、GaAs
なとの半絶縁性半導体基板110表面にエピタキシャル
成長やイオン注入によって一様な厚さのn型動作層12
を形成したのち、この動作層の表面に金属を蒸着させる
方法等によりソース電極18、トレイン電極14及びシ
ョットキケート電極15を形成したものである。このよ
うな従来構造のショットキゲート電界効果トランジスタ
においては、ゲート・ソース間抵抗が大きいと、このト
ランジスタのマイクロ波特性、特に雑音特性が劣化する
ことが知られている。マイクロ波特性を改良するにはゲ
ート・ソース間抵抗を下げることが必要であり、この目
的を達成するには動作層12のキャリア濃度を高めるか
又は動作層を厚くすることが必要であるが、いずれの方
法においてもピンチオフ電圧が過大になるという問題を
生ずる。また、キャリア濃度を高めた場合にはゲートの
耐圧が小さくなるという問題がさらに生ずる。
The general structure of a conventional Schottky gate field effect transistor is made of GaAs, as illustrated in the cross-sectional view of FIG.
An n-type active layer 12 with a uniform thickness is formed on the surface of a semi-insulating semiconductor substrate 110 by epitaxial growth or ion implantation.
After forming the active layer, a source electrode 18, a train electrode 14, and a Schottkycate electrode 15 are formed by a method such as vapor deposition of metal on the surface of this active layer. It is known that in a Schottky gate field effect transistor having such a conventional structure, if the gate-source resistance is large, the microwave characteristics, particularly the noise characteristics, of the transistor deteriorate. In order to improve the microwave characteristics, it is necessary to lower the gate-source resistance, and to achieve this purpose, it is necessary to increase the carrier concentration in the active layer 12 or increase the thickness of the active layer. In either method, the problem arises that the pinch-off voltage becomes excessive. Further, when the carrier concentration is increased, another problem arises in that the breakdown voltage of the gate decreases.

このような問題を解決するため、第2図に例示するよう
に1ピンチオフ電圧を支配するゲート直下の動作層12
’の厚みを所望値に保ったまま、ソース電極近傍の動作
層12″の厚みを大きくする構造が提案されている。こ
の構造は、まずソース電極18及びドレイン電[r 1
4直下の厚みに相当する一様な厚みの動作層を形成した
のち、ゲート電極15の直下となるべき箇所12’のみ
をエツチング等により薄くしたのち、各電極13.14
及び15を形成している。
In order to solve this problem, as illustrated in FIG.
A structure has been proposed in which the thickness of the active layer 12'' near the source electrode is increased while maintaining the thickness of the source electrode 18 and the drain voltage [r 1
After forming an active layer with a uniform thickness corresponding to the thickness directly under the gate electrode 15, only the portion 12' that should be directly under the gate electrode 15 is thinned by etching etc., and then each electrode 13.14 is formed.
and 15.

しかしながらこのような構造では、動作層表面カ平担で
ないから電極形成のための微細なホトリソグラフィ等が
困難であるばかりでなく、動作層のエツチング制御に極
めて厳しい精度が要求されるために歩留りが低くなって
しまう欠点がある。
However, in such a structure, not only is it difficult to perform fine photolithography for electrode formation because the surface of the active layer is not flat, but also the yield is low because extremely strict precision is required to control the etching of the active layer. It has the disadvantage of being low.

即ち、MESFETの高周波特性を向上させるためには
、ゲート長を極力小さくする必要があり、そのために素
子製作上極めて微細な精密加工が要求される。しかし、
第2図のような構造のものの従来の製造方法においては
、ゲート電極15のパターンfレジストに形成する際に
、そのゲートパターンの極く近傍にソース電極13およ
びドレイン電極14による段差が、動作領域12の段差
に加えて存在するため、平担面におけるときよりもフォ
トレジストパターンの解像度が低下し、1μm程度の短
いゲートパターンを確実に形成することが困難であった
。特にGaAs等の化合物半導体では、ゲート電極15
を形成する前にソース電極13おヨヒトレイン電極14
の合金処理を行なって、その接触抵抗の低下を図ること
が一般に行なわれているが、接触抵抗を充分小さくしよ
うとして充分な高温で、しかも長時間の合金処理を行な
うとソース、ドレイン電極金属の凝集がおこり、著しく
大きな段差が生じ易く、このこともゲート用フォトレジ
ストパターンの解像度を悪化させる原因になっている。
That is, in order to improve the high frequency characteristics of the MESFET, it is necessary to reduce the gate length as much as possible, which requires extremely fine precision machining in manufacturing the device. but,
In the conventional manufacturing method of the structure shown in FIG. 2, when forming the pattern f of the gate electrode 15 in the resist, a step formed by the source electrode 13 and the drain electrode 14 is created in the vicinity of the gate pattern in the operating area. In addition to the 12 steps, the resolution of the photoresist pattern was lower than that on a flat surface, making it difficult to reliably form a gate pattern as short as about 1 μm. In particular, in compound semiconductors such as GaAs, the gate electrode 15
Before forming the source electrode 13 and the train electrode 14
Generally, alloying is performed to lower the contact resistance, but if the alloying is performed at a sufficiently high temperature and for a long time in order to sufficiently reduce the contact resistance, the source and drain electrode metals will deteriorate. Agglomeration tends to occur and extremely large steps are likely to occur, which also causes deterioration in the resolution of the gate photoresist pattern.

また、ゲート電極5は既に形成されているソース電極1
3とドレイン14の中間に±0.27rm以下の位置精
度で形成する必要がある。さらにソース電極8とゲート
電極15の間隔は、ME S F ETの電気的特性に
あって、ソース・ゲート間の寄生抵抗、寄生容量にて直
接影響するので、両電極間の距離はできる限り小さく、
かつ高精度に制御する必要があり、上述の位置精度はこ
の電極間距離の点でも必要となる。しかしこの様な微細
パターンを高精度で形成することは、従来の技術では極
めて困難であり、従って製造歩留りが著しく低いという
問題点があった。
Further, the gate electrode 5 is the source electrode 1 which has already been formed.
3 and the drain 14 with a positional accuracy of ±0.27 rm or less. Furthermore, the distance between the source electrode 8 and the gate electrode 15 is directly influenced by the parasitic resistance and capacitance between the source and gate in the electrical characteristics of the MESFET, so the distance between the two electrodes should be as small as possible. ,
It is also necessary to control with high precision, and the above-mentioned positional precision is also required in terms of the distance between the electrodes. However, it is extremely difficult to form such fine patterns with high precision using conventional techniques, and therefore there is a problem in that the manufacturing yield is extremely low.

ソース抵抗を低減する他の一つの有力な手段はソース電
極18の下部に高不純物濃度n土層を形成することであ
るが、この方法が充分に有効であるためには、n土層と
ゲート電極との間隔は十分に近接している必要がある。
Another effective means of reducing the source resistance is to form a highly impurity-concentrated n-soil layer under the source electrode 18, but in order for this method to be sufficiently effective, the n-soil layer and gate The distance between the electrode and the electrode needs to be sufficiently close.

しかしながら従来のリングラフィ技術では、n土層とゲ
ート電極とを1μm以下に近接することは困難であった
However, with conventional phosphorography techniques, it is difficult to place the n-soil layer and the gate electrode close to each other within 1 μm.

このため以上に詳述したようにより高い周波数で使用可
能な、あるいはより大きな利得を得るため、ソース抵抗
の効果的な低減法の開発が望まれていた。
Therefore, as detailed above, it has been desired to develop a method for effectively reducing the source resistance in order to be able to use the device at a higher frequency or to obtain a larger gain.

本発明は上述した従来の問題点に鑑みてなされたもので
あり、その目的とするところは、マイクロ波特性及び歩
留りが良好なショットキゲート電界効果トランジスタを
提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a Schottky gate field effect transistor with good microwave characteristics and good yield.

以下本発明の詳細を実施例によって説明する。The details of the present invention will be explained below with reference to Examples.

第3図は本発明の一実施例のショーツトキゲート電界効
果トランジスタの断面図であり、21はGaAsなどの
半絶縁性半導体基板、22はn型動作層、23はソース
電極、24はドレイン電極、25はショットキゲート電
極である。本発明の電界効果トランジスタは第3図に例
示するように、動作層表面が平担でかつソース・ドレイ
ン間の動作層22″の厚さをゲート直下の動作層22′
の厚さ。
FIG. 3 is a cross-sectional view of a short gate field effect transistor according to an embodiment of the present invention, in which 21 is a semi-insulating semiconductor substrate such as GaAs, 22 is an n-type active layer, 23 is a source electrode, and 24 is a drain electrode. , 25 are Schottky gate electrodes. As illustrated in FIG. 3, the field effect transistor of the present invention has a flat surface of the active layer, and the thickness of the active layer 22'' between the source and drain is the same as that of the active layer 22' directly below the gate.
thickness.

よりも大きくした構造で、ゲート電極25はピンチオフ
電圧を決定する動作層22′の部分に正確に位置し、2
5は動作層22″とは重なりを有しない。
2, the gate electrode 25 is located precisely in the part of the active layer 22' that determines the pinch-off voltage, and
5 has no overlap with the active layer 22''.

またn土層2Q、27がゲート電極をはさんで両側に0
.5μm程度の近傍に形成せられている。
In addition, the n-soil layers 2Q and 27 are on both sides of the gate electrode.
.. It is formed in the vicinity of about 5 μm.

上述のように、本発明によるショットキゲート電界効果
トランジスタでは、ゲート電極25 とソース電極23
との間に厚い動作層22′とn土層26とが設けられか
つ、n土層26とゲート電極は、例えば0.5μm程度
に充分近傍に形成せられるためソース抵抗が低減し、良
好な高周波特性を有するのが特徴である。
As mentioned above, in the Schottky gate field effect transistor according to the present invention, the gate electrode 25 and the source electrode 23
The thick active layer 22' and the n-soil layer 26 are provided between the n-soil layer 26 and the gate electrode, and the n-soil layer 26 and the gate electrode are formed sufficiently close to each other, e.g., about 0.5 μm, so that the source resistance is reduced and a good It is characterized by having high frequency characteristics.

第4図は、第3図の電界効果トランジスタの製造方法の
一例を示す断面図である。
FIG. 4 is a cross-sectional view showing an example of a method for manufacturing the field effect transistor shown in FIG. 3.

まず第4図(6)に示すように、GaAsの半絶縁性を
実現する値に選択される。例えば、ピンチオフ電圧0.
2■を実現するために、キャリア濃度1ol′lClF
3程度、厚み0.1μm程度の動作層を形成する必要が
あり、イオン注入の条件として、注入エネルギ120K
eV 、注入量2X1012’ド一ズ/cm” (ただ
し活性率を100%とする。)が選択される。このよう
な条件のもとに得られるキャリア濃度分布の理論値を第
5図の一点鎖線81で示す。
First, as shown in FIG. 4 (6), a value is selected to realize the semi-insulating property of GaAs. For example, pinch-off voltage 0.
In order to realize 2■, the carrier concentration is 1 ol'lClF
It is necessary to form an active layer with a thickness of about 3 and a thickness of about 0.1 μm, and the conditions for ion implantation include an implantation energy of 120K.
eV, and the implantation amount is 2 x 1012'dos/cm" (assuming the activation rate is 100%). The theoretical value of the carrier concentration distribution obtained under these conditions is shown at one point in Figure 5. It is shown by a chain line 81.

第4図(ト))K例示するように、一様な厚みの動作層
22′を形成したのち、その上に高融点でGaAsと反
応しにくい金属、例えばTi%Ta、 W%V、 Nb
、 M。
FIG. 4(g))K As shown in the example, after forming the active layer 22' with a uniform thickness, a metal having a high melting point and not easily reacting with GaAs, such as Ti%Ta, W%V, Nb, is formed on the active layer 22'.
, M.

あるいはこれらの合金25を蒸着し、さらにその上部に
フォトレジストパターン28を形成する。
Alternatively, these alloys 25 are deposited, and a photoresist pattern 28 is further formed thereon.

このレジスト28をマスクに用いて金属25をエツチン
グし、第4図(C)に例示したように、サイドエッチに
より28よりも縮少された金属パターン25を28の下
に形成する。かかる後にレジストパターン28をマスク
として用いて第2回目のイオン注入を行い、マスクされ
ない箇所1/Cn土層飢27を形成する。
The metal pattern 25 is etched using the resist 28 as a mask, and the metal pattern 25 is formed under the metal pattern 28 by side etching, as illustrated in FIG. 4(C). After this, a second ion implantation is performed using the resist pattern 28 as a mask to form a 1/Cn soil layer gap 27 in the unmasked area.

その後レジスト28を除去し、第4図0)に示したよう
にパターン25をマスクとして用いて3回目のイオン注
入を行い、マスクされない箇所に新たな動作層22″を
形成する。8回目のイオン注入の条件としては、1回目
よりも深く注入するために注入エネルギが1回目のもの
よりも大きく、かつ注入量は最終ピークキャリア濃度が
1回目のピークキャリア濃度に比べて過大にならないよ
うな値に選択される。これはゲートに印加される電圧に
よって絶縁破壊が生じないようにするためであり、また
ゲートキャパシタンスが過大とならないようにするため
である。このような注入条件の一例として、注入エネル
ギを400KeV 、注入量を8.9X1012ドーズ
Δ−の値に選択した場合のキャリア密度分布の理論値を
第5図の点線32で例示する。動作層22内のマスクさ
れない部分のうち第2回目の注入がなされていない部分
22″の濃度は1回目のイオン注入による濃度に8回目
のイオン注入による濃度を加算した値となり、その分布
は第5図の実線33で例示される。
Thereafter, the resist 28 is removed, and a third ion implantation is performed using the pattern 25 as a mask as shown in FIG. The conditions for implantation are that the implantation energy is higher than the first time in order to implant deeper than the first time, and the implantation amount is set to a value such that the final peak carrier concentration does not become excessive compared to the first peak carrier concentration. This is to prevent dielectric breakdown from occurring due to the voltage applied to the gate, and to prevent the gate capacitance from becoming excessive.An example of such an implantation condition is The theoretical value of the carrier density distribution when the energy is 400 KeV and the implantation amount is 8.9×1012 dose Δ- is illustrated by the dotted line 32 in FIG. The concentration of the unimplanted portion 22'' is the sum of the concentration resulting from the first ion implantation and the concentration resulting from the eighth ion implantation, and its distribution is illustrated by the solid line 33 in FIG.

第5図から明らかなように、n土層26 または27と
動作層22′との間の動作層22″内のキャリア総数は
ゲート電極25の直下の動作層22′内のキャリア総数
に比べて約8倍大きく、そのためゲート・ソース間抵抗
は動作層22′が一様に形成される場合に比べて約8分
の1に低下する。一方、動作層22″内の最大キャリア
濃度は動作層22′内の値に比べて約13%増加しただ
けであるから、これに伴なうゲートの逆耐圧の増加およ
びゲートキャパシタンスの増加は極めてわずかな量にと
どまる。
As is clear from FIG. 5, the total number of carriers in the active layer 22'' between the n-soil layer 26 or 27 and the active layer 22' is smaller than the total number of carriers in the active layer 22' directly below the gate electrode 25. Therefore, the gate-source resistance is reduced to about one-eighth compared to when the active layer 22' is uniformly formed.On the other hand, the maximum carrier concentration in the active layer 22'' is Since the increase is only about 13% compared to the value within 22', the associated increase in reverse breakdown voltage of the gate and increase in gate capacitance remain extremely small.

次いで、アニールにより注入元素の活性化を行ない、n
土層26.27上の所定位置にソース電極田、ドレイン
電極24を形成することにより第8図の構造のトランジ
スタが出来上る。
Next, the implanted element is activated by annealing, and n
By forming the source electrode field and the drain electrode 24 at predetermined positions on the soil layers 26 and 27, a transistor having the structure shown in FIG. 8 is completed.

以上の説明で明らかなように本発明におけるMESFE
Tではゲート電極25は動作層22′の上部に正しく位
置合わせされて形成されているのが特徴であるが、以下
にこの利点につき詳細する。
As is clear from the above explanation, the MESFE in the present invention
T is characterized in that the gate electrode 25 is formed in proper alignment over the active layer 22', and this advantage will be described in detail below.

動作層22′の長さとゲート電極25の長さの関係を説
明すれば、動作層22′が比較的厚いノーマリオン型に
おいては、動作層22′の長さがゲート電極25の長さ
より多少長くても実用上十分な特性が得られる。これは
、動作層22′が比較的厚いため表面から素子内部に拡
がっている空乏層の厚みが動作層22′の全厚みを占め
ず、従って動作層22′のゲート直下を除く部分がゲー
ト・ソース間抵抗を極端に増大させるような問題を生じ
ないからである。これに対して、表面からの空乏層厚み
が動作層22′の厚みの全体を占めるようなノーマリオ
フ型においては、動作層22′の長さがゲート電極25
の長さより大であれば、動作層22′のゲート直下を除
く部分において空乏層が厚み方向一杯に形成され、この
結果ゲート・ソース間抵抗が著じるしく大となり、極端
な場合電流が完全に阻止されるという問題が生ずる。
To explain the relationship between the length of the active layer 22' and the length of the gate electrode 25, in a normally-on type where the active layer 22' is relatively thick, the length of the active layer 22' is somewhat longer than the length of the gate electrode 25. However, sufficient characteristics can be obtained for practical use. This is because the active layer 22' is relatively thick, so the thickness of the depletion layer that spreads from the surface into the inside of the device does not account for the entire thickness of the active layer 22'. This is because the problem of extremely increasing source-to-source resistance does not occur. On the other hand, in a normally-off type in which the thickness of the depletion layer from the surface occupies the entire thickness of the active layer 22', the length of the active layer 22' is the same as that of the gate electrode 22'.
If the length is larger than the length, a depletion layer will be formed to the full thickness in the active layer 22' except for the part directly below the gate, and as a result, the gate-source resistance will become significantly large, and in extreme cases, the current will be completely reduced. The problem arises that it is blocked by

従ってノーマリオフ型においては、ゲート電極25の長
さが動作層22′よりも大きくなければならない。しか
しながらゲート電極25 と、動作層22″との重なり
部分、すなわちゲート電極25において、動作層22′
よりも長さが過大となる部分は、単に静電容量を増大す
るのみで有効な作用をしないので、この過大部分を可能
な限り短くすることが、素子の動作速度を速くする上で
有効である。
Therefore, in the normally-off type, the length of the gate electrode 25 must be longer than the operating layer 22'. However, in the overlapping portion of the gate electrode 25 and the active layer 22'', that is, in the gate electrode 25, the active layer 22'
A portion that is longer than the capacitance simply increases the capacitance and has no effective effect. Therefore, it is effective to shorten this portion as much as possible in order to increase the operating speed of the element. be.

すなわち、理想的には第8図に例示するように、ゲート
電極25の長さと動作層22′の長さを等しく形成する
ことが特にノーマリオフ型においては有効な手段である
That is, ideally, as illustrated in FIG. 8, it is an effective means to form the length of the gate electrode 25 and the length of the active layer 22' to be equal, especially in the normally-off type.

本発明においてはパターン25  をマスクに用いてイ
オン注入を行うことにより七ルファラインにより22′
の長さと、ゲート電極25の長さが等しく、かつ同一位
置に形成されるため、ノーマリオフ型の特性が著しく向
上するものである。
In the present invention, by performing ion implantation using the pattern 25 as a mask, 22'
Since the length of the gate electrode 25 and the length of the gate electrode 25 are equal and are formed at the same position, normally-off characteristics are significantly improved.

また1層と動作層22′との間に位置する動作層22″
の長さは、短いほどゲート・ソース間の直列抵抗が小さ
くなって特性上有利であるが、本発明においては、この
長さは第4図(C)のパターン25と28 との縮小差
によって定まり、0.5μm程度の微小量とすることが
可能である。
In addition, a working layer 22'' located between the first layer and the working layer 22'
The shorter the length, the smaller the series resistance between the gate and source, which is advantageous in terms of characteristics, but in the present invention, this length is determined by the difference in reduction between patterns 25 and 28 in FIG. It is possible to make the amount as small as about 0.5 μm.

以上詳細に説明したように、本発明のショットキゲート
電界効果トランジスタはゲート−ソース間の動作層が厚
く、キャリア濃度は動作層全体にわたってほぼ一定であ
り、しかもゲート電極直下の動作層とゲート電極が同一
位置に形成される構造であるから、高周波特性が良く、
ゲート逆耐圧が高く、かつ歩留りの良好なショットキゲ
ート電界効果トランジスタを従来より簡便な工程で実現
することができる。
As explained in detail above, the Schottky gate field effect transistor of the present invention has a thick active layer between the gate and source, the carrier concentration is almost constant throughout the entire active layer, and the active layer directly below the gate electrode and the gate electrode are Since the structure is formed at the same location, high frequency characteristics are good.
A Schottky gate field effect transistor with a high gate reverse breakdown voltage and a good yield can be realized through a simpler process than the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来例の断面図、第3図は本発明の一
実施例の断面図、第4図(A)〜p)は第3図の電界効
果トランジスタの製造方法の一例を示す断面図、第5図
は第3図の電界効果トランジスタの動作層内のキャリア
濃度分布図である。 21  ・・半絶縁性半導体基板、22・・動作層、2
2′・・・動作層の第1の部分、22″・・・動作層の
第2の部分、23・・・ソース電極、24・・・ドレイ
ン電極、25  ・・・ゲート電極、26.27 ・・
n土層、28・・・レジスト1r1図 方2図 7t3図 22 (A’)
1 and 2 are cross-sectional views of a conventional example, FIG. 3 is a cross-sectional view of an embodiment of the present invention, and FIGS. FIG. 5 is a carrier concentration distribution diagram in the active layer of the field effect transistor shown in FIG. 3. 21... Semi-insulating semiconductor substrate, 22... Operating layer, 2
2'... First part of the active layer, 22''... Second part of the active layer, 23... Source electrode, 24... Drain electrode, 25... Gate electrode, 26.27・・・
n Soil layer, 28...Resist 1r1 Figure 2 Figure 7t3 Figure 22 (A')

Claims (1)

【特許請求の範囲】[Claims] (1)半絶縁性半導体基板、該半導体基板の表面に形成
された動作層ならびに該動作層上に形成されたソース電
極、ショットキゲート電極、及びドレイン電極を備えた
ショットキゲート電界効果トランジスタにおいて、前記
動作層で所定のピンチオフ電圧を与えるような不純物濃
度と厚みを有して前記ゲート電極直下に形成されている
第1の部分と、該第1の部分内の不純物濃度と略々等し
い不純物濃度を有しかつ該第1の部分の厚みよりも大き
な厚みを有する第2の部分とから構成されており、かつ
ゲート電極が第1の動作層部分と同位置に同一の長さで
形成され、ゲート電極を介して両側にゲート電極近傍に
高不純物濃度の動作層を具備したことを特徴とするショ
ットキゲート電界効果トランジスタ
(1) A Schottky gate field effect transistor comprising a semi-insulating semiconductor substrate, an active layer formed on the surface of the semiconductor substrate, and a source electrode, a Schottky gate electrode, and a drain electrode formed on the active layer; a first portion formed directly under the gate electrode with an impurity concentration and thickness that provides a predetermined pinch-off voltage in the active layer; and an impurity concentration that is approximately equal to the impurity concentration in the first portion. and a second portion having a thickness greater than the thickness of the first portion, and a gate electrode is formed at the same position and the same length as the first active layer portion, and the gate electrode is formed at the same position and the same length as the first active layer portion. A Schottky gate field effect transistor characterized by having active layers with high impurity concentration near the gate electrode on both sides of the electrode.
JP17853581A 1981-01-29 1981-11-06 Schottky gate field-effect transistor Pending JPS5879770A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17853581A JPS5879770A (en) 1981-11-06 1981-11-06 Schottky gate field-effect transistor
DE8282300499T DE3273695D1 (en) 1981-01-29 1982-01-29 A schottky-barrier gate field effect transistor and a process for the production of the same
EP82300499A EP0057605B1 (en) 1981-01-29 1982-01-29 A schottky-barrier gate field effect transistor and a process for the production of the same
US06/361,070 US4601095A (en) 1981-10-27 1982-03-23 Process for fabricating a Schottky-barrier gate field effect transistor
CA000401059A CA1184320A (en) 1981-10-27 1982-04-15 Schottky-barrier gate field effect transistor and a process for the production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17853581A JPS5879770A (en) 1981-11-06 1981-11-06 Schottky gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPS5879770A true JPS5879770A (en) 1983-05-13

Family

ID=16050168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17853581A Pending JPS5879770A (en) 1981-01-29 1981-11-06 Schottky gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPS5879770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857975A (en) * 1986-08-15 1989-08-15 Nec Corporation GaAs field effect transistor having a WSi Schottky gate electrode improved for high-speed operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425171A (en) * 1977-07-27 1979-02-24 Fujitsu Ltd Manufacture of field effect semiconductor device
JPS5646562A (en) * 1979-09-25 1981-04-27 Sony Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425171A (en) * 1977-07-27 1979-02-24 Fujitsu Ltd Manufacture of field effect semiconductor device
JPS5646562A (en) * 1979-09-25 1981-04-27 Sony Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857975A (en) * 1986-08-15 1989-08-15 Nec Corporation GaAs field effect transistor having a WSi Schottky gate electrode improved for high-speed operation

Similar Documents

Publication Publication Date Title
US4173063A (en) Fabrication of a semiconductor component element having a Schottky contact and little series resistance utilizing special masking in combination with ion implantation
US4601095A (en) Process for fabricating a Schottky-barrier gate field effect transistor
JPH0324060B2 (en)
EP0057605B1 (en) A schottky-barrier gate field effect transistor and a process for the production of the same
JPS5879770A (en) Schottky gate field-effect transistor
JPS5834980A (en) Schottky gate field effect transistor
JPS58123779A (en) Schottky gate field-effect transistor and its manufacture
JPS60144980A (en) Semiconductor device
JPS58123778A (en) Schottky gate field-effect transistor and its manufacture
JPS58123777A (en) Schottky gate field-effect transistor and its manufacture
JPH032339B2 (en)
JPS5880873A (en) Schottky gate field effect transistor and manufacture thereof
US4694563A (en) Process for making Schottky-barrier gate FET
JPH0235463B2 (en)
JPH024137B2 (en)
JPH032340B2 (en)
JPS6144473A (en) Manufacture of semiconductor device
JPS5879769A (en) Schottky gate field-effect transistor
JPS58124276A (en) Schottky gate field effect transistor and manufacture thereof
JPH0354462B2 (en)
JPH0359578B2 (en)
JPS58124279A (en) Schottky gate field effect transistor and manufacture thereof
JPH0252438A (en) Manufacture of field-effect transistor
JPS6336151B2 (en)
JPH0810702B2 (en) Schottky gate field effect transistor