JP3149152B2 - Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same - Google Patents

Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same

Info

Publication number
JP3149152B2
JP3149152B2 JP06968594A JP6968594A JP3149152B2 JP 3149152 B2 JP3149152 B2 JP 3149152B2 JP 06968594 A JP06968594 A JP 06968594A JP 6968594 A JP6968594 A JP 6968594A JP 3149152 B2 JP3149152 B2 JP 3149152B2
Authority
JP
Japan
Prior art keywords
particles
expanded particles
resin
density polyethylene
linear low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06968594A
Other languages
Japanese (ja)
Other versions
JPH07278341A (en
Inventor
登 武田
逸男 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP06968594A priority Critical patent/JP3149152B2/en
Publication of JPH07278341A publication Critical patent/JPH07278341A/en
Application granted granted Critical
Publication of JP3149152B2 publication Critical patent/JP3149152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、無架橋直鎖状低密度ポ
リエチレン系樹脂予備発泡粒子及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-crosslinked linear low density polyethylene resin pre-expanded particle and a method for producing the same.

【0002】[0002]

【従来の技術】ポリエチレン系樹脂の予備発泡粒子を型
内で蒸気加熱し融着成形して得られる成形発泡体は良く
知られており、柔軟性、耐衝撃割れ性、繰り返し圧縮歪
耐久性、低温特性、耐薬品性等に優れ包装用緩衝材、自
動車等の工業用部品の通函、車両および家具のシ−トク
ッション芯材等、種々な市場に供されている。
2. Description of the Related Art Molded foams obtained by fusing a pre-expanded particle of a polyethylene resin in a mold by steam heating in a mold are well known. It has excellent low-temperature properties and chemical resistance, and is used in various markets, such as cushioning materials for packaging, mailing of industrial parts such as automobiles, and sheet cushion core materials for vehicles and furniture.

【0003】この種の成形体としては従来、架橋した高
圧法低密度ポリエチレン発泡粒子からなる成形体が知ら
れていたが、この架橋した高圧法低密度ポリエチレンの
発泡成形体は柔軟性は良好であるが、耐衝撃割れ性、繰
り返し圧縮歪耐久性が充分なものとは云えず、改良が望
まれていた。また架橋の為の余分な工程を必要とし、し
かも架橋された発泡成形体は不要になっても元の樹脂に
戻して再生することが出来ないなど、経済的に不利な問
題があった。かかる問題を解決しようとして、高圧法低
密度ポリエチレンよりも機械的強度に優れた無架橋直鎖
状ポリエチレン樹脂を用いた発泡粒子からなる成形体が
数多く開発されている。すなわち特開昭58−7643
3号公報には、ポリマ−密度0. 915〜0. 950g
/cm3 の無架橋直鎖状低密度ポリエチレンを基材樹脂と
する予備発泡粒子が、特開昭59−187035号公報
には、分子量分布15以上でポリマ−密度0. 920g
/cm3 以上の無架橋直鎖状ポリエチレンを基材樹脂とす
る予備発泡粒子が、特開昭63−117044号公報に
は、ポリマ−密度0. 920〜0. 940g/cm3で示
差走査熱量測定によって得られるDSC曲線に2つの吸
熱ピークを有する無架橋直鎖状低密度ポリエチレンを基
材樹脂とする予備発泡粒子が提案されている。
[0003] As this type of molded article, a molded article made of crosslinked high-pressure low-density polyethylene foam particles has been known. However, this crosslinked high-pressure low-density polyethylene foam molded article has good flexibility. However, impact cracking resistance and durability against repeated compression strain cannot be said to be sufficient, and improvements have been desired. Further, there is an economically disadvantageous problem that an extra step for cross-linking is required, and even if the cross-linked foam molded article becomes unnecessary, it cannot be returned to the original resin and regenerated. In an attempt to solve such a problem, many molded articles made of expanded particles using a non-crosslinked linear polyethylene resin having better mechanical strength than high-pressure low-density polyethylene have been developed. That is, JP-A-58-7643
No. 3 discloses a polymer density of 0.915 to 0.950 g.
/ A non-crosslinked linear low density polyethylene cm 3 is pre-expanded particles as a base resin, in JP-A-59-187035, a polymer with a molecular weight distribution of 15 or more - Density 0. 920 g
/ Cm 3 or more of the non-crosslinked linear polyethylene is pre-expanded particles as a base resin, in JP-A-63-117044, a polymer -. Density 0.920 to 0 differential scanning calorimetry at 940 g / cm 3 Pre-expanded particles using a non-crosslinked linear low-density polyethylene having two endothermic peaks in a DSC curve obtained by measurement as a base resin have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の無架橋直鎖状低密度ポリエチレン系樹脂発泡粒子はポ
リマ−密度0. 915g/cm3 以上の無架橋直鎖状ポリ
エチレンを基材樹脂とした予備発泡粒子であって、これ
らの予備発泡粒子を型内融着成形して得られる成形体で
は耐衝撃割れ性、繰り返し圧縮歪耐久性についてまだ満
足のいくレベルに達していなかった。またこれらの技術
では、強靭性の高いところのポリマ−密度0. 915g
/cm3 未満の直鎖状低密度ポリエチレン樹脂とした場
合、無架橋状態のままで、高い独立気泡構造を有し、し
かも高発泡倍率の予備発泡粒子を効率良く得ることが困
難であり、かつ成形した際得られた成形品のヒケが大き
く、そして耐衝撃割れ性、繰り返し圧縮歪耐久性の良好
な成形体が得られないという問題を残していた。この問
題解消策として、特開昭61−51008号公報に架橋
せしめた直鎖状低密度ポリエチレン樹脂が提案されてい
るが、かかる樹脂は再生利用できないという廃棄物問題
があった。
However, these non-crosslinked linear low-density polyethylene foamed particles have a non-crosslinked linear polyethylene having a polymer density of 0.915 g / cm 3 or more. The foamed particles obtained by in-mold fusion molding of these pre-expanded particles did not yet have satisfactory levels of impact cracking resistance and repeated compressive strain durability. Also, in these techniques, the polymer density of 0.915 g in a place having high toughness is used.
/ Cm 3 or less, it is difficult to efficiently obtain pre-expanded particles having a high closed-cell structure and a high expansion ratio in a non-crosslinked state, and There remains a problem that the molded product obtained upon molding has a large sink mark, and a molded product having good impact cracking resistance and good durability against repeated compression strain cannot be obtained. As a measure for solving this problem, a cross-linked linear low-density polyethylene resin has been proposed in JP-A-61-51008, but there is a waste problem that such a resin cannot be recycled.

【0005】本発明の課題は上記のような欠点を解決し
たもので、予備発泡粒子を型内融着成形して得られる成
形発泡体の持つ耐衝撃割れ性、繰り返し圧縮歪耐久性
が、従来の無架橋直鎖状低密度ポリエチレン系樹脂成形
発泡体より優れた成形発泡体として供給でき、かつ型内
成形時の発泡粒子の膨張能力が高くそして成形品のヒケ
が小さく、成形性に優れた無架橋直鎖状低密度ポリエチ
レン系樹脂予備発泡粒子を提供することを目的としてい
る。
[0005] The object of the present invention is to solve the above-mentioned drawbacks, and the molded article obtained by fusion-molding the pre-expanded particles in the mold has the impact cracking resistance and the repeated compressive strain durability, which are conventionally known. It can be supplied as a molded foam superior to non-crosslinked linear low-density polyethylene resin molded foam, and has a high expansion ability of expanded particles during in-mold molding, and a small sink in molded products, and has excellent moldability. It is an object of the present invention to provide non-crosslinked linear low density polyethylene resin pre-expanded particles.

【0006】本発明のもう一つの目的は、前記の目的を
達成する無架橋直鎖状低密度ポリエチレン系樹脂予備発
泡粒子の製造方法を提供することである。
Another object of the present invention is to provide a method for producing non-crosslinked linear low-density polyethylene resin pre-expanded particles which achieves the above objects.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の予備
発泡粒子は、密度が0. 900〜0. 930g/cm3
あり、昇温溶出法で分別して得たポリマ−成分を13C
−NMRによって測定した重量平均分布度(Cw)と数
平均分布度(Cn)との比Cw/Cnが1.1〜2.5
である無架橋直鎖状低密度ポリエチレン樹脂からなる予
備発泡粒子であって、その発泡倍率が8〜60cm3
gで、かつその気泡の90%以上が独立気泡構造を有す
ることを特徴とする無架橋直鎖状低密度ポリエチレン系
樹脂予備発泡粒子である。
That is, the pre-expanded particles of the present invention have a density of 0.990 to 0.930 g / cm 3 , and the polymer component obtained by fractionation by the temperature-elution method is 13C.
-The ratio Cw / Cn between the weight average distribution (Cw) and the number average distribution (Cn) measured by NMR is 1.1 to 2.5.
Pre-expanded particles comprising a non-crosslinked linear low-density polyethylene resin having an expansion ratio of 8 to 60 cm 3 /
g, and 90% or more of the cells have a closed cell structure, and are non-crosslinked linear low-density polyethylene resin pre-expanded particles.

【0008】また本発明の製造方法は、昇温溶出法で分
別して得たポリマ−成分を13C−NMRによって測定
した重量平均分布度(Cw)と数平均分布度(Cn)と
の比Cw/Cnが1.1〜2.5である無架橋直鎖状低
密度ポリエチレン樹脂粒子に、密閉容器内で発泡剤を接
触含有させ、得られた発泡性樹脂粒子をその樹脂粒子の
軟化温度より5〜15℃高い加熱温度下で加熱発泡した
後、冷媒を吹き付けて軟化温度以下に15秒以内で冷却
させることを特徴とする無架橋直鎖状低密度ポリエチレ
ン系樹脂予備発泡粒子の製造方法である。
Further, in the production method of the present invention, the ratio Cw / weight average distribution (Cw) and number average distribution (Cn) of the polymer components obtained by fractionation by the temperature rising elution method as measured by 13C-NMR. A non-crosslinked linear low-density polyethylene resin particle having a Cn of 1.1 to 2.5 is contacted with a foaming agent in a closed container in an airtight container, and the obtained foamable resin particle is heated to a temperature lower than the softening temperature of the resin particle by 5%. A method for producing non-crosslinked linear low-density polyethylene-based resin pre-expanded particles, characterized in that after heating and foaming at a high heating temperature of up to 15 ° C., a refrigerant is blown and cooled to a softening temperature or lower within 15 seconds. .

【0009】以下、本発明について詳細に説明する。本
発明の直鎖状低密度ポリエチレン樹脂予備発泡粒子を構
成する基材樹脂の密度は0. 900〜0. 930g/cm
3 であることが肝要であり、好ましくは0.905〜0.
920g/cm3 である。密度が0. 930g/cm3
越えて大きすぎると、得られる発泡成形体の耐衝撃割れ
性、繰り返し圧縮歪耐久性が著しく劣り目標とする物が
得られず、0. 900g/cm3 未満で小さすぎると、柔
軟となりすぎ、例えば重量物運搬用緩衝通函に利用する
とき低倍率の発泡成形体とする必要があり経済的にも不
都合を伴う。なお本発明において、樹脂密度はASTM
D- 1505に準じて測定された値である。
Hereinafter, the present invention will be described in detail. The density of the base resin constituting the linear low-density polyethylene resin pre-expanded particles of the present invention is from 0.900 to 0.930 g / cm.
It is important that it is 3 , preferably 0.905 to 0.5.
920 g / cm 3 . If the density is too large exceeding 0.930 g / cm 3 , the obtained foamed molded article will have remarkably inferior impact cracking resistance and repetitive compression set durability, and the target product will not be obtained, and will be less than 0.900 g / cm 3 . If it is too small, it will be too flexible, and it will be necessary to use a low-magnification foam molded article when used in a buffer container for carrying heavy goods, for example, which is disadvantageous economically. In the present invention, the resin density is ASTM
It is a value measured according to D-1505.

【0010】また本発明の直鎖状低密度ポリエチレン樹
脂発泡粒子を構成する基材樹脂の重量平均分布度(C
w)と数平均分布度(Cn)との比Cw/Cn(分岐度
組成分布)は1.1〜2.5であることが肝要であり、
好ましくは1.1〜2.0である。Cw/Cnは、分子
量に無関係なポリマ−の組成成分の分布を示すパラメ−
タ−であって本発明の基材樹脂の構造を特定する重要な
特性である。Cw/Cnが2.5を越えて大きすぎる
と、分岐度分布が広すぎて、型内成形時の発泡粒子の膨
張能力が小さく、型内成形してもヒケの大きい成形体し
か得られず、得られた成形発泡体の耐衝撃割れ性、繰り
返し圧縮歪耐久性が劣る。1.1未満で分岐度分布が狭
すぎると、発泡成形加工適性温度範囲が無く成形性に劣
り、得られる成形発泡体の物性が良くない。この現象は
特に、密度が0. 920g/cm3 未満である樹脂から構
成された予備発泡粒子の場合において顕著である。
The weight average distribution (C) of the base resin constituting the expanded particles of the linear low-density polyethylene resin of the present invention.
It is important that the ratio Cw / Cn (branch degree composition distribution) between w) and the number average distribution (Cn) is 1.1 to 2.5,
Preferably it is 1.1-2.0. Cw / Cn is a parameter indicating the distribution of the composition of the polymer irrespective of the molecular weight.
This is an important characteristic that specifies the structure of the base resin of the present invention. When Cw / Cn is too large, exceeding 2.5, the distribution of branching degree is too wide, the expansion ability of the expanded particles during in-mold molding is small, and only molded articles with large sink marks are obtained even in in-mold molding. The resulting molded foam is inferior in impact cracking resistance and durability against repeated compression strain. If the branching degree distribution is too narrow at less than 1.1, there is no suitable temperature range for foam molding processing, the moldability is poor, and the physical properties of the molded foam obtained are not good. This phenomenon is particularly remarkable in the case of pre-expanded particles composed of a resin having a density of less than 0.920 g / cm 3 .

【0011】なお本発明において、上記重量平均分岐度
Cwおよび数平均分岐度Cnは以下の方法により測定さ
れた値である。予備発泡粒子を構成する直鎖状低密度ポ
リエチレン樹脂の組成分別を行うために該予備発泡樹脂
粒子をp−キシレンとブチルセロソルブとの混合溶媒
(容量比:80/20)に、耐熱安定剤2,5−ジ−t
ertブチル−4−メチルフェノ−ルの共存下で、溶解
後、硅藻土(商品名セライト560ジョンマンビル社
(米)製)にコ−ティングしたものを円筒状カラム内に
充填し、前記混合溶媒と同一組成の溶媒をカラム内に位
相・流出させながら、カラム内温度を30℃から5℃き
ざみで130℃まで段階的に上昇させて、コ−ティング
した直鎖状低密度ポリエチレン樹脂を分別後メタノール
に再沈後、炉別、乾燥して分別物を得る(昇温溶出分別
法)。次いで各分別物の炭素数1000当たりの分岐数
Cを13C−NMR法により求め、分岐数Cと各分別区
分の累積重量分率I(w)とが次式の対数正規分布に従
っているとして、最小自乗法によりCwおよびCnを求
める。
In the present invention, the weight average branching degree Cw and the number average branching degree Cn are values measured by the following methods. In order to fractionate the composition of the linear low-density polyethylene resin constituting the pre-expanded particles, the pre-expanded resin particles were added to a mixed solvent of p-xylene and butyl cellosolve (volume ratio: 80/20), a heat stabilizer 2, 5-di-t
After dissolving in the presence of tert-butyl-4-methylphenol, diatomaceous earth (trade name: Celite 560, manufactured by John Manville Co., USA) was filled into a cylindrical column, and the mixture was mixed. While the solvent having the same composition as the solvent is phased and flown out into the column, the temperature inside the column is increased stepwise from 30 ° C. to 130 ° C. in steps of 5 ° C. to separate the coated linear low-density polyethylene resin. Thereafter, the precipitate is reprecipitated in methanol, separated by a furnace, and dried to obtain a separated product (heating and elution separation method). Next, the number of branches C per 1000 carbon atoms of each fraction was determined by the 13C-NMR method, and assuming that the number of branches C and the cumulative weight fraction I (w) of each fractionation section follow a lognormal distribution of the following equation, Cw and Cn are obtained by the square method.

【0012】[0012]

【数1】 (Equation 1)

【0013】更に本発明の直鎖状低密度ポリエチレン樹
脂予備発泡粒子を構成する基材樹脂は、主鎖炭素100
0個当たりの分岐の数が2個以下のものが組成成分の樹
脂中に占める量が10重量%以下であるもの、n−ヘキ
サン抽出分が2.0%以下であるものが、得られる成形
発泡体の耐衝撃割れ性、繰り返し圧縮歪耐久性が優れ、
好ましい。
Further, the base resin constituting the pre-expanded particles of the linear low-density polyethylene resin of the present invention has a main chain carbon of 100%.
Molding obtained when the number of branches per 0 or less is 2 or less is 10% by weight or less in the amount of the composition component in the resin, and when the n-hexane extractables is 2.0% or less. Excellent impact cracking resistance and repeated compression strain durability of foam,
preferable.

【0014】本発明の直鎖状低密度ポリエチレン樹脂予
備発泡粒子の上記特定基材は、メタロセン触媒で合成さ
れたものであることが好ましい。具体的には、メタロセ
ン化合物の周期律表IV族の有機遷移金属触媒成分と、
有機化合物と水との反応によって得られるAl−O−A
l結合を含む変性アルミニウム有機化合物と、から形成
される触媒(例えば(n−BuCp)z ZrCl2 /M
AO)、或いはメタロセン型カチオン錯体触媒(例えば
CpSiNRTiMe・B(C6 5 4 −)を用い
て、所定密度となるようにエチレンとα−オレフィンと
を共重合させて製造されたものである。
The specific substrate of the linear low density polyethylene resin pre-expanded particles of the present invention is preferably one synthesized with a metallocene catalyst. Specifically, an organic transition metal catalyst component of Group IV of the periodic table of the metallocene compound;
Al-OA obtained by the reaction between an organic compound and water
and a modified aluminum organic compound containing an l-bond (eg, (n-BuCp) z ZrCl 2 / M
AO), or metallocene cation complex catalyst (e.g. CpSiNRTiMe · B (C 6 F 5 ) 4 -) with, are those prepared by copolymerizing ethylene and α- olefin so as to have a predetermined density .

【0015】重合反応は、上記触媒の存在下、スラリ−
重合、溶液重合または気相重合のいずれでもよく、特に
スラリ−重合または気相重合が好ましい。かかる重合
は、実質的に酸素、水分等を断った状態で、エチレンと
炭素原子数が4〜20の範囲にあるα−オレフィンとの
共重合体が重合される。ここで、α−オレフィン成分単
位は炭素原子数4〜12のα−オレフィンが好ましく、
これらの1種または2種以上の混合成分であっても差し
支えない。このようなα−オレフィン成分単位として具
体的には、1−ブテン、1−ペンテン、1−ヘキセン、
4−メチル−1−ペンテン、1−ヘプテン、1−オクテ
ン、1−デセン、1−テトラデセン、1−オクタデセン
などであり、α−オレフィン成分単位の含有率は特定さ
れるポリマ−密度と分岐度組成分布を満足する範囲にお
いて任意であるが、通常は0.5〜10モル%の範囲で
ある。
[0015] The polymerization reaction is carried out in the presence of the above catalyst in the presence of a slurry.
Any of polymerization, solution polymerization, or gas phase polymerization may be used, and particularly, slurry polymerization or gas phase polymerization is preferable. In such polymerization, a copolymer of ethylene and an α-olefin having 4 to 20 carbon atoms is polymerized in a state where oxygen, moisture and the like are substantially cut off. Here, the α-olefin component unit is preferably an α-olefin having 4 to 12 carbon atoms,
One or a mixture of two or more of these components may be used. As such an α-olefin component unit, specifically, 1-butene, 1-pentene, 1-hexene,
4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-tetradecene, 1-octadecene, etc., and the content of the α-olefin component unit is determined by the specified polymer density and branching degree composition. It is optional within a range that satisfies the distribution, but is usually in the range of 0.5 to 10 mol%.

【0016】この時の重合条件は任意であるが、通常2
0〜300℃の温度範囲であり、常圧〜70Kg/cm
2 Gの圧力範囲であり、重合時間としては5分〜10時
間である。もちろん、重合温度、触媒の種類及び量を変
えることによってもある程度調節可能であるが、重合反
応系に水素を添加することによって、効果的に分子量調
節を行うことができる。また、水素濃度や重合温度が異
なる二段階以上の多段階重合方式も適用でき、この樹脂
から構成された予備発泡粒子は型内融着成形加工性に優
れ好ましい。
The polymerization conditions at this time are optional, but usually 2
0 to 300 ° C, normal pressure to 70 kg / cm
The pressure range is 2 G, and the polymerization time is 5 minutes to 10 hours. Of course, it can be adjusted to some extent by changing the polymerization temperature, the type and amount of the catalyst, but the molecular weight can be effectively adjusted by adding hydrogen to the polymerization reaction system. In addition, a multi-stage polymerization method in which the hydrogen concentration and the polymerization temperature are different from each other in two or more stages can be applied, and the pre-expanded particles composed of this resin are preferable because of excellent in-mold fusion molding processability.

【0017】以上に例示される製造方法を適用すること
により、本発明の予備発泡粒子を構成する特定直鎖状低
密度ポリエチレン樹脂が得られる。また本発明の予備発
泡粒子は、発泡倍率が8〜60cm3 /gで、かつ独立
気泡率が90%以上であることが肝要である。発泡倍率
が8cm3 /g未満では型内成形時の粒子同士の融着性
に劣り、60cm3 /gを越える場合には型内成形性に
劣り、得られた成形発泡体の物性が低下する。発泡倍率
の特に好ましい範囲は15〜50cm3 /gである。独
立気泡率が90%未満の場合には、型内成形性に劣り、
得られた成形発泡体の物性が低下する。また予備発泡粒
子の平均気泡径は、型内成形性と成形発泡体自体の見栄
えから0.03〜3mmが好ましい。なお、ここで平均
気泡径は、発泡粒子を任意に直交する3つの面で切断し
て得られる三次元軸のそれぞれの軸上において、任意の
長さL(1mm以上)当りの気泡の数を読み、L(m
m)を気泡の数で除した値である。
By applying the manufacturing method exemplified above, the specific linear low-density polyethylene resin constituting the pre-expanded particles of the present invention can be obtained. It is important that the pre-expanded particles of the present invention have an expansion ratio of 8 to 60 cm 3 / g and a closed cell ratio of 90% or more. When the expansion ratio is less than 8 cm 3 / g, the fusion property between particles during in-mold molding is inferior, and when it exceeds 60 cm 3 / g, in-mold moldability is inferior and the physical properties of the obtained molded foam are reduced. . A particularly preferred range of the expansion ratio is 15 to 50 cm 3 / g. If the closed cell ratio is less than 90%, the in-mold moldability is poor,
The physical properties of the obtained molded foam are reduced. The average cell diameter of the pre-expanded particles is preferably 0.03 to 3 mm in view of moldability in the mold and appearance of the molded foam itself. Here, the average cell diameter refers to the number of cells per arbitrary length L (1 mm or more) on each of three-dimensional axes obtained by cutting the expanded particles at three surfaces orthogonal to each other. Reading, L (m
m) divided by the number of bubbles.

【0018】このように、本発明の予備発泡粒子を用い
ることによって、高度の物性を有する発泡成形体が得ら
れる。次に本発明の無架橋直鎖状低密度ポリエチレン系
樹脂予備発泡粒子の製造方法について説明する。本発明
の製造方法で用いる直鎖状低密度ポリエチレン系樹脂粒
子は、昇温溶出法で分別して得たポリマ−成分を13C
−NMRによって測定した重量平均分布度(Cw)と数
平均分布度(Cn)との比Cw/Cnが1.1〜2.5
である。このCw/Cnが2.5を越えて大きすぎると
分岐度分布が広すぎて二次膨張能力が低く、特に樹脂密
度が0. 920g/cm3 未満である場合顕著になり発泡
せず、一方1.1未満で分岐度分布が狭すぎると押出加
工性が悪く生産性の低下をきたし、好ましくない。また
他の樹脂物性としては、分子量分布(Mw/Mn)が2
〜40の範囲のもの、好ましくは15〜40であるも
の、そしてMIが0.1〜15g/10分であるもの、
好ましくは0.1〜5g/10分のものが発泡成形加工
性に優れている。
As described above, by using the pre-expanded particles of the present invention, a foam molded article having high physical properties can be obtained. Next, a method for producing the non-crosslinked linear low density polyethylene resin pre-expanded particles of the present invention will be described. The linear low-density polyethylene-based resin particles used in the production method of the present invention are obtained by separating a polymer component obtained by fractionation by a temperature rising elution method into 13C.
-The ratio Cw / Cn between the weight average distribution (Cw) and the number average distribution (Cn) measured by NMR is 1.1 to 2.5.
It is. If Cw / Cn is more than 2.5 and too large, the distribution of branching degree is too wide and the secondary expansion ability is low. In particular, when the resin density is less than 0.920 g / cm 3 , it becomes remarkable and does not foam. If it is less than 1.1 and the distribution of branching degree is too narrow, extrusion processability is poor and productivity is lowered, which is not preferable. As another resin physical property, the molecular weight distribution (Mw / Mn) is 2
-40, preferably 15-40, and MI of 0.1-15 g / 10 min.
Preferably, those having 0.1 to 5 g / 10 minutes are excellent in foam molding processability.

【0019】本発明の無架橋直鎖状低密度ポリエチレン
系樹脂予備発泡粒子に用いる基材としては、前述の方法
で得た特定直鎖状低密度ポリエチレン樹脂の密度異なる
樹脂同士をブレンドして用いることもできる。また、従
来の直鎖状低密度ポリエチレン、高圧法低密度ポリエチ
レン、中密度ポリエチレン、高密度ポリエチレンを、そ
の本質的特性を損わない範囲、すなわち40重量部以下
の量で混合していても良い。更に他の熱可塑性樹脂、例
えばポリプロピレン等の炭素数3以上のオレフィン樹
脂、或いはエチレンプロピレンゴム等の各種ゴム等を2
0重量部以下の量で混合して用いることもできる。もち
ろん、本発明の樹脂には各種充填材、例えば酸化防止
剤、耐光安定剤、帯電防止剤、難燃剤、滑剤、核剤、顔
料、染料等を配合して用いることもできる。
As the base material used for the non-crosslinked linear low-density polyethylene resin pre-expanded particles of the present invention, resins having different densities of the specific linear low-density polyethylene resin obtained by the above-mentioned method are blended with each other. You can also. In addition, conventional linear low-density polyethylene, high-pressure low-density polyethylene, medium-density polyethylene, and high-density polyethylene may be mixed in a range that does not impair the essential characteristics, that is, in an amount of 40 parts by weight or less. . Further, another thermoplastic resin, for example, an olefin resin having 3 or more carbon atoms such as polypropylene, or various rubbers such as ethylene propylene rubber is used.
It can be mixed and used in an amount of 0 part by weight or less. Of course, various fillers such as antioxidants, light stabilizers, antistatic agents, flame retardants, lubricants, nucleating agents, pigments, dyes, and the like can be used in the resin of the present invention.

【0020】本発明の無架橋直鎖状低密度ポリエチレン
系樹脂粒子は、リペレット可能な範囲で多少架橋してい
てもよい、その場合の架橋の程度はゲル分率で10%以
下である。本発明で基材として用いる無架橋直鎖状低密
度ポリエチレン系樹脂粒子は、従来公知の方法に従って
粒子状に成形することにより得られる、例えば押出機に
より溶融混練りしてストランド状に押出し、それをペレ
タイザーにより直径0.5〜3mm、長さ0.5〜3m
mの粒子形状に造粒してえることができる。
The non-crosslinked linear low-density polyethylene resin particles of the present invention may be somewhat crosslinked to the extent that they can be repelleted. In this case, the degree of crosslinking is 10% or less in terms of gel fraction. The non-crosslinked linear low-density polyethylene-based resin particles used as a substrate in the present invention are obtained by molding into particles according to a conventionally known method, for example, extruded into a strand by melt-kneading with an extruder. Is 0.5 to 3 mm in diameter and 0.5 to 3 m in length by a pelletizer.
m can be obtained by granulation.

【0021】上記の直鎖状低密度ポリエチレン系樹脂粒
子を用いて本発明の予備発泡粒子を製造するには、該樹
脂粒子を密閉容器内で発泡剤と接触含有させ、得られた
発泡性樹脂粒子をその樹脂粒子の軟化温度より5〜15
℃高い加熱温度下で加熱発泡した後、冷媒を吹き付けて
軟化温度以下に15秒以内で冷却して予備発泡粒子を得
る方法が採用される。
In order to produce the pre-expanded particles of the present invention using the above-mentioned linear low-density polyethylene resin particles, the resin particles are contact-contained with a foaming agent in a closed container, and the obtained foamable resin is obtained. The particles are heated at a temperature 5 to 15 below the softening temperature of the resin particles.
After heating and foaming at a high heating temperature of ° C., a method of obtaining pre-expanded particles by spraying a refrigerant and cooling to a softening temperature or less within 15 seconds or less is adopted.

【0022】発泡プロセスとしては、従来公知の方法、
すなわち樹脂粒子を加圧加熱容器に入れ、発泡剤と接触
させて樹脂内に発泡剤が含有した発泡性樹脂粒子とな
し、次いでこれを加熱発泡させて発泡粒子とする方法、
あるいは耐圧容器内で水性懸濁状態に分散保持した樹脂
粒子に、発泡剤を加圧加熱下で接触含浸させて発泡性樹
脂粒子となし、この粒子を懸濁液とともに容器内より低
圧の雰囲気下に放出して発泡粒子とする方法、さらにこ
れらの発泡粒子に再度発泡剤ガスを含有させて加熱膨張
させることにより高発泡の発泡粒子とする方法が採用で
きる。
As the foaming process, conventionally known methods,
That is, a method in which the resin particles are put into a pressurized and heated container, contacted with a foaming agent to form foamable resin particles containing the foaming agent in the resin, and then heated and foamed to form foamed particles,
Alternatively, resin particles dispersed and maintained in an aqueous suspension state in a pressure-resistant container are contact-impregnated with a foaming agent under pressure and heat to form foamable resin particles, and the particles are formed together with the suspension in a lower pressure atmosphere than in the container. To form foamed particles, and a method in which these foamed particles are again mixed with a foaming agent gas and heated and expanded to obtain highly foamed foamed particles.

【0023】本発明に用いられる発泡剤としては、二酸
化炭素、窒素、空気、プロパン、ブタン、ペンタン、1
−1−1−2テトラフルオロエタン(F−134a)、
1−1ジフルオロエタン(F−152a),塩化メチレ
ン,塩化エチレンなどが挙げられる。その中でも、フロ
ン規制をクリア−し、不燃である二酸化炭素は望ましい
発泡剤である。この発泡剤の含有量は、発泡剤の種類お
よび所望する発泡倍率の程度によって異なるが通常0.
1〜2.0モル/kgである。なお前記粒子に発泡剤を
含有させる時の温度、圧力は任意であり、発泡剤の含浸
法も気相、液相のいずれでも良く、特に限定されない。
The blowing agents used in the present invention include carbon dioxide, nitrogen, air, propane, butane, pentane,
-1-1-2 tetrafluoroethane (F-134a),
1-1 difluoroethane (F-152a), methylene chloride, ethylene chloride and the like. Among them, carbon dioxide, which satisfies CFC regulations and is nonflammable, is a desirable blowing agent. The content of the foaming agent varies depending on the type of the foaming agent and the desired degree of the expansion ratio, but is usually 0.1%.
1 to 2.0 mol / kg. The temperature and pressure when the particles contain a foaming agent are arbitrary, and the method for impregnating the foaming agent may be either a gas phase or a liquid phase, and is not particularly limited.

【0024】本発明の製造方法としての主要点は、発泡
性樹脂粒子をその樹脂粒子の軟化温度より5〜15℃高
い加熱温度下で加熱発泡させることである。この発泡時
の系の加熱は主として加熱温水、加熱水蒸気によって行
われ、発泡性樹脂粒子がそのビカット軟化温度よりも5
〜15℃高い温度となるように制御され、好ましくは5
〜10℃高い温度とされる。この温度が樹脂粒子のビカ
ット軟化温度以上の温度に満たない場合は発泡が遅く、
発泡剤の外部逸散が優位となって発泡効率が低い、また
樹脂粒子のビカット軟化温度より15℃以上高い温度で
は発泡適性幅が狭く、粒子同士が融着したりまたは独立
気泡率の低いものとなり、正常な発泡粒子が得られな
い。
The main point of the production method of the present invention is that the expandable resin particles are heated and foamed at a heating temperature 5 to 15 ° C. higher than the softening temperature of the resin particles. Heating of the system at the time of foaming is mainly performed by heated hot water and heated steam, and the foamable resin particles are heated to a temperature lower than the Vicat softening temperature by 5%.
~ 15 ° C higher temperature, preferably 5 ° C
-10 ° C higher temperature. If this temperature is less than the Vicat softening temperature of the resin particles, foaming is slow,
Low foaming efficiency due to superior external dissipation of the foaming agent, and narrower foaming suitability at temperatures higher than the Vicat softening temperature of the resin particles by 15 ° C or more, and the particles are fused together or have a low closed cell rate. And normal foamed particles cannot be obtained.

【0025】このようにして、加熱発泡された粒子は、
次いで冷却される。本発明の製造方法のもう一つの主要
点は、冷媒を吹き付けて軟化温度以下に15秒以内で冷
却させることである。この冷却は、50℃以下の冷風、
冷水等の冷媒を発泡した樹脂に吹き付けて強制冷却する
ことで、15秒以内、好ましくは10秒以内に発泡温度
からビカット軟化温度以下に冷却して予備発泡粒子を得
ることである。すなわち、発泡粒子が発泡後必要以上に
軟化温度以上にあると発泡粒子内ガスが外部へ逸散し、
そして発泡延伸された樹脂が熱収縮を起こし、発泡温度
からビカット軟化温度以下に冷却するのに15秒を越え
ると効率良く均一な高発泡粒子を製造することが困難と
なる。また発泡温度からビカット軟化温度以下に冷却す
るのに15秒を越えて得た予備発泡粒子からなる成形発
泡体は、繰り返し圧縮歪耐久性の劣るものになってしま
う。この現象については明らかではないが、発泡粒子を
構成する気泡膜の樹脂分子配向が緩和されているものと
推察する。なお本発明において、軟化温度はASTMD
- 1525−65Tに準じて測定された値である。
The particles thus foamed by heating are
Then it is cooled. Another important point of the production method of the present invention is that a refrigerant is sprayed and cooled to a temperature lower than the softening temperature within 15 seconds. This cooling is performed by a cool air of 50 ° C. or less,
By blowing a refrigerant such as cold water onto the foamed resin to forcibly cool the foamed resin, the pre-expanded particles are obtained by cooling from the foaming temperature to the Vicat softening temperature within 15 seconds, preferably 10 seconds or less. In other words, if the foamed particles are above the softening temperature more than necessary after foaming, the gas in the foamed particles escapes to the outside,
When the foamed and stretched resin undergoes thermal shrinkage, and it takes more than 15 seconds to cool from the foaming temperature to the Vicat softening temperature, it becomes difficult to efficiently produce uniform highly foamed particles. Molded foams made of pre-expanded particles obtained for more than 15 seconds to cool from the foaming temperature to the Vicat softening temperature or less have poor durability against repeated compression strain. Although this phenomenon is not clear, it is presumed that the resin molecule orientation of the foam film constituting the foamed particles is relaxed. In the present invention, the softening temperature is ASTM D
-A value measured according to 1525-65T.

【0026】上記の方法にて得た本発明の予備発泡粒子
は、公知手法の型内成形に付されて種々の形状の成形品
を得る材料として用いられる。本発明の製造方法に基づ
けば、従来の無架橋のポリエチレン系樹脂予備発泡粒子
では達成できなかった比圧縮強度、耐衝撃割れ性、繰り
返し圧縮歪耐久性に優れた成形発泡体を提供し、かつ型
内成形時の膨張能力及び成形品のヒケの小さい、成形性
に優れた予備発泡粒子を提供するところの本発明の無架
橋直鎖状低密度ポリエチレン系樹脂予備発泡粒子はおの
ずと作成することが出来る。
The pre-expanded particles of the present invention obtained by the above method are used as materials for obtaining molded articles of various shapes by being subjected to in-mold molding by a known method. According to the production method of the present invention, it provides a molded foam having excellent specific compression strength, impact cracking resistance, and repeated compression strain durability, which could not be achieved by conventional non-crosslinked polyethylene resin pre-expanded particles, and The non-crosslinked linear low-density polyethylene-based resin pre-expanded particles of the present invention, which provide pre-expanded particles excellent in moldability, having a small expansion capacity during molding in the mold and a small sink in the molded product, can be naturally produced. I can do it.

【0027】[0027]

【実施例】各例中で用いた直鎖状低密度ポリエチレン樹
脂の特性を表1に示す。また、各実施例、比較例中で使
用した特性値の評価方法,評価尺度は以下に示す通りで
ある。 (1)発泡粒子の発泡倍率(cm3 /g) 重量(Wg)既知の発泡粒子の容積(Vcm3 )を水没法
で測定し、その容積を重量で除した値である。 (2) 独立気泡率(%) ASTMD−2856に記載されているエア−ピクノメ
−タ−法(BECMAN製,モデル930)により測定
した値の平均値である(n=10)。 (3)発泡用粒子の内圧 加圧雰囲気中より取り出した二次発泡用粒子約10gを
手早く5個の容器に分納し、その重量(w)を正確に秤
量したのち、一端が大気圧下に開放された2本の水中管
にそれぞれ連結し、二次発泡用粒子から逸散するガス量
(VO )を経時的に測定し、次の計算式に従ってそれぞ
れの値を求めその平均値をもって内圧とする。
EXAMPLES The characteristics of the linear low-density polyethylene resin used in each example are shown in Table 1. The evaluation methods and evaluation scales of the characteristic values used in each of the examples and comparative examples are as shown below. (1) Expansion ratio of expanded particles (cm 3 / g) Weight (Wg) This is a value obtained by measuring the volume (Vcm 3 ) of a known expanded particle by a submersion method and dividing the volume by the weight. (2) Closed cell rate (%) It is an average of the values measured by the air-pycnometer method (manufactured by BECMAN, model 930) described in ASTM D-2856 (n = 10). (3) Internal pressure of foaming particles Approximately 10 g of secondary foaming particles taken out from a pressurized atmosphere are quickly dispensed into five containers, and the weight (w) is accurately weighed, and one end is placed under atmospheric pressure. respectively open two water tubes which are connected, the amount gas escapes from the secondary foaming particles (V O) measured over time, with the average value calculated for each value according to the following equation pressure And

【0028】発泡粒子の内圧(kg/cm2 G)=VO
/(VS −W/D) ただし、Dは使用した直鎖状低密度ポリエチレンの密度
であり、VS は同じ母集団より大量に得た試料により重
量と体積の換算係数を求め、実測した発泡用粒子の重量
より算出した発泡用粒子の体積である。なおこの場合の
測定の終点は前後1時間における内圧の差が0.01k
g/cm2 未満となった時点である。 (4)融着度 成形加熱水蒸気圧を種々変えて約300×300×50
mmの板状成形品を成形し、この成形品より100×1
00mm正方形状の試験片を切り出し、その中央部に深
さ2mmの切れ目を入れ、切れ目にそっておりまげて成
形品を開裂させ、切開断面に存在する全粒子数に対する
材料破断して切裂している粒子数の百分率を求めた。
Internal pressure of foamed particles (kg / cm 2 G) = V O
/ (V S -W / D), however, D is the density of the linear low density polyethylene used, V S is determined the conversion factor Weight and volume by mass obtained samples from the same population were measured It is the volume of the foaming particles calculated from the weight of the foaming particles. In this case, the end point of the measurement is that the difference between the internal pressures in the preceding and following one hour is 0.01 k
g / cm 2 . (4) Degree of fusion About 300 x 300 x 50
mm plate-shaped molded product, 100 × 1 from this molded product
A 00 mm square test piece was cut out, a 2 mm deep cut was made in the center of the test piece, and the formed product was cut open along the cut, and the material was fractured for all the particles present in the cut cross section. The percentage of the number of particles used was determined.

【0029】 評価尺度: 区分 記号 備考 材破率90%以上の場合 ○ 優れる 80%以上90%未満の場合 △ 良好 80%未満の場合 × 不良 (5)対金型収縮率 上記成形温度にて成形した成形発泡体の、成形用金型に
対する寸法収縮率により下記の如く評価した。
Evaluation scale: Classification symbol Remarks When the material fracture rate is 90% or more ○ Excellent 80% or more and less than 90% △ Good 80% or less × Bad (5) Mold shrinkage Molding at the above molding temperature The molded foam thus obtained was evaluated as follows by the dimensional shrinkage ratio with respect to a molding die.

【0030】 評価尺度: 区分 記号 備考 2. 5%以下の場合 ○ 優れる 2. 5%を超え3. 3%以下の場合 △ 良好 3. 3%を超える場合 × 不良 (6)成形発泡体の見かけの密度(g/cm3 ) 試験片から10×10cm角のサイズに正確に切り出
し、その重量と厚みを計測して、重量を体積で除した単
位体積あたりの重さで表した値である。 (7)圧縮強度 JISK−6767に準じて測定した、25%歪を生じ
た時の圧縮応力値である。 (8)比圧縮強度 圧縮強度の値を見かけの密度の値で除したもので、下記
の如く評価した。
Evaluation scale: Category symbol Remark 2.5% or less ○ Excellent 2.5% or more and 3.3% or less △ Good 3.3% or more × Bad (6) Appearance of molded foam Density (g / cm 3 ) This is a value obtained by accurately cutting out a test piece to a size of 10 × 10 cm square, measuring its weight and thickness, and dividing the weight by the volume to represent the weight per unit volume. (7) Compressive strength It is a compressive stress value when a 25% strain is generated, measured according to JIS K-6767. (8) Specific compressive strength A value obtained by dividing the value of the compressive strength by the value of the apparent density and evaluated as follows.

【0031】 評価尺度: 区分 記号 備考 20以上の場合 ○ 優れる 20未満18以上の場合 △ 良好 18未満の場合 × 不良 (9)繰返し圧縮永久歪 JISK−6767に準じて測定した、実験条件は50
%圧縮,8万回繰返しとした。そして下記の如く評価し
た。
Evaluation scale: Classification symbol Remarks: 20 or more ○ Excellent: Less than 20: 18 or more △ Good: Less than 18 × Bad (9) Repeated compression set: Measured in accordance with JIS K-6767;
% Compression, repeated 80,000 times. And it evaluated as follows.

【0032】 評価尺度: 区分 記号 備考 15%以下の場合 ○ 優れる 15%を超え25%以下の場合 △ 良好 25%を超える場合 × 不良 (10)耐剪断衝撃性 厚み30mm,内寸法70×70×70mmのコーナー
パッドを成形加工し、重さ4kgの三角錐型落下用ダミ
ーに取付、各試験片毎に予めテストして求めた初回落下
時瞬間最大歪が60%となる落下高さから5回角落下さ
せ、コ−ナ−パッド試験体に生じた亀裂を落下方向に平
行な寸法として測定した割れ深さを求め、下記の如く評
価をした。
Evaluation scale: Classification symbol Remark 15% or less ○ Excellent Exceeding more than 15% and 25% or less △ Good Exceeding 25% × Bad (10) Shear impact resistance Thickness 30 mm, inner dimensions 70 × 70 × A 70 mm corner pad is formed and mounted on a 4 kg triangular pyramid-shaped drop dummy, and tested five times from the drop height at which the instantaneous maximum strain at the first drop is 60%, which is obtained by pre-testing each test piece. The sample was dropped at an angle, and the crack generated in the corner pad test piece was measured as a dimension parallel to the drop direction, and the crack depth was determined and evaluated as follows.

【0033】 評価尺度: 区分 記号 備考 5mm以下の値の場合 ○ 優れる 5mmを越え10mm以下の場合 △ 良好 10mmを越える場合 × 不良 以下本発明を実施例を用いて説明する。Evaluation scale: Classification symbol Remark: When the value is 5 mm or less ○ Excellent When the value is more than 5 mm and 10 mm or less △ Good When the value is more than 10 mm × Bad The present invention will be described below with reference to Examples.

【0034】[0034]

【実施例1および比較例1】この実験は、特に本発明の
予備発泡粒子製造方法の意義を示すためのものである。
耐圧容器に無架橋直鎖状低密度ポリエチレン樹脂Aの粒
子100重量部、二酸化炭素8重量部、及び塩基性炭酸
マグネシウム2重量部を水400重量部に分散させ、か
きまぜながら第2表に示す発泡温度に加熱し、45分間
保持して発泡剤を含浸させた後、容器内圧を30kg/
cm2 Gに保持しながら容器の一端を開放し、樹脂粒子
と温水とを同時に常圧下に放出し樹脂粒子を発泡せし
め、この発泡粒子に放出発泡時から10℃冷水を吹き付
け時までの、表2に示すその樹脂粒子の軟化温度以下に
するまでの時間に冷却し、予備発泡粒子(1次発泡粒
子)を得た。その他の無架橋直鎖状低密度ポリエチレン
樹脂C、Gの粒子についても同様な操作により、予備発
泡粒子(1次発泡粒子)を得た。それぞれの樹脂につい
て発泡時の温度、軟化温度以下の冷却時間及び得られた
発泡粒子の粒子同士の融着有無、独立気泡率、発泡倍率
を表3に示した。
EXAMPLE 1 and COMPARATIVE EXAMPLE 1 This experiment is particularly intended to show the significance of the method for producing pre-expanded particles of the present invention.
In a pressure vessel, 100 parts by weight of particles of the non-crosslinked linear low-density polyethylene resin A, 8 parts by weight of carbon dioxide, and 2 parts by weight of basic magnesium carbonate are dispersed in 400 parts by weight of water, and while stirring, foaming shown in Table 2 is performed. After heating to a temperature and holding for 45 minutes to impregnate the foaming agent, the inner pressure of the container was 30 kg /
One end of the container is opened while maintaining the pressure at 2 cm 2 G, and the resin particles and hot water are simultaneously released under normal pressure to foam the resin particles. The resin particles were cooled until the temperature reached the softening temperature of the resin particles or lower as shown in No. 2 to obtain pre-expanded particles (primary expanded particles). Pre-expanded particles (primary expanded particles) were obtained in the same manner for other non-crosslinked linear low-density polyethylene resin C and G particles. Table 3 shows the temperature during foaming, the cooling time below the softening temperature, the presence or absence of fusion of the obtained foamed particles, the closed cell ratio, and the expansion ratio for each resin.

【0035】次いで、前記の予備発泡粒子それぞれにつ
いて、一週間大気圧下に放置した後、圧力容器に入れ、
空気で9.5kg/cm2 Gに加圧して70℃の状態で
保持し発泡粒子の内圧が3kg/cm2 Gとなるように
調整したのち、冷却して取り出す。この内圧を有する該
発泡粒子を直ちに蒸気室に入れ種々の温度で加熱して二
次膨張を行った。得られた発泡粒子を大気圧下に放置し
て熟成を行ったのち、独立気泡率、発泡倍率を測定し
た。結果を表3にあわせて示す。なお、得られた発泡粒
子の密度、Cw/Cnは発砲前の樹脂と同じであった。
Next, after leaving each of the pre-expanded particles under atmospheric pressure for one week, the pre-expanded particles are placed in a pressure vessel,
After pressurizing to 9.5 kg / cm 2 G with air and maintaining the temperature at 70 ° C. to adjust the internal pressure of the expanded particles to 3 kg / cm 2 G, the particles are cooled and taken out. The expanded particles having this internal pressure were immediately placed in a steam chamber and heated at various temperatures to perform secondary expansion. The obtained foamed particles were left to stand under atmospheric pressure and aged, and then the closed cell ratio and the expansion ratio were measured. The results are shown in Table 3. The density and Cw / Cn of the obtained expanded particles were the same as those of the resin before firing.

【0036】表2、3の結果によると、本発明の製造方
法は発泡効率が高く、且つ二次膨張能力に優れた発泡粒
子を提供できることが分かる。
According to the results shown in Tables 2 and 3, it can be seen that the production method of the present invention can provide expanded particles having high expansion efficiency and excellent secondary expansion ability.

【0037】[0037]

【実施例2および比較例2】ここでの実験は、特に本発
明で言う樹脂成分からなる予備発泡粒子の重要性を示す
ためのものである。表3の樹脂B、D、E、F、H、I
について、該樹脂粒子の軟化温度より10℃高い一点の
加熱温度下で加熱発泡した点と、そして冷水を吹き付け
て軟化温度以下に5秒で冷却した点のほかは実施例1と
同様にして予備発泡粒子(一次発泡粒子)を得た(実験
No. 11〜13、18〜20)。
EXAMPLE 2 and COMPARATIVE EXAMPLE 2 The experiment here is to show the importance of the pre-expanded particles composed of the resin component in the present invention. Resins B, D, E, F, H, I in Table 3
The same procedure as in Example 1 was repeated except that the resin particles were heated and foamed at a heating temperature of 10 ° C. higher than the softening temperature of the resin particles, and that the resin particles were cooled to a temperature lower than the softening temperature by blowing cold water for 5 seconds. Expanded particles (primary expanded particles) were obtained (experiment
No. 11-13, 18-20).

【0038】実施例1の実験No. 1、2、比較例1の実
験No. 9の二次発泡粒子を実施例1、比較例1の二次膨
張法と同条件で三次膨張行い、三次発泡粒子を得た(実
験No. 14、21〜22)。上記予備発泡粒子の樹脂特
性、発泡倍率、独立気泡率を測定した結果を表4に示
す。また、表4には、実施例1の実験No. 2の二次発泡
粒子(実験No. 15)、同実験No. 3の一次発泡粒子
(実験No. 16)、同実験No. 5の二次発泡粒子(実験
No. 17)、比較例1の実験No. 6の一次発泡粒子(実
験No. 23)の、各々の予備発泡粒子の樹脂特性、発泡
倍率、独立気泡率を測定した結果も併せて示す。
The secondary expanded particles of Experiment Nos. 1 and 2 of Example 1 and Experiment No. 9 of Comparative Example 1 were subjected to tertiary expansion under the same conditions as the secondary expansion method of Example 1 and Comparative Example 1, and tertiary expansion was performed. Particles were obtained (Experiment No. 14, 21-22). Table 4 shows the measurement results of the resin properties, expansion ratio, and closed cell ratio of the pre-expanded particles. Table 4 shows the secondary expanded particles of Experiment No. 2 in Example 1 (Experiment No. 15), the primary expanded particles of Experiment No. 3 (Experiment No. 16), and the secondary expanded particles of Experiment No. 5 in Example 1. Next expanded particles (experiment
No. 17) and the results of measurement of the resin properties, expansion ratio, and closed cell ratio of each pre-expanded particle of the primary expanded particles of Experiment No. 6 of Comparative Example 1 (Experiment No. 23) are also shown.

【0039】次に、上記実験No. 11〜23の予備発泡
粒子を常温常圧下で48時間放置させた後、耐圧容器に
収納し、常温の空気中で元のかさ体積の63%(圧縮率
37%)に加圧圧縮し、その状態を保持しつつ水蒸気孔
を有する型内成形金型内(内寸法300×300×5
0mmt の板状型と、30mmt で内寸70×70×
70mmのコ−ナ−パッド型の二つ)に充填し、水蒸気
で加熱して、発泡粒子相互を膨張融着させた後、冷却
し、成形金型より取りだした。取りだした成形体は60
℃の室内で8時間熟成させた後、23℃で3日間放置
し、成形発泡体を得た。この成形性能と得られた成形発
泡体の物性を前記記載の方法で評価し、その結果を表5
に示す。
Next, the pre-expanded particles of Experiment Nos. 11 to 23 were allowed to stand at room temperature and normal pressure for 48 hours, then stored in a pressure-resistant container, and 63% (compressibility) of the original bulk volume in air at room temperature. 37%), while maintaining the state, in an in-mold molding die having a water vapor hole (inner dimensions 300 × 300 × 5
0mm t plate type, 30mm t with inner dimensions 70x70x
Two 70 mm corner pad molds were filled and heated with steam to expand and fuse the foamed particles to each other, then cooled and taken out of the molding die. The molded body taken out is 60
After aging for 8 hours in a room at 23 ° C., the mixture was left at 23 ° C. for 3 days to obtain a molded foam. The molding performance and the physical properties of the obtained molded foam were evaluated by the methods described above.
Shown in

【0040】表5によると、本発明の予備発泡粒子は型
内成形性(融着度、対金型寸法収縮率)に優れており、
型内成形して得た成形発泡体の比圧縮強度、耐衝撃割れ
性、繰り返し圧縮歪耐久性の物性が品位のある高度な値
を示すことが分かる。また、実験No. 24として、比較
例1で得た発泡温度からビカット軟化温度以下に冷却す
るのに15秒を越え、冷却時間20秒で得た発泡倍率1
7.2 cm3/gの予備発泡粒子(表2、3のNo.7)を
上記と同様にして型内成形して物性を評価したところ、
繰り返し圧縮歪21%と、耐久性に劣るものであった。
According to Table 5, the pre-expanded particles of the present invention are excellent in in-mold moldability (degree of fusion, shrinkage ratio to mold).
It can be seen that the physical properties of the specific compression strength, impact cracking resistance, and repeated compression strain durability of the molded foam obtained by in-mold molding exhibit high values with high quality. Also, as Experiment No. 24, it took more than 15 seconds to cool from the foaming temperature obtained in Comparative Example 1 to the Vicat softening temperature or lower, and the foaming ratio 1 obtained in a cooling time of 20 seconds.
When the pre-expanded particles of 7.2 cm 3 / g (No. 7 in Tables 2 and 3) were molded in a mold in the same manner as above, and the physical properties were evaluated.
The repetitive compression strain was 21%, which was inferior in durability.

【0041】これらの結果は、本発明の予備発泡粒子の
特徴であるところの、基材樹脂が、メタロセン触媒で合
成された、密度が0. 900〜0. 930g/cm3 の範
囲内で、昇温溶出法で分別して得たポリマ−成分を13
C−NMRによって測定した重量平均分布度(Cw)と
数平均分布度(Cn)との比Cw/Cn(組成分岐度分
布)が1.1〜2.5である無架橋直鎖状低密度ポリエ
チレン樹脂からなり、発泡倍率が8〜60cm3 /g
で、かつ独立気泡率が90%以上であることを意味し、
そして実験No. 15と実験No. 24の対比から本発明の
製造条件で得られた予備発泡粒子であるため、優れた物
性をもつ成形発泡体が提供されるものであることが分か
る。
These results indicate that the base resin, which is a feature of the pre-expanded particles of the present invention, has a density in the range of 0.900 to 0.930 g / cm 3 synthesized with a metallocene catalyst. The polymer component obtained by fractionation by the temperature rising elution method was 13
Non-crosslinked linear low density having a ratio Cw / Cn (composition branching distribution) between the weight average distribution (Cw) and the number average distribution (Cn) measured by C-NMR of 1.1 to 2.5. It is made of polyethylene resin and has an expansion ratio of 8 to 60 cm 3 / g
And means that the closed cell rate is 90% or more,
From the comparison between Experiment No. 15 and Experiment No. 24, it can be seen that since the pre-expanded particles were obtained under the production conditions of the present invention, a molded foam having excellent physical properties was provided.

【0042】[0042]

【実施例3】表1の樹脂Bの60重量部と、樹脂Dの4
0重量部との混合樹脂組成を用い、混合樹脂粒子を製造
した。この混合樹脂粒子は、ポリマ−密度0.913g
/cm3 、組成分岐度分布Cw/Cn2.3、軟化温度
101℃であった。この樹脂粒子の軟化温度より10℃
高い加熱温度下で加熱発泡し、そして冷水を吹き付けて
軟化温度以下に5秒で冷却した以外は実施例1と同様に
して一次、二次膨張を行い予備発泡粒子を得た。得られ
た予備発泡粒子は発泡倍率が32cm3 /gで、独立気
泡率が99%のものであった。この予備発泡粒子を実施
例2と同様に型内成形して、見かけの密度0.033g
/cm3 の成形発泡体を得た。この成形体の比圧縮強度
22、繰り返し圧縮歪14%、耐剪断衝撃割れ量4mm
と優れたものであった。
Example 3 60 parts by weight of resin B in Table 1 and 4 parts of resin D
Using the mixed resin composition with 0 parts by weight, mixed resin particles were produced. The mixed resin particles had a polymer density of 0.913 g.
/ Cm 3 , composition branching degree distribution Cw / Cn 2.3, and softening temperature 101 ° C. 10 ° C. below the softening temperature of the resin particles
Pre-expanded particles were obtained by performing primary and secondary expansion in the same manner as in Example 1 except that the mixture was foamed by heating under a high heating temperature, and was cooled to a softening temperature or lower in 5 seconds by blowing cold water. The pre-expanded particles obtained had an expansion ratio of 32 cm 3 / g and a closed cell ratio of 99%. The pre-expanded particles were molded in a mold in the same manner as in Example 2 and had an apparent density of 0.033 g.
/ Cm 3 was obtained. The specific compression strength of this molded article is 22, the compressive strain is repeatedly 14%, and the resistance to shear impact cracking is 4 mm.
And it was excellent.

【0043】この結果によると、本発明の基材樹脂とし
て、密度の異なる樹脂同士をブレンドして用いることも
できることが分かる。
The results show that resins having different densities can be blended and used as the base resin of the present invention.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【発明の効果】本発明は上述の構成を持つことにより、
型内融着成形性能に富み、そして従来の無架橋直鎖状ポ
リエチレン系樹脂成形発泡体に比べて、比圧縮強度、繰
り返し圧縮永久歪に優れ、そして繰り返し落下衝撃に耐
える割れ難さ(耐剪断衝撃性)の実用特性を高水準の値
で満たす成形発泡体を容易に提供することができる。得
られた成形発泡体は、例えば包装用緩衝材、通函、シ−
トクッション芯材等に広く活用でき有用であることによ
り、その商品価値は極めて高いものである。そして、架
橋ポリエチレン系樹脂予備発泡粒子の持つ廃棄物問題を
クリア−した、無架橋直鎖状低密度ポリエチレン系樹脂
予備発泡粒子であり、業界の願望を満たすものである。
According to the present invention having the above-described structure,
It has excellent in-mold fusion molding performance, and has excellent specific compression strength, repeated compression set, and crack resistance to withstand repeated drop impact (shear resistance compared to conventional non-crosslinked linear polyethylene resin molded foam) A molded foam that satisfies the practical properties of (impact) at a high level can be easily provided. The obtained molded foam is used, for example, for cushioning material for packaging,
Its commercial value is extremely high because it is widely used and useful as a cushion core material. And it is a non-crosslinked linear low density polyethylene resin pre-expanded particle which satisfies the waste problem of the cross-linked polyethylene resin pre-expanded particle, and satisfies the desire of the industry.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 密度が0. 900〜0. 930g/cm3
であり、昇温溶出法で分別して得たポリマ−成分を13
C−NMRによって測定した重量平均分布度(Cw)と
数平均分布度(Cn)との比Cw/Cnが1.1〜2.
5である無架橋直鎖状低密度ポリエチレン樹脂からなる
予備発泡粒子であって、その発泡倍率が8〜60cm3
/gで、かつその気泡の90%以上が独立気泡構造を有
することを特徴とする無架橋直鎖状低密度ポリエチレン
系樹脂予備発泡粒子。
(1) a density of 0.900 to 0.930 g / cm 3;
And the polymer component obtained by fractionation by the temperature rising elution method was 13
The ratio Cw / Cn between the weight average distribution (Cw) and the number average distribution (Cn) measured by C-NMR is 1.1 to 2.
Pre-expanded particles made of a non-crosslinked linear low-density polyethylene resin having an expansion ratio of 8 to 60 cm 3.
/ G and 90% or more of the cells have a closed cell structure. Pre-expanded particles of a non-crosslinked linear low density polyethylene resin.
【請求項2】 昇温溶出法で分別して得たポリマ−成分
を13C−NMRによって測定した重量平均分布度(C
w)と数平均分布度(Cn)との比Cw/Cnが1.1
〜2.5である無架橋直鎖状低密度ポリエチレン樹脂粒
子に、密閉容器内で発泡剤を接触含有させ、得られた発
泡性樹脂粒子をその樹脂粒子の軟化温度より5〜15℃
高い加熱温度下で加熱発泡した後、冷媒を吹き付けて軟
化温度以下に15秒以内で冷却させることを特徴とする
無架橋直鎖状低密度ポリエチレン系樹脂予備発泡粒子の
製造方法。
2. A weight-average distribution (C) measured by 13 C-NMR for a polymer component obtained by fractionation by a temperature rising elution method.
w) and the ratio Cw / Cn of the number average distribution (Cn) are 1.1.
A non-crosslinked linear low-density polyethylene resin particle having a particle size of up to 2.5 is contacted with a blowing agent in a closed container, and the obtained expandable resin particle is heated to a temperature of 5 to 15 ° C. below the softening temperature of the resin particle.
A method for producing non-crosslinked linear low-density polyethylene-based resin pre-expanded particles, characterized in that a foam is heated and foamed at a high heating temperature and then cooled to a softening temperature or less within 15 seconds by blowing a refrigerant.
JP06968594A 1994-04-07 1994-04-07 Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same Expired - Lifetime JP3149152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06968594A JP3149152B2 (en) 1994-04-07 1994-04-07 Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06968594A JP3149152B2 (en) 1994-04-07 1994-04-07 Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07278341A JPH07278341A (en) 1995-10-24
JP3149152B2 true JP3149152B2 (en) 2001-03-26

Family

ID=13409979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06968594A Expired - Lifetime JP3149152B2 (en) 1994-04-07 1994-04-07 Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3149152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043103A1 (en) * 2022-08-24 2024-02-29 旭化成株式会社 Method for producing foam beads, amorphous resin foam beads, crystalline resin foam beads and foam molded body

Also Published As

Publication number Publication date
JPH07278341A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
KR860001034B1 (en) Foamed articles and method of producing for the same
US20030166782A1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
EP0108245B1 (en) Process for producing pre-foamed particles of polypropylene resin
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
WO2010087111A1 (en) Polypropylene resin pre-foamed particle and method for producing same, and polypropylene resin in-mold foaming molded article
US4617323A (en) Prefoamed particles of crosslinked propylene-type resin and molded article prepared therefrom
EP1373401B8 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
EP0933389B1 (en) Polypropylene resin pre-expanded particles
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP3149152B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
EP0575958B1 (en) Pre-expanded particles of LLDPE
EP1031602B9 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
EP0317995A2 (en) Process for preparing foamed article from propylene resin
JPH1045938A (en) Pre-expanded polypropylene resin particle
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JPH04225042A (en) Foam based on olefin copolymer
JP3347776B2 (en) Non-crosslinked polyethylene resin pre-expanded particles and method for producing the same
JPH11106549A (en) Pre-expanded crosslinked linear polyethylene resin particle
JP2892210B2 (en) Lightly crosslinked linear low density polyethylene pre-expanded particles and their preparation
JP5252957B2 (en) Polypropylene resin pre-expanded particles and in-mold molded body comprising the same
JP2023148536A (en) Foamed particle and foamed particle molding
JPH0218225B2 (en)
JPS6020943A (en) Non-crosslinked polyethylene resin expanded particle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001226

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

EXPY Cancellation because of completion of term