JPS587762A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPS587762A
JPS587762A JP10678381A JP10678381A JPS587762A JP S587762 A JPS587762 A JP S587762A JP 10678381 A JP10678381 A JP 10678381A JP 10678381 A JP10678381 A JP 10678381A JP S587762 A JPS587762 A JP S587762A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
silver oxide
case
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10678381A
Other languages
Japanese (ja)
Inventor
Mitsugi Okahisa
岡久 貢
Kaoru Murakami
薫 村上
Yasuyuki Kumano
熊野 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10678381A priority Critical patent/JPS587762A/en
Publication of JPS587762A publication Critical patent/JPS587762A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress self discharge, decrease internal resistance, and increase discharge performance by placing a porous carbon layer on the surface of a positive electrode containing divalent silver oxide, facing to a negative electrode. CONSTITUTION:First, an insulating sheet is placed, then preliminary molding pellet 3 of the black mix obtained by mixing a small amount of polytetrafluoroethylene to divalent silver oxide, and a positive electrode ring 4 are placed in a battery case 1 which also acts as a positive terminal, and the positive electrode and the ring 4 are bonded together to the case 1. The exposed surface of the positive electrode bonded to the case 1 is coated with a carbon paint containing carboxymethylcellulose as a binder in the ratio of 5mg/cm<2> as a coating amount after drying, and dried to form a porous carbon layer 10. On the layer 10, a negative electrode obtained by mixing carboxymethylcellulose to amalgamated zinc powder is accommodated via a separator comprising a porous polyethylene film and celllophane, and an electrolyte absorbing material of nylon nonwoven fabric, and then a battery is sealed. This process can reduce self discharge and increase discharge performance.

Description

【発明の詳細な説明】 本発明は、2価酸化銀を正極活物質の主体とする酸化銀
電池に関するもので、自己放電を抑制するとともに優れ
た放電性能を有する酸化銀電池を提供することを目的と
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silver oxide battery containing divalent silver oxide as the main positive electrode active material, and aims to provide a silver oxide battery that suppresses self-discharge and has excellent discharge performance. purpose.

2価酸化銀(ムgo)を用いた電池は、従来の1価酸化
銀(ムg20)を用いた電池に比べ約1..6倍の電気
容量を取り出せることから最近注目されている。この2
価酸化銀活物質を用いた電池として、例えば第1図に示
す構造が提案されている。
Batteries using divalent silver oxide (MUG20) are about 1. .. It has recently attracted attention because it can extract six times the electrical capacity. This 2
For example, a structure shown in FIG. 1 has been proposed as a battery using a silver oxide active material.

この種の電池において、2価酸化銀の性質である酸化力
が強いことから、正極活物質と接するセパレータの酸化
及び銀酸イオンの透過により自己放電が大きい問題点が
あり、短絡を引き起こす場合もある。このため、セパレ
ータの強化、例えばセパレータ層の増加等により短絡を
防止し、自己放電を抑制しようとしているが、セパレー
タ層の増加のために膜抵抗が増大し、電池の内部抵抗が
大きくなって放電性能を悪化させることになっていた。
In this type of battery, due to the strong oxidizing power that is the property of divalent silver oxide, there is a problem that self-discharge is large due to oxidation of the separator in contact with the positive electrode active material and permeation of silver acid ions, which may cause short circuits. be. For this reason, efforts are being made to prevent short circuits and suppress self-discharge by strengthening the separator, for example by increasing the number of separator layers, but the increase in the number of separator layers increases membrane resistance, which increases the internal resistance of the battery and causes discharge. It was supposed to worsen performance.

本発明は、以上のような不都合を解消するもので、正極
の負極と対向する表面部に、炭素の多孔質被膜を設ける
ことを特徴とする。
The present invention solves the above-mentioned disadvantages, and is characterized by providing a carbon porous coating on the surface of the positive electrode facing the negative electrode.

本発明によれば、自己放電を抑制することができるとと
もに、内部抵抗が小さくなり、放電性能を向上すること
ができる。
According to the present invention, self-discharge can be suppressed, internal resistance can be reduced, and discharge performance can be improved.

以下、本発明を実施例により説明する。Hereinafter, the present invention will be explained by examples.

第1図は従来のボタン型酸化銀電池を示す。1は正極端
子を兼ねる電池ケースであり、その内部には絶縁シート
2を入れた後、2価酸化銀に少量のポリ四フッ化エチレ
ン粉末を混合した合剤の予備成形ペレット3と正極リン
グ4を挿入し、ケース内において本成形して正極3およ
びリング4をケース1へ一体に結合している。
FIG. 1 shows a conventional button-type silver oxide battery. 1 is a battery case that also serves as a positive electrode terminal, and after putting an insulating sheet 2 inside it, preformed pellets 3 made of a mixture of divalent silver oxide and a small amount of polytetrafluoroethylene powder and a positive electrode ring 4 are placed. The positive electrode 3 and the ring 4 are integrally connected to the case 1 by inserting the positive electrode 3 and the ring 4 into the case.

3べ ; 6は負極端子を兼ねる封口板、6は未化亜鉛粉末にカル
ボキシメチルセルロースを混合した負極、7はポリエチ
レンの多孔フィルムとセロハントノ電解液には酸化亜鉛
を溶解したか性カリ水溶液を用いた。
3B; 6 is a sealing plate that also serves as a negative electrode terminal; 6 is a negative electrode made of unprocessed zinc powder mixed with carboxymethyl cellulose; 7 is a polyethylene porous film; and the cellophantic electrolyte is a caustic potassium aqueous solution in which zinc oxide is dissolved. .

上記構成の従来電池をムとじ、セパレータ7として、ポ
リエチレンの多孔フィルム2枚とセロハンからなる3層
構成の電池をBとする。次に、第2図のように、電池ケ
ース1に結合した正極の露出表面に、結着剤にカルボキ
シメチルセルロースを含むカーボン塗料(日本黒鉛工業
(株)のバニーハイMV−96)を乾燥後の塗着量とし
て6暫−の割合で塗布し、乾燥して多孔質炭素被膜1o
を形成した。その他の条件は電池ムと同じにして本発明
による電池Cを構成した。電池のサイズは、いずれも直
径11.6m、高さ4.2層mである。
The conventional battery having the above configuration was glued together, and a battery B had a three-layer configuration consisting of two polyethylene porous films and cellophane as the separator 7. Next, as shown in Fig. 2, after drying, carbon paint (Bunny High MV-96 from Nippon Graphite Industries Co., Ltd.) containing carboxymethyl cellulose as a binder is applied to the exposed surface of the positive electrode bonded to the battery case 1. It is applied at a rate of 6 parts and dried to form a porous carbon film of 1 part.
was formed. A battery C according to the present invention was constructed under the same conditions as the battery M. The size of each battery is 11.6 m in diameter and 4.2 m in height.

これらの電池について、eo’cにおいて20日間保存
したときの自己放電率の比較を第1表に示す。
Table 1 shows a comparison of the self-discharge rates of these batteries when stored at EO'C for 20 days.

第1表 この結果から明らかなように、従来電池Bと本発明の電
池Cがほぼ同じ自己放電率を示し、電池Cと同じセパレ
ータ構成の従来電池ムの自己放電率が大きい。また、更
に60 ′0で40日間保存を続けると、従来電池ムは
10セル中4セルのショート現象が生じ、他の従来電池
B、および本発明の電池Cにはショート現象がなかった
Table 1 As is clear from the results, conventional battery B and battery C of the present invention exhibit almost the same self-discharge rate, and the conventional battery with the same separator configuration as battery C has a higher self-discharge rate. Furthermore, when the storage was continued for 40 days at 60'0, 4 out of 10 cells of the conventional battery were short-circuited, while the other conventional battery B and the battery C of the present invention had no short-circuit phenomenon.

次に10%ムの電流で放電した場合の6秒後の電圧を比
較した結果を第2表に示す。
Next, Table 2 shows the results of comparing the voltages after 6 seconds when discharging with a current of 10%.

6、−2 第2表 上記結果より従来電池ムと電池Bの差はセパレータ層が
2層と3層の差であり、゛セパレータ層の膜抵抗の差に
よるものと考えられる。また、同一セパレータ構成の電
池ムと電池Cの差は、本発明電池の場合、負極と対向す
る正極表面部に炭素の多孔層があるために、集電体とし
て働き集電面積の増大によるものである。
6, -2 Table 2 From the above results, the difference between the conventional battery group and battery B is the difference between two separator layers and three separator layers, and is thought to be due to the difference in membrane resistance of the separator layers. In addition, the difference between Battery M and Battery C, which have the same separator configuration, is that in the case of the battery of the present invention, there is a porous layer of carbon on the surface of the positive electrode that faces the negative electrode, which acts as a current collector and increases the current collecting area. It is.

以上のように、本発明によれば、2価酸化銀によるセパ
レータの酸化を防止できるとともに、正極の集電面積を
大きくすることができ、自己放電が少なく、放電性能、
特に高率放電特性の向上を図ることができる。
As described above, according to the present invention, it is possible to prevent the oxidation of the separator due to divalent silver oxide, and also to increase the current collection area of the positive electrode, resulting in less self-discharge and improved discharge performance.
In particular, it is possible to improve high rate discharge characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸化銀電池の縦断面図、第2図は本発明
の実施例の正極部分の縦断面図を示す。 3・・・・・・正極、6・・・・・・負極、10・・・
1.・炭素被膜。
FIG. 1 is a longitudinal sectional view of a conventional silver oxide battery, and FIG. 2 is a longitudinal sectional view of a positive electrode portion of an embodiment of the present invention. 3...Positive electrode, 6...Negative electrode, 10...
1.・Carbon coating.

Claims (1)

【特許請求の範囲】[Claims] 2価酸化銀を含む正極の負極と対向する表面部に炭素の
多孔質被膜を設けたことを特徴とする酸化銀電池。
A silver oxide battery characterized in that a porous carbon coating is provided on the surface of a positive electrode containing divalent silver oxide facing a negative electrode.
JP10678381A 1981-07-07 1981-07-07 Silver oxide battery Pending JPS587762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10678381A JPS587762A (en) 1981-07-07 1981-07-07 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10678381A JPS587762A (en) 1981-07-07 1981-07-07 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPS587762A true JPS587762A (en) 1983-01-17

Family

ID=14442491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10678381A Pending JPS587762A (en) 1981-07-07 1981-07-07 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPS587762A (en)

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
US20120297611A1 (en) Nickel-zinc battery and manufacturing method thereof
US3655450A (en) Battery electrode and method of making the same
KR20020053807A (en) Rechargeable nickel-zinc cells
US3476610A (en) Battery having two positive active materials
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPS587762A (en) Silver oxide battery
JP2932563B2 (en) Lithium iron sulfide battery
JPS6381762A (en) Button type alkaline battery
JP2004139909A (en) Sealed nickel-zinc primary battery
JP2874529B2 (en) Lithium battery
JPH067483B2 (en) Non-aqueous electrolyte battery
JPS5832362A (en) Alkaline zinc secondary battery
JPH05326018A (en) Lithium secondary battery
JPH0677449B2 (en) Lead acid battery
JPH02239572A (en) Polyaniline battery
JPS5852616Y2 (en) battery
JPS6215767A (en) Organic electrolyte battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JP2004164863A (en) Sealed type nickel zinc primary cell
JP2021144798A (en) Lead acid battery
JPS614170A (en) Nonaqueous electrolyte secondary battery
JPH04363862A (en) Lithium secondary battery
JPS61237369A (en) Organic electrolyte cell
JPH07226231A (en) Lithium secondary battery