JPS5876230A - Manufacture of polypropylene resin foamed particle - Google Patents

Manufacture of polypropylene resin foamed particle

Info

Publication number
JPS5876230A
JPS5876230A JP56174884A JP17488481A JPS5876230A JP S5876230 A JPS5876230 A JP S5876230A JP 56174884 A JP56174884 A JP 56174884A JP 17488481 A JP17488481 A JP 17488481A JP S5876230 A JPS5876230 A JP S5876230A
Authority
JP
Japan
Prior art keywords
foaming
polypropylene resin
foamed
particles
foaming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56174884A
Other languages
Japanese (ja)
Other versions
JPH0239367B2 (en
Inventor
Kyoichi Nakamura
中村 京一
Kiyoshi Mori
清 森
Masao Ando
正夫 安藤
Kenichi Senda
健一 千田
Tatsuhiko Nishida
西田 建彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56174884A priority Critical patent/JPS5876230A/en
Publication of JPS5876230A publication Critical patent/JPS5876230A/en
Publication of JPH0239367B2 publication Critical patent/JPH0239367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying

Abstract

PURPOSE:To improve the heat resistance, cushioning property and strength of a molded body, by incorporating a volatile foaming agent or an inorganic gas into foamed particles that are prepared by cutting polypropyrene resin foamed strands, and heating the particles so that they are further allowed to foam. CONSTITUTION:A polypropylene resin is mixed with a foaming agent at high temperatures under high pressures using an extruder, and a cellular strand having a foaming rate of 1.1-20, an open cell rate of 30% or below and a cell diameter of 0.6mm. or below is extruded from a die into a low pressure zone. The cellular strand is cut into foamed partilces, a volatile foaming agent or inorganic gas is incorporated therein, and the foamed particles are heated further to be allowed to foam in steps so that foamed particles having a foamed ratio of 10-50 is obtained. As the foaming agent used in extrusion foaming, are mentioned azodicarboxylic amides, etc. and as the volatile foaming agent are mentioned propane, dicyclotetrafluoloethane, etc.

Description

【発明の詳細な説明】 本発明は、発泡剤を含有する樹脂粒子を加熱して予備発
泡粒として型成形し所望の形状の成形体を得る方法に適
用しうるポリプロピレン系樹脂発泡粒子の製造法、更に
詳1−<は、耐熱性に優れ、低密度で緩衝性及び強度の
優れた発泡成形体を得る為のポリプロピレン系樹脂発泡
粒子の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing foamed polypropylene resin particles that can be applied to a method of heating resin particles containing a blowing agent and molding them into pre-expanded particles to obtain a molded article of a desired shape. , Further details 1-< relate to a method for producing foamed polypropylene resin particles for obtaining a foamed molded product having excellent heat resistance, low density, and excellent cushioning properties and strength.

従来、型内発泡成形による発泡成形体の基材樹脂として
はポリスチレン、ポリエチレンが汎用されている。ポリ
スチレンを基材樹脂とした場合は発泡剤保持性、加工性
、剛性等において優れている反面、脆さ、低温下の物性
、耐薬品及び耐油性において劣っており、一方、ポリエ
チレンを基材樹脂として用いると発泡剤保持性、加工性
、剛性は劣るが、柔軟かつ強靭で低温特性、耐薬品性に
優れたものが得られる。このように両者とも一長一短が
□あり、用途による使い分けが行われているのが現状で
ある。両者の特に大きな欠点としては、ポリスチレン発
泡体の場合は耐熱温度が9(lc以下で低いことと脆く
てこわれやすいことであり、ポリエチレン発泡体の場合
は耐熱温度が90℃以下で低いことと、原料樹脂である
ポリエチレンの軟らかさの為、緩衝材として好適な特性
を示す発泡倍率が比較低倍率であり原料コストが高くつ
くことである。
Conventionally, polystyrene and polyethylene have been widely used as base resins for foam molded products formed by in-mold foam molding. When polystyrene is used as a base resin, it is excellent in terms of foaming agent retention, processability, and rigidity, but on the other hand, it is inferior in brittleness, physical properties at low temperatures, and chemical and oil resistance. When used as a foam, foaming agent retention, processability, and rigidity are inferior, but a product that is flexible, strong, and has excellent low-temperature properties and chemical resistance can be obtained. As described above, both have advantages and disadvantages, and currently they are used differently depending on the purpose. Particularly major drawbacks of both are that polystyrene foam has a low heat resistance temperature of 9 (lc or less) and is brittle and easily broken, while polyethylene foam has a low heat resistance temperature of 90°C or less. Due to the softness of the raw material resin, polyethylene, the foaming ratio that exhibits properties suitable for use as a cushioning material is relatively low, resulting in high raw material costs.

本発明者らは上記のような現状に鑑み、発泡ポリエチレ
ンに比すべき柔軟性、強靭性、低′温特性、耐薬品性を
有しながら、且つ耐熱温度が100℃以上と高く、比較
的高倍率で緩衝材として好適な特性を与える原料樹脂及
びその発泡粒子の製造法を見出すべく鋭意研究を重ねだ
結果、本発明を完成させるに到った。
In view of the above-mentioned current situation, the present inventors have developed a product that has flexibility, toughness, low-temperature properties, and chemical resistance comparable to that of foamed polyethylene, and has a high heat resistance temperature of 100°C or higher, which is relatively high. The present invention has been completed as a result of extensive research in order to find a raw material resin and a method for producing foamed particles thereof that provide properties suitable for use as a cushioning material at high magnification.

即ち本発明は、ポリプロピレン系樹脂を押出機等の高温
高圧下、発泡剤と混合して、多孔ダイから発泡倍率1.
1〜20倍、蓮続気泡率80チ以下、気泡径0.6 m
b以下である発泡ストランドとして低圧域に押出発泡し
、次いで該発泡ストランドをカヅトして発泡粒子とした
後、揮発性発泡剤または無機ガスを含有させて発泡能を
付与し加熱するととにより二段目以降の発泡を行ない、
多段階で発泡させ発泡倍率10〜50倍の発泡粒子とす
るポリプロピレン系樹脂の高発泡粒子の製造法に関する
ものである。
That is, in the present invention, polypropylene resin is mixed with a foaming agent under high temperature and pressure using an extruder, etc., and the foaming ratio is 1.
1 to 20 times, Renzu bubble rate 80 cm or less, bubble diameter 0.6 m
After extruding the foamed strand in a low-pressure region and forming it into foamed particles, a volatile blowing agent or inorganic gas is added to impart foaming ability and heated, resulting in a two-stage process. Perform foaming after the eyes,
The present invention relates to a method for producing highly expanded particles of polypropylene resin which are foamed in multiple stages to obtain expanded particles with an expansion ratio of 10 to 50 times.

本発明において押出発泡に使用する発泡剤は、(5)熱
で分解してガスを発生する化学発泡剤、例えばアゾジカ
ルボンアミド、ジニトロンペンタメチレンテトラミ/、
p−トルエンスルホニルヒドラジド等、及び◎沸点−5
0〜100℃の炭化水素またはハロゲン化炭化水素、例
えばプロパン、ブタン、ペンタ/、ヘキサン、ヘプタン
、あるいはジクロルフルオルメタン、ジクロルフルオル
メタン、トリクロルモノフルオルメタン、ジクロルメタ
ン、モノクロルメタ/、ジクロルテトラフルオルエタン
、トリクロルトリフルオルエタン、パーフルオルシクロ
ブタン等があり、囚(ト)両群の発泡剤を単独に又は混
合して使用することができる。
The blowing agents used for extrusion foaming in the present invention include (5) chemical blowing agents that decompose with heat and generate gas, such as azodicarbonamide, dinitrone pentamethylene tetrami/,
p-toluenesulfonyl hydrazide, etc., and ◎ boiling point -5
0-100°C hydrocarbons or halogenated hydrocarbons, such as propane, butane, penta/, hexane, heptane, or dichlorofluoromethane, dichlorofluoromethane, trichloromonofluoromethane, dichloromethane, monochloromethane, Foaming agents include dichlorotetrafluoroethane, trichlorotrifluoroethane, perfluorocyclobutane, and the like, and both groups of blowing agents can be used alone or in combination.

本発明において用いられるポリプロピレン系樹脂として
は、ポリプロピレンホモポリマー、プロピレンと他のビ
ニルモノマーとのコポリマーであるが、好ましくは発泡
成形時の発泡粒子相互の融着性、発泡成形時の温度があ
まり高くならないことを考えて、プロピレン、エチレン
のランダムコホリマー、フロピレン・エチレン・ブテン
のランダムターポリマーが好ましい。
The polypropylene resin used in the present invention is a polypropylene homopolymer or a copolymer of propylene and other vinyl monomers, but it is preferable that the foamed particles have a high fusion property during foam molding and a temperature that is too high during foam molding. In view of this, random copolymers of propylene and ethylene, and random terpolymers of propylene/ethylene/butene are preferred.

本発明において押出機等の高温高圧下でのポリプロピレ
ン系樹脂と発泡剤との混合は、発泡剤が前記(5)群の
化学発泡剤のときは、ポリプロピレン系樹脂を化学発泡
剤とともにブレンド後、押出機に供給することにより達
成され、一方今泡剤が前記(ハ)群の揮発性発泡剤のと
きは押出機の中途に設けられたバレル孔より加圧圧入す
ることにより達成できる。
In the present invention, when the blowing agent is a chemical blowing agent of group (5), the mixing of the polypropylene resin and the blowing agent under high temperature and high pressure using an extruder or the like is performed by blending the polypropylene resin with the chemical blowing agent, This can be achieved by supplying the foaming agent to an extruder, and when the foaming agent is a volatile foaming agent of the group (c), it can be achieved by pressurizing the foaming agent through a barrel hole provided in the middle of the extruder.

本発明の押出発泡ストランドの発泡倍率は1.1〜20
倍であるが、これは発泡倍率20倍を越えると気泡形状
が歪んでくる他、気泡径が大きくなり而も不均一になり
易く、発泡倍率1.1倍未満では発泡度が低すぎるので
、二段目以降の発泡が困難になる為である。好ましくは
1.5〜10倍、更に好ましくは1.5倍〜5倍である
。発泡倍率の制御は使用する発泡剤の種類と量を選択す
ることによって行うことができる。
The foaming ratio of the extruded foam strand of the present invention is 1.1 to 20
However, if the expansion ratio exceeds 20 times, the shape of the bubbles becomes distorted, and the bubble diameter becomes large and tends to become uneven. If the expansion ratio is less than 1.1 times, the degree of foaming is too low. This is because foaming in the second and subsequent stages becomes difficult. Preferably it is 1.5 to 10 times, more preferably 1.5 to 5 times. The foaming ratio can be controlled by selecting the type and amount of the foaming agent used.

本発明の押出発泡ストランドの連続気泡率は30チ以下
であるが、これは連続気泡率が30係を越えると二段目
以降の発泡に於て発泡倍率が上らない為であり、好まし
くは2(1%以下である。
The open cell ratio of the extruded foam strand of the present invention is 30 or less, but this is because if the open cell ratio exceeds 30, the foaming ratio will not increase in the second and subsequent stages of foaming, and is preferably 2 (1% or less.

連続気泡率は、使用する発泡剤の種類と量にも依存する
が、発泡剤の種類と量が決まれば、押出発泡温度をでき
るだけ低下してポリプロピレン樹脂メルトの粘度を高め
た状態で押出発泡することにより連続気泡率の低い発泡
ストランドを得ることができる。
The open cell rate also depends on the type and amount of the blowing agent used, but once the type and amount of the blowing agent is determined, the extrusion foaming temperature is lowered as much as possible and the viscosity of the polypropylene resin melt is increased. By this, a foamed strand with a low open cell ratio can be obtained.

本発明の押出発泡ストランドの気泡径は0.6 ym以
下であるが、これは気泡径が0.6 mbを越えると2
段目以降の発泡において更に発泡倍率が上昇する際それ
に伴って気泡径も拡大していき、場合によっては1.0
1m以上になることがある。気泡径が1.0a以上とな
ると発泡成形体の柔軟性、緩衝特性が悪化する。従って
押出発泡ストランドの気泡径は0.6−以下、好ましく
は0.3鵡以下である。
The cell diameter of the extruded foam strand of the present invention is 0.6 ym or less; however, if the cell diameter exceeds 0.6 mb,
When the foaming ratio increases further in the foaming stages after the stage, the cell diameter also expands, and in some cases, the bubble diameter increases to 1.0.
It can be more than 1m long. If the cell diameter is 1.0a or more, the flexibility and cushioning properties of the foamed molded product will deteriorate. Therefore, the cell diameter of the extruded foam strand is 0.6 mm or less, preferably 0.3 mm or less.

気泡径は使用する発泡剤の種類と量および押出発泡温度
に依存し、これらの条件を調節することにより気泡径を
0.6 m、以下にしつるが、好ましくは例えばタルク
、炭酸カルシウム、シリカ、重ソウとクエン酸の混合物
等の造核剤を適険ポリプロピレン系樹脂に添加するのが
よい。
The bubble diameter depends on the type and amount of the blowing agent used and the extrusion foaming temperature, and by adjusting these conditions, the bubble diameter can be reduced to 0.6 m or less, but preferably, for example, talc, calcium carbonate, silica, A nucleating agent such as a mixture of sodium chloride and citric acid may be added to the suitable polypropylene resin.

本発明の方法において使用される押出発泡用の多孔ダイ
は断面形状が円形又は短形、三角形、四角形、星形等の
ものである。押出発泡して得られた発泡粒子を型内発泡
成形に用いるという目的からは、発泡粒子として充てん
効率が高くなる円形断面の多孔ダイが好ましく、その断
面直径は0.1〜10mの範囲にある。断面直径が0.
1 m未満であるとダイの製作が困難となる他、押出発
泡時のダイ圧力が高くなりすぎるし、断面直径が10m
を越えると押出発泡して得られた発泡粒子が大きすぎる
ため二段目以降の発泡で得られた発泡粒子を成形する際
成形品によっては曲率部あるいは薄肉部への金型光てん
が不可能となるので好ましくない。好ましい断面直径は
1〜5NLの範囲である。
The porous die for extrusion foaming used in the method of the present invention has a cross-sectional shape of a circle, a rectangle, a triangle, a square, a star, or the like. For the purpose of using the foamed particles obtained by extrusion foaming for in-mold foam molding, a porous die with a circular cross section is preferable because it increases the filling efficiency of the foamed particles, and the cross-sectional diameter is in the range of 0.1 to 10 m. . The cross-sectional diameter is 0.
If it is less than 1 m, it will be difficult to manufacture the die, the die pressure during extrusion foaming will be too high, and the cross-sectional diameter will be 10 m.
If the extrusion foaming exceeds this value, the foamed particles obtained by extrusion foaming will be too large, and depending on the molded product, it may be impossible to mold the curvature or thin wall part when molding the foamed particles obtained from the second and subsequent foaming steps. This is not desirable. Preferred cross-sectional diameters range from 1 to 5 NL.

多孔ダイの孔数ば2〜100個の範囲であるが、好まし
くけ3〜20個である。多孔ダイの孔数が2未満である
と押出発泡粒子の収得数が減るし、100個以上となる
とダイ寸法にもよるが、穴間隔が相当に密になるため、
隣り同志の孔から押出される発泡体同志が融着するから
である。なお、多孔ダイの断面積と孔数は押出機の規模
及び押出量によって適宜決定することができる。
The number of holes in the multi-hole die ranges from 2 to 100, preferably from 3 to 20. If the number of holes in the multi-hole die is less than 2, the number of extruded foam particles obtained will decrease, and if it exceeds 100, the holes will be spaced quite closely, although it depends on the die dimensions.
This is because foams extruded from adjacent holes fuse together. Note that the cross-sectional area and number of holes of the porous die can be appropriately determined depending on the scale of the extruder and the amount of extrusion.

本発明の方法において、押出機の多孔ダイから押出され
たストランド状の発泡体を発泡粒子とするため細片状に
カットする装置は、通常のベレットカッターで使用され
る回転式のペレタイザー装置が使用される。該ペレタイ
ザー装置はできるだけ多孔ダイに近接して使用すること
が好ましい。
In the method of the present invention, the device for cutting the strand-shaped foam extruded from the multi-hole die of the extruder into strips to form foamed particles is a rotary pelletizer device used in a normal pellet cutter. be done. It is preferable to use the pelletizer device as close to the porous die as possible.

何故なら、多孔ダイから押出発泡された発泡ストランド
をできるだけ該ダイに近接して粒子状にカットすればカ
ットさiた発泡粒子は未だ膨張発泡余力釜有しているた
めカット面に新だなスキン層が形成されるので、型内発
泡用の発泡粒子として使用する場合に粒子同志の融着界
面の完全充填性 −という点で極めて好ましい結果とな
るのである。
This is because if a foamed strand extruded from a multi-hole die is cut into particles as close to the die as possible, the cut foamed particles still have an expansion foaming capacity, so new skin is formed on the cut surface. Since a layer is formed, when used as foamed particles for in-mold foaming, an extremely favorable result is obtained in terms of complete filling of the fused interface between the particles.

なお、ペレタイザー装置はカッター刃の回転数を可変に
したものが好ましい。それは回転数の調節によって発泡
粒子の長手方向の長さを所望のサイズにカットすること
ができるようにするためである。
Note that it is preferable that the pelletizer device has a variable rotation speed of the cutter blade. This is because the longitudinal length of the foam particles can be cut to a desired size by adjusting the rotation speed.

本発明において、低圧域とは通常大気圧下のことである
が、減圧下をも含んでいる。
In the present invention, the low-pressure region usually means under atmospheric pressure, but also includes under reduced pressure.

本発明でいう連続気泡率とは全気泡に対する連続気泡の
割合であり、また発泡倍率とは発泡粒子の体積が発泡前
の体積の何倍になっているかをいう。これらの測定は次
のようにして行なう。
The open cell ratio in the present invention refers to the ratio of open cells to all cells, and the expansion ratio refers to how many times the volume of foamed particles is compared to the volume before foaming. These measurements are performed as follows.

d:樹脂の密度(P/cA) W:発泡粒子試料の重量(y) V:発泡粒子試料の体積(c4 ) ■:空気比較式比重計(例えば東芝ベックマン社製、空
気比較式比重計930型)を用いて測定した発泡粒子試
料の真の体積(clli) −v 連続気泡率(チ)=        xio。
d: Resin density (P/cA) W: Weight of expanded particle sample (y) V: Volume of expanded particle sample (c4) ■: Air comparison hydrometer (for example, Toshiba Beckman, air comparison hydrometer 930) true volume of the expanded particle sample (cli) −v open cell ratio (chi) = xio.

■ 発泡倍率(倍)、−V/− 更に本発明は、ポリプロピレン系樹脂を多孔グイからス
トランド状に押出発泡し、次いで該発泡ストランドをカ
ットし、て発泡粒子とした後、揮発性発泡剤または無機
ガスを含有させて発泡能を付与し加熱することにより二
段目以降の発泡を行ない、多段階で発泡させることを特
徴とするポリプロピレン系樹脂発泡粒子の製造法を提供
するものである。
■ Expansion ratio (times), -V/- Furthermore, in the present invention, polypropylene resin is extruded into strands through a porous gouer, the foamed strands are cut to form foamed particles, and then a volatile blowing agent or The present invention provides a method for producing foamed polypropylene resin particles, which is characterized in that foaming is carried out in multiple stages by incorporating an inorganic gas to impart foaming ability and heating to perform foaming in the second and subsequent stages.

ポリプロピレンはポリエチレンに比べて剛性、強度が大
であり、同等の緩衝性能を有する発泡体を製造する場合
、ポリエチレンに比べて低密度にすることができるため
、原料コストが低減されて経済的に有利になる可能性が
あるが、ポリプロピレンを高度に発泡させる技術が必要
となる。本発明の方法は、この技術的課題を解決するも
ので、発泡を多段階で行う、即ち一段目の発泡は押出発
泡法により比較的低倍率の発泡粒子となした後、該発泡
粒子に揮発性発泡剤または無機ガスを含有させて発泡能
を付与し加熱することにより二段目以降の発泡行うこと
を特徴とする。ポリエチレンの場合にも、類似の発泡方
法(特開昭54−81475、同54−52169、同
55−27801等)が知られているが、元来、ポリエ
チレンは発泡剤を含浸後、一段の発泡でも所定の高倍率
まで発泡させることが可能であり、このような発泡方法
は発泡倍率のバラツキを小さくすることを主な目的とし
ている。しかるに、ポリプロピレンの場合は発泡剤種、
発泡剤含浸量等を選択しても一段の発泡では高度に発泡
させることが困難であり、本発明の方法をもってはじめ
て所望の高発泡倍率を得ることができる。
Polypropylene has greater rigidity and strength than polyethylene, and when producing foam with the same cushioning performance, it can be made with a lower density than polyethylene, which reduces raw material costs and is economically advantageous. However, technology to foam polypropylene to a high degree is required. The method of the present invention solves this technical problem by carrying out foaming in multiple stages. In other words, in the first stage, foaming is performed to form foamed particles with a relatively low magnification by an extrusion foaming method, and then the foamed particles are volatilized. It is characterized in that it contains a foaming agent or an inorganic gas to impart foaming ability and performs second and subsequent foaming by heating. Similar foaming methods are known for polyethylene (JP-A-54-81475, JP-A-54-52169, JP-A-55-27801, etc.), but originally polyethylene was impregnated with a foaming agent and then expanded in one step. However, it is possible to foam to a predetermined high magnification, and the main purpose of this foaming method is to reduce variations in the foaming magnification. However, in the case of polypropylene, the blowing agent type,
Even if the amount of foaming agent impregnated is selected, it is difficult to achieve a high degree of foaming in one stage of foaming, and the desired high foaming ratio can only be obtained by the method of the present invention.

本発明の二段目以降の発泡に用いられる揮発性発泡剤と
しては、沸点−50〜50℃の炭化水素またはハロゲン
化炭化水素であり、例えばプロパン、ブタン、ペンタン
のような直鎖炭化水素;モノクロルメタン、ジクロルメ
タン、モノクロルエタン、トリクロルモノフルオルメタ
ン、ジクロルジフルオルメタン、ジクロルモノフルオル
メタン、トリクロルトリフルオルエタン、ジクロルテト
ラフルオルエタンのようなハロゲン化炭化水素等でアリ
、好ましくはジクロルジフルオルメタン、プロパン、ジ
クロルテトラフルオルエタン等の午独又は混合物である
Volatile blowing agents used in the second and subsequent stages of foaming of the present invention include hydrocarbons or halogenated hydrocarbons with a boiling point of -50 to 50°C, such as linear hydrocarbons such as propane, butane, and pentane; Halogenated hydrocarbons such as monochloromethane, dichloromethane, monochloroethane, trichloromonofluoromethane, dichlorodifluoromethane, dichloromonofluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, etc., preferably Dichlorodifluoromethane, propane, dichlorotetrafluoroethane, etc. or a mixture thereof.

一段目の押出発泡で得られた発泡粒子に二段目以降の発
泡能を付与する方法としては、揮発性発泡剤を発泡粒子
内に含有させてもよく、加圧雰囲気下で無機ガスを発泡
粒子内に含有させてもよい。
As a method of imparting foaming ability for the second and subsequent stages to the foamed particles obtained in the first stage extrusion foaming, a volatile blowing agent may be included in the foamed particles, and an inorganic gas is foamed under a pressurized atmosphere. It may be contained within the particles.

無機ガスを用いて二段目以降の発泡を行う方が、揮発性
発泡剤を用いる場合より気泡構造が均一であり好ましい
。無機ガスとしては、例えば空気のような窒素を主成分
とする無機ガスが低コストであり有利であるが、窒素、
炭酸ガス単体も使用できる。
It is preferable to perform the second and subsequent foaming stages using an inorganic gas, since the cell structure is more uniform than when a volatile foaming agent is used. As an inorganic gas, for example, an inorganic gas whose main component is nitrogen, such as air, is advantageous because it is low in cost.
Carbon dioxide alone can also be used.

本発明の方法により、一段目の押出発泡で得られたポリ
プロピレン系樹脂発泡粒子を二段目以降、多段階に発泡
させて高倍率発泡粒子を得ようとする場合、発泡段階を
多くすれば高発泡倍率を得るのに有利であり、且つ発泡
倍率のバラツキも小さくなるが、発泡設備及び発泡に要
する製造上の経済性を考慮した場合は、押出発泡も含め
て2〜5′段階であり、好ましくは2〜3段階であり、
更に二段階で所望の発泡倍率の発泡粒子を得るのが特に
有利である。この場合、一段目の押出発泡により得られ
た発泡粒子の発泡倍率が1.1〜20倍であり、二段目
の発泡粒子の発泡倍率が10〜50倍であることが好ま
しい。なお、一段目の押出発泡により得られた発泡粒子
の発泡倍率と、二段目の発泡後、得られた発泡粒子の発
泡倍率との関係は一義的には定まらず、二段目の発泡に
おける発泡能付与の方法、即ち二段目の発泡能付与に使
用する揮発性発泡剤または無機ガスの種類と量に依存し
ている。
When using the method of the present invention to obtain high-magnification foamed particles by foaming polypropylene resin foam particles obtained in the first stage of extrusion foaming in multiple stages from the second stage onwards, increasing the number of foaming stages will result in a higher It is advantageous to obtain a foaming ratio, and the variation in the foaming ratio is reduced, but when considering the manufacturing economy required for foaming equipment and foaming, it is 2 to 5' stage, including extrusion foaming. Preferably in 2 to 3 stages,
Furthermore, it is particularly advantageous to obtain expanded particles of the desired expansion ratio in two stages. In this case, it is preferable that the foamed particles obtained by the first stage extrusion foaming have an expansion ratio of 1.1 to 20 times, and the foamed beads of the second stage have an expansion ratio of 10 to 50 times. It should be noted that the relationship between the expansion ratio of the foamed particles obtained by the first-stage extrusion foaming and the expansion ratio of the foamed particles obtained after the second-stage foaming is not uniquely determined; It depends on the method of imparting foaming ability, that is, the type and amount of the volatile blowing agent or inorganic gas used to impart foaming ability in the second stage.

本発明において、二段目以降の発泡を行う為に揮発性発
泡剤からなる発泡剤を含有させる方法としては、(1)
液相にて含浸させる方法、(2)気相にて含浸させる方
法、(3)水分散系にて含浸させる方法のいずれも採用
できる。しかし、(1)の液相含浸の場合、樹脂に対す
る溶剤能の大である発泡剤を用いると樹脂中の成分が液
相に抽出されてしまうこと、および発泡剤の使用量が多
くなりコストがかかるという欠点がある。(3)の水分
散系含浸の場合、含浸終了後、発泡粒子と水との分離が
必要になり工程が複雑になるという欠点がある。これら
に対し、(2)の気相含浸の場合は、上記のような欠点
がなく、含浸後、発泡粒子をそのまま取出して発泡成形
工程に供することができ工程が簡略化でき有利である。
In the present invention, methods for incorporating a foaming agent consisting of a volatile foaming agent in order to perform foaming in the second and subsequent stages include (1)
Any of a method of impregnating in a liquid phase, (2) a method of impregnating in a gas phase, and (3) a method of impregnating in an aqueous dispersion system can be adopted. However, in the case of liquid phase impregnation (1), if a blowing agent with a high solvent capacity for the resin is used, components in the resin will be extracted into the liquid phase, and the amount of blowing agent used will be large, resulting in increased costs. It has the disadvantage that it takes a long time. In the case of (3) impregnation using an aqueous dispersion system, there is a drawback that the foamed particles must be separated from water after the impregnation is completed, which complicates the process. On the other hand, in the case of (2) gas phase impregnation, there are no drawbacks as mentioned above, and the expanded particles can be taken out as they are after impregnation and subjected to the foam molding process, which is advantageous because the process can be simplified.

更にポリプロピレン系樹脂はポリエチレン等に比較して
耐熱安定性が劣るため、比較的多量の酸化防止剤等の配
合剤が添加されており、これら配合剤が抽出等によって
失われないためにも気相含浸が特に好ましい。
Furthermore, since polypropylene resin has inferior heat stability compared to polyethylene, relatively large amounts of compounding agents such as antioxidants are added, and in order to prevent these compounding agents from being lost through extraction etc. Particularly preferred is impregnation.

本発明の方法において得られたポリプロピレン系樹脂発
泡粒子は、更に無機ガスを含有させることにより更に型
内発泡成形時の発泡能を付与した上で、これを成形型内
に充填し加熱することにょつて、均一な気泡構造を有し
、発泡粒子間の融着が良好で表面平滑な高倍率発泡成形
体を得ることができる。
The expanded polypropylene resin particles obtained by the method of the present invention are further given foaming ability during in-mold foam molding by further containing an inorganic gas, and then filled into a mold and heated. As a result, a high-magnification foam molded product having a uniform cell structure, good fusion between foam particles, and a smooth surface can be obtained.

加熱発泡および型内発泡成形時の加熱条件は樹脂の種類
、発泡剤の種類によって変わってくるが、水蒸気を加熱
媒体とする場合、水蒸気温度110〜160℃、加熱時
間10秒〜3分程度の範囲で行うことができる。この際
、使用される発泡機及び成形機は通常ポリエチレンの発
泡、成形に使用されているものが、そのま\あるいは若
干の改造を加えることにより使用しうる。
Heating conditions during heat foaming and in-mold foam molding vary depending on the type of resin and foaming agent, but when using steam as the heating medium, the steam temperature is 110 to 160°C and the heating time is about 10 seconds to 3 minutes. It can be done within a range. In this case, the foaming machine and molding machine used are those normally used for foaming and molding polyethylene, and may be used as they are or with some modification.

上記の通り、本発明の方法はポリプロピレン系樹脂の多
段階発泡方法による高発泡倍率発泡体粒子の製造方法に
おいて、一段目の発泡を、押出機を用いて連続的に発泡
ストランドとして押出し、次いでこれをカットして発泡
粒子とすることに特徴があり、従来の発泡剤含浸後、加
熱発泡する方法に比べ極めて効率的にポリプロピレン系
樹脂発泡粒子が得られるという利点がある。
As described above, the method of the present invention is a method for producing high expansion ratio foam particles by a multi-stage foaming method of polypropylene resin, in which the first stage foam is continuously extruded as a foam strand using an extruder, and then this It is characterized by cutting into foamed particles, and has the advantage that foamed polypropylene resin particles can be obtained extremely efficiently compared to the conventional method of impregnating with a blowing agent and then heating and foaming.

本発明の方法で最終的に得られたポリプロピレン系樹脂
発泡粒子を型内発泡成形して製造された発泡成形体は、
発泡ポリエチレン成形体に比べ、ポリプロピレン系樹脂
の特性により耐熱温度が100℃以上と高く、比較的低
密度にして強度、緩衝性が優れている上、発泡ポリエチ
レン成形体並みの柔軟性、征温特性、耐薬品性をもち、
特に緩衝材、断熱材、包装材等として好適に使用される
The foam molded article produced by in-mold foam molding of the polypropylene resin foam particles finally obtained by the method of the present invention is
Compared to foamed polyethylene molded products, due to the properties of polypropylene resin, it has a higher heat resistance temperature of over 100°C, has a relatively low density, has excellent strength and cushioning properties, and has flexibility and temperature control properties comparable to those of foamed polyethylene molded products. , has chemical resistance,
In particular, it is suitably used as a cushioning material, a heat insulating material, a packaging material, etc.

以下、実施例によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 バレルの中途に揮発性発泡剤1・入114のバレル孔を
有する4、0  押出機と50ψ押出機を連結した発泡
用押出設備に、造核剤としてタルク1.0重量部を添加
したプロピレンとエチレンのランダムコポリマー(M’
I 9、エチレン含1Ji4.5モル%)を約5kyZ
時でホッパーより供給し、40ψ 押出機のバレル孔か
ら発泡剤としてブタンを約0.7に9A侍の速度で圧入
した。50ψ押出機の先端には断面1 形状が円形で2
ψm / mの孔を4個有する多孔グ2イを装着し、該
多孔ダイに近接して四転刃を有するペレット、カッター
を設けた。この結果多孔グイから押出発泡した発泡スト
ランドはペレットカッターによって、断面がほぼ円形で
、円筒状の大略寸法4m屑X 5 amのポリプロピレ
ン系樹脂発泡粒子を得た。該発泡粒子や発泡倍率は約1
0倍、連続気泡率は8.5%、気泡径は約0.3mmで
あり、均一気泡構造を有していた。
Example 1 1.0 parts by weight of talc was added as a nucleating agent to a foaming extrusion equipment in which a 4,0 extruder and a 50ψ extruder were connected, which had 114 barrel holes containing 1 ml of volatile foaming agent in the middle of the barrel. A random copolymer of propylene and ethylene (M'
I9, 1Ji4.5 mol% containing ethylene) at about 5kyZ
Butane was fed as a foaming agent through the barrel hole of a 40 ψ extruder at a speed of about 0.7 mm and 9 amps. The tip of the 50ψ extruder has a cross section of 1 and a circular shape of 2.
A multi-hole die having four holes of ψm/m was installed, and a pellet and cutter with a four-wheel blade were provided adjacent to the multi-hole die. As a result, the foamed strand extruded from the porous gouer was used with a pellet cutter to obtain foamed polypropylene resin particles having a substantially circular cross section and a cylindrical shape with an approximate size of 4 m pieces x 5 am. The foamed particles and foaming ratio are approximately 1
0 times, the open cell ratio was 8.5%, the cell diameter was about 0.3 mm, and it had a uniform cell structure.

この発泡粒子を711(度80℃、11巳力25icq
/d(ゲージ)の窒素加+UE、雰囲気下に4時間保持
して発泡粒子内に窒素を含浸し、次いで2−5 kg 
/ cr漫の水蒸気で30秒加熱し発泡させることによ
り、発泡倍率約25倍の発泡粒子を得た。
The foamed particles were heated to 711 (degrees 80℃, 11 min force 25 icq)
/d (gauge) nitrogen addition + UE, kept under atmosphere for 4 hours to impregnate nitrogen into the foamed particles, then 2-5 kg
Foamed particles with an expansion ratio of approximately 25 times were obtained by heating and foaming with water vapor at a volume of 1/2 cm for 30 seconds.

この発泡粒子を再び温度so’c、圧力25kq/cd
の窒素加圧雰囲気下に3時間保持して発泡粒子内に窒素
を含浸し、次いで成形用金型に充填し2.5kg/c−
の水蒸気で40秒加熱して得られた成形体は密度約0.
023 fl /amで各粒子がよく融着した表面平滑
な成形体−であった。
The foamed particles are heated again at a temperature of 25 kq/cd and a pressure of 25 kq/cd.
The foamed particles were held in a pressurized nitrogen atmosphere for 3 hours to impregnate nitrogen into the foamed particles, and then filled into a mold for 2.5kg/c-
The molded product obtained by heating with water vapor for 40 seconds has a density of about 0.
It was a molded article with a smooth surface in which each particle was well fused at a rate of 0.023 fl/am.

実施例2.3.4 発泡剤として、ジクロルジフルオルメタン、ジクロルテ
トラフルオルエタン、及びジクbルジフルオルメタンと
トリタロルモノ7、ルオルメタンの等重量混合物を別表
に記載の使用量で用いた他は実施例1と同様の方法で押
出発泡を行ないポリプロピレン系樹脂5亮泡粒子を得、
次いで実施例1に記載した方法により二段目の発泡後、
成形用命をに充審して成形を行った。これらの結果を第
1表に示す。
Example 2.3.4 As blowing agents, dichlorodifluoromethane, dichlorotetrafluoroethane, and a mixture of equal weights of dichlorodifluoromethane, tritalolmono 7, and fluoromethane were used in the amounts listed in the attached table. Otherwise, extrusion foaming was performed in the same manner as in Example 1 to obtain polypropylene resin 5 bright foam particles,
Then, after the second stage foaming by the method described in Example 1,
The molding process was carried out after considering the molding instructions. These results are shown in Table 1.

実施例5 発泡剤としてアゾジカルボンアミドを2.0重量部、造
核剤としてタルクを0.5重量部、各々添加したプロピ
レン、エチレン、ブテンのランダムターポリマー(MI
6、エチレン含有率約3〜4モル%)を使用した他はほ
ぼ実施例1と同様にして、断面がほぼ円形で、円筒状の
大略寸法3ψmmX3.5順のポリプロピレン系樹l旨
発泡粒子を得た。
Example 5 A random terpolymer of propylene, ethylene, and butene (MI
6. Polypropylene resin foam particles having an approximately circular cross section and cylindrical dimensions of approximately 3 ψ mm x 3.5 mm were prepared in substantially the same manner as in Example 1, except that ethylene content (ethylene content: approximately 3 to 4 mol%) was used. Obtained.

該発泡粒子の発泡倍率(は約2.3倍、連続気泡率は6
%、気泡径は約0.2mmであった。この発泡粒子を温
度80℃、圧力25 kg / aJ (ゲージ)の窒
素加圧雰囲気下に5時間保持して発泡粒子内に窒素を含
浸し、次いで2.6 k4 / t:rltの水蒸気で
40秒加熱し発泡させることにより発泡倍率約20倍の
発泡粒子を得た。この発泡粒子を再び、温度s o ’
c。
The foaming ratio of the foamed particles is approximately 2.3 times, and the open cell ratio is 6.
%, and the bubble diameter was about 0.2 mm. The foamed particles were kept in a nitrogen pressurized atmosphere at a temperature of 80°C and a pressure of 25 kg/aJ (gauge) for 5 hours to impregnate nitrogen into the foamed particles, and then heated with water vapor of 2.6 k4/t:rlt for 40 hours. By heating for seconds and foaming, foamed particles with an expansion ratio of about 20 times were obtained. The expanded particles are heated again at a temperature of s o '
c.

圧力25pc9/Cmの窒素加圧2メ囲気下に3時間保
持して発泡粒子内に窒素を含浸し、次aで成形用金型に
充填し2.5 kg / dの水蒸気で40秒加熱して
得られた成形体は密度約0.02□5g/c+#の表面
平滑で柔軟なものであった。
The foamed particles were impregnated with nitrogen by holding them under a nitrogen pressurized atmosphere of 25 pc9/cm for 3 hours, and then filled into a mold in step a and heated with 2.5 kg/d steam for 40 seconds. The molded article obtained had a density of approximately 0.02□5 g/c+#, a smooth surface, and a flexible body.

□比較例1 実施例1において、押出発泡に使用したブタンの量を1
.6に9/時で供給した他は実施例1と同様に操作した
。ここで得られたポリプロピレンl脂発泡粒子は大略寸
法、5ψ酊×6鱈の発泡粒子で、発泡倍率約25倍、連
続気泡率35%、気泡径0.7順で気泡状態が不均一で
あった。該発泡粒子を温度80°C1圧力25kg/C
ぞ(ゲージ)の窒素加圧雰囲気下に4時間保持して発泡
粒子内に窒素を含浸し、次組で2.5に9/cdの水蒸
気で40秒加熱発泡した結果、発泡倍率約32倍の発−
泡粒子を得た。この発泡粒子を再び80℃、圧力25k
tiAa(ゲージ)の窒素加圧雰囲気下に3時間保持し
て発泡粒子内に窒素を含浸後、成形用金型に充填し2.
5に9/(?−の水蒸気で40秒加熱して得られた成形
体は密度0.026 g/crlで表面凹凸がある他、
発泡粒子間の融着が悪いもので実用に耐え得ないもので
あった。
□Comparative Example 1 In Example 1, the amount of butane used for extrusion foaming was
.. The procedure was the same as in Example 1, except that the amount of water was supplied at a rate of 6 to 9 hours. The foamed polypropylene resin particles obtained here were foamed particles with approximate dimensions of 5φ x 6mm, with an expansion ratio of about 25 times, an open cell ratio of 35%, and a cell size of 0.7 in the order of non-uniformity. Ta. The foamed particles were heated at a temperature of 80°C and a pressure of 25kg/C.
The foamed particles were held in a pressurized nitrogen atmosphere for 4 hours to impregnate nitrogen into the foamed particles, and then heated and foamed with 2.5 to 9/cd water vapor for 40 seconds, resulting in a foaming ratio of approximately 32 times. The origin of
Foam particles were obtained. The foamed particles were heated again at 80°C and at a pressure of 25k.
After impregnating the foamed particles with nitrogen by holding them in a nitrogen pressurized atmosphere of tiAa (gauge) for 3 hours, they were filled into a mold for forming.2.
The molded product obtained by heating with water vapor of 5 to 9/(?-) for 40 seconds has a density of 0.026 g/crl and has an uneven surface.
The fusion between the foamed particles was poor and could not be put to practical use.

第   1   表 ”HaB58−76230<7>Chapter 1 Table “HaB58-76230<7>

Claims (9)

【特許請求の範囲】[Claims] (1)  ポリプロピレン系樹脂□を押出機等の高温高
圧下、発泡剤と混合して、多孔ダイから、発泡倍率1.
1〜20倍、連続気泡率30%以下、気泡径0.6 鵡
以下である発泡ストランドとして低圧域に押出発泡し、
次いで該発泡ストランドをカットして発泡粒子とした後
、該発泡粒子に揮発性発泡剤または無機ガスを含有させ
て発泡能を付与し加熱することにより二段目以降の発泡
ケ行ない、多段階で発泡させ、発泡倍率10〜50倍の
発泡粒子とすることを特徴とするポリプロピレン系樹脂
発泡粒子の製造法。
(1) Polypropylene resin □ is mixed with a foaming agent under high temperature and pressure using an extruder, etc., and the foaming ratio is 1.
Extruded into a low pressure region as a foamed strand with a cell diameter of 1 to 20 times, an open cell ratio of 30% or less, and a cell diameter of 0.6 or less,
Next, the foamed strands are cut to form foamed particles, and the foamed particles are made to contain a volatile foaming agent or an inorganic gas to give them foaming ability, and are heated to carry out the second and subsequent foaming steps. A method for producing expanded polypropylene resin particles, which comprises foaming the particles to obtain expanded particles with an expansion ratio of 10 to 50 times.
(2)ポリプロピレン系樹脂がプロピレンとエチレンノ
ランダムコホリマーまたハプロピレン、エチレン、ブテ
ンのランダムターポリマーである特許請求の範囲第(1
)項記載のポリプロピレン系樹脂発泡粒子の製造法。
(2) The polypropylene resin is a propylene and ethylene norandom copolymer or a random terpolymer of hapropylene, ethylene, and butene.
) The method for producing expanded polypropylene resin particles as described in item 1.
(3)押出発泡に使用する発泡剤が、熱で分解してガス
を発生する化学発泡剤、又は、沸点50〜100’l:
の炭化水素またはハロゲン化炭化水素、またはこれらの
混合物である特許請求の範囲第(1)項記載のポリプロ
ピレン系樹脂発泡粒子の製造法。
(3) The foaming agent used for extrusion foaming is a chemical foaming agent that decomposes with heat and generates gas, or has a boiling point of 50 to 100'L:
The method for producing foamed polypropylene resin particles according to claim (1), which is a hydrocarbon, a halogenated hydrocarbon, or a mixture thereof.
(4)二段目以降の発泡を行うためにポリプロピレン系
樹脂発泡粒子に含有させる揮発性発泡剤が、沸点−50
〜50℃の炭化水素またはハロゲン化炭化水素である特
許請求の範囲第(1)項記載のポリプロピレン系樹脂発
泡粒子の製造法。
(4) The volatile blowing agent contained in the polypropylene resin foam particles for the second and subsequent foaming steps has a boiling point of -50
The method for producing expanded polypropylene resin particles according to claim (1), wherein the polypropylene resin foam particles are hydrocarbons or halogenated hydrocarbons having a temperature of -50°C.
(5)揮発性発泡剤がプロパン、ジ−クロルテトラ−フ
ルオルエタン、ジクロルジフルオルメタン、またはこれ
らの混合物である特許請求の範囲第(4)項記載のポリ
プロピレン系樹脂発泡粒子の製造法。
(5) The method for producing expanded polypropylene resin particles according to claim (4), wherein the volatile blowing agent is propane, di-chlorotetra-fluoroethane, dichlorodifluoromethane, or a mixture thereof.
(6)無機ガスが窒素を主成分とする混合ガスである特
許請求の範囲第(1)項記載のポリブロピレン系樹脂発
泡粒子の製造法。
(6) The method for producing expanded polypropylene resin particles according to claim (1), wherein the inorganic gas is a mixed gas containing nitrogen as a main component.
(7)押出発泡で得られたポリプロピレン系樹脂発泡1
粒子に対して、二段目以降は無機ガスを含有させて発泡
能を付与し加熱により多段階で発泡させる特許請求の範
囲第(1)項記載のポリプロピレン系樹脂発泡粒子の製
造法。
(7) Polypropylene resin foam 1 obtained by extrusion foaming
The method for producing expanded polypropylene resin particles according to claim 1, wherein the particles are made to contain an inorganic gas in the second and subsequent stages to impart foaming ability and are foamed in multiple stages by heating.
(8)押出発泡で得られたポリプロピレン系樹脂発泡粒
子に対して、無機ガスを含有させて発泡能を付与し加熱
により二段目の発泡を行ない、二段階で発泡させる特許
請求の範囲第(7)項記載のポリプロピレン系樹脂発泡
粒子の製造法。
(8) The foamed polypropylene resin particles obtained by extrusion foaming are made to contain an inorganic gas to impart foaming ability, and are heated to carry out the second stage of foaming. 7) The method for producing expanded polypropylene resin particles as described in section 7).
(9)押出発泡で得られたポリプロピレン系樹脂発泡粒
子に対して、揮発性発泡剤を含有させる際、気相にて含
浸させる特許請求の範囲第(1)項記載のポリプロピレ
ン系樹脂発泡粒子の製造法。 OI  押出発泡の際、造核剤をポリプロピレン系樹脂
に添加する特許請求の範囲第(1)項記載のポリプロピ
レン系樹脂発泡粒子の製造法。
(9) When incorporating a volatile blowing agent into the polypropylene resin foam particles obtained by extrusion foaming, the polypropylene resin foam particles according to claim (1) are impregnated in the gas phase. Manufacturing method. OI The method for producing expanded polypropylene resin particles according to claim (1), wherein a nucleating agent is added to the polypropylene resin during extrusion foaming.
JP56174884A 1981-10-31 1981-10-31 Manufacture of polypropylene resin foamed particle Granted JPS5876230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56174884A JPS5876230A (en) 1981-10-31 1981-10-31 Manufacture of polypropylene resin foamed particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174884A JPS5876230A (en) 1981-10-31 1981-10-31 Manufacture of polypropylene resin foamed particle

Publications (2)

Publication Number Publication Date
JPS5876230A true JPS5876230A (en) 1983-05-09
JPH0239367B2 JPH0239367B2 (en) 1990-09-05

Family

ID=15986344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174884A Granted JPS5876230A (en) 1981-10-31 1981-10-31 Manufacture of polypropylene resin foamed particle

Country Status (1)

Country Link
JP (1) JPS5876230A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252636A (en) * 1984-05-30 1985-12-13 Japan Styrene Paper Co Ltd Preparation of preexpanded particle
JPS60252637A (en) * 1984-05-30 1985-12-13 Japan Styrene Paper Co Ltd Preparation of preexpanded particle
JPS614738A (en) * 1984-06-19 1986-01-10 Japan Styrene Paper Co Ltd Preparation of foamed polypropylene resin particle
JPS634940A (en) * 1986-06-26 1988-01-09 Mitsubishi Yuka Badische Co Ltd Method for molding olefinic resin foamed particles in mold
JPH02155613A (en) * 1988-12-09 1990-06-14 Ube Ind Ltd Primary foamed particle and foamed molded body using the same
JPH05506875A (en) * 1990-03-14 1993-10-07 ザ・ジエイムズ・リバー・コーポレイシヨン polypropylene foam sheet
JP2001164027A (en) * 1999-09-30 2001-06-19 Kanebo Ltd Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP2009256410A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin foam particle
JP2009256411A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin in-mold foam molded product
WO2018078726A1 (en) * 2016-10-25 2018-05-03 積水化成品工業株式会社 Olefinic elastomer resin particles, foamable particles, foamed particles, and foamed molded body
KR20190112603A (en) * 2018-03-26 2019-10-07 엘지전자 주식회사 Indoor unit of air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292279A (en) * 1976-01-30 1977-08-03 Mitsubishi Chem Ind Process for manufacture of expandable polyethylene beads
JPS5431475A (en) * 1977-08-15 1979-03-08 Asahi Chem Ind Co Ltd Manufacture of both granular foam of crosslinked polyolefinic resin and formed product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292279A (en) * 1976-01-30 1977-08-03 Mitsubishi Chem Ind Process for manufacture of expandable polyethylene beads
JPS5431475A (en) * 1977-08-15 1979-03-08 Asahi Chem Ind Co Ltd Manufacture of both granular foam of crosslinked polyolefinic resin and formed product

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464541B2 (en) * 1984-05-30 1992-10-15 Jsp Corp
JPS60252637A (en) * 1984-05-30 1985-12-13 Japan Styrene Paper Co Ltd Preparation of preexpanded particle
JPS60252636A (en) * 1984-05-30 1985-12-13 Japan Styrene Paper Co Ltd Preparation of preexpanded particle
JPH0559140B2 (en) * 1984-05-30 1993-08-30 Jsp Corp
JPS614738A (en) * 1984-06-19 1986-01-10 Japan Styrene Paper Co Ltd Preparation of foamed polypropylene resin particle
JPH0464542B2 (en) * 1984-06-19 1992-10-15 Jsp Corp
JPS634940A (en) * 1986-06-26 1988-01-09 Mitsubishi Yuka Badische Co Ltd Method for molding olefinic resin foamed particles in mold
JPH0757498B2 (en) * 1986-06-26 1995-06-21 三菱化学ビーエーエスエフ株式会社 Molding method of olefin resin foam particles
JPH02155613A (en) * 1988-12-09 1990-06-14 Ube Ind Ltd Primary foamed particle and foamed molded body using the same
JPH05506875A (en) * 1990-03-14 1993-10-07 ザ・ジエイムズ・リバー・コーポレイシヨン polypropylene foam sheet
JP2001164027A (en) * 1999-09-30 2001-06-19 Kanebo Ltd Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP2009256410A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin foam particle
JP2009256411A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin in-mold foam molded product
WO2018078726A1 (en) * 2016-10-25 2018-05-03 積水化成品工業株式会社 Olefinic elastomer resin particles, foamable particles, foamed particles, and foamed molded body
KR20190112603A (en) * 2018-03-26 2019-10-07 엘지전자 주식회사 Indoor unit of air conditioner

Also Published As

Publication number Publication date
JPH0239367B2 (en) 1990-09-05

Similar Documents

Publication Publication Date Title
US4440703A (en) Process for producing foamed and molded article of polypropylene resin
GB2080813A (en) Process for producing foamed olefin resin articles
JP3207219B2 (en) Low-expanded particles of polyolefin resin and method for producing the same
JPS5876230A (en) Manufacture of polypropylene resin foamed particle
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JPH0313057B2 (en)
JPH0686544B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles and molding method thereof
JPH082989B2 (en) Pre-expansion method of polyolefin resin particles
US3711430A (en) Expandable copolymers of alpha-olefins and alpha,beta-monoethylenically unsaturated carboxylic acids
US4360484A (en) Pressurization and storage of thermoplastic resin foams prior to secondary expansion
US3198859A (en) Method of forming foamed plastic articles
EP1031602B9 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
US3498934A (en) Chlorinated polyethylene foam
JP3583543B2 (en) Polypropylene resin foam particles
JPH0347297B2 (en)
KR860001742B1 (en) Preparation of foam particles of ethylenic resin
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JPH05255531A (en) Production of molded polymer foam
JP2603858B2 (en) Method for producing spherical polyethylene expanded particles
JPH0610275B2 (en) Expanded polypropylene resin particles and method for producing the same
JP3149144B2 (en) Pre-expanded particles for in-mold fusion molding and method for producing the same
JP3149152B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
JP3453814B2 (en) Method for producing non-crosslinked polyolefin resin pre-expanded particles
JPS58136631A (en) Production of expanded propylene resin particle
JPH0639543B2 (en) Expanded polypropylene resin particles and method for producing the same