JPS58136631A - Production of expanded propylene resin particle - Google Patents

Production of expanded propylene resin particle

Info

Publication number
JPS58136631A
JPS58136631A JP1926882A JP1926882A JPS58136631A JP S58136631 A JPS58136631 A JP S58136631A JP 1926882 A JP1926882 A JP 1926882A JP 1926882 A JP1926882 A JP 1926882A JP S58136631 A JPS58136631 A JP S58136631A
Authority
JP
Japan
Prior art keywords
particles
low
foaming
resin particles
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1926882A
Other languages
Japanese (ja)
Inventor
Masao Ando
正夫 安藤
Tatsuhiko Nishida
西田 建彦
Kyoichi Nakamura
中村 京一
Kenichi Senda
健一 千田
Kiyoshi Mori
清 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP1926882A priority Critical patent/JPS58136631A/en
Publication of JPS58136631A publication Critical patent/JPS58136631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the titled highly expanded particles, by carrying out the blowing agent impregnation and heating of polypropylene particles in multiple stages and employing a mixed gas consisting of an inorganic gas and a low- boiling organic compound as blowing agents used in the second and subsequent stages. CONSTITUTION:The impregnation and heating of polypropylene resin particles, such as propylene/ethylene random copolymer particles or propylene/ethylene/ butene random terpolymer particles, with a blowing agent are carried out in multiple stages. Then, a mixed gas consisting of 1mol of an inorganic gas such as nitrogen, argon or helium and 0.01-3mol of a low-boiling (b.p. -50-50 deg.C) organic compound such as dichlorodifluoromethane, trichloromonofluoromethane or propane is used as the blowing agent in the second and subsequent stages. Thus, it becomes possible to obtain highly expanded resin particles by a synergistic effect of the inorganic gas and the low-boiling organic compound.

Description

【発明の詳細な説明】 本発明は、樹脂粒子に発泡剤を含有させ、これを加熱し
て予備発泡粒子とし、所望の形状の成形体を得るため型
成形などに適用されるポリプロピレン系樹脂発泡粒子の
製造法に関するものであシ、包装材、緩衝材として好適
な柔軟性、緩衝性、強靭性を有する成形体を得る為の発
泡倍率の高いポリプロピレン系樹脂発泡粒子の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a polypropylene resin foaming method which is applied to molding etc. in order to obtain a molded article of a desired shape by incorporating a foaming agent into resin particles and heating them to obtain pre-expanded particles. This article relates to a method for producing particles, and a method for producing foamed polypropylene resin particles with a high expansion ratio in order to obtain molded articles having flexibility, cushioning properties, and toughness suitable for packaging materials and cushioning materials. .

型内成形による発泡成形体の基材樹脂としてはポリスチ
レン、ポリエチレンが汎用されている。
Polystyrene and polyethylene are commonly used as base resins for foam molded products formed by in-mold molding.

ポリスチレンを基材樹脂とした場合は、発泡剤保特性、
加工性、剛性において優れているが、脆さ、低温特性、
耐薬品性において劣っている。一方、ポリエチレンを基
材樹脂とした場合は、発泡剤保持性、加工性、剛性は劣
るが、柔軟かつ強靭で、低温特性、耐薬品性に優れたも
のが得られる。この様に両者共−長一短があり、用途に
よる使いわけが行われているのが現状である。
When polystyrene is used as the base resin, foaming agent retention properties,
Although it has excellent workability and rigidity, it has brittleness, low temperature characteristics,
Poor chemical resistance. On the other hand, when polyethylene is used as the base resin, the foaming agent retention, processability, and rigidity are inferior, but it is flexible and strong, and has excellent low-temperature properties and chemical resistance. As described above, both have advantages and disadvantages, and at present they are used differently depending on the purpose.

ポリスチレン発泡体の大きな欠点としては耐熱温度が低
いことと、脆くてこわれ易いことが挙げられ、ポリエチ
レン発泡体の欠点としては耐熱温度が低いことと、緩衝
材として好適な物性を示す発泡倍率が比較的低倍率であ
シ、原料コストが高くつくことである。
The major disadvantages of polystyrene foam are its low heat resistance and its brittleness and easy breakage.The disadvantages of polyethylene foam are its low heat resistance and its expansion ratio, which has physical properties suitable for use as a cushioning material. The disadvantage is that the raw material cost is high due to the low magnification ratio.

ポリプロピレン樹脂は、同じポリオレフィン系の樹脂で
あるポリエチレン樹脂と同様、柔軟性、強靭性、低温特
性、耐薬品性を有し、かつ耐熱温度が高く更に剛性、強
度が大きいので、ポリエチレン発泡体と同一の緩衝性能
を有する発泡体とする場合、ポリエチレンに比べて低密
度にすることができ、原料コストが低減されて経済的に
有利となるため高発泡倍率の成形体を得るメリットが大
きい。しかしながらポリプロピレン系樹脂粒子に、通常
ビーズ法型内発泡ポリスチレンやポリエチレ    ン
の製造に於て用いられている低沸点の有機化合物から成
る発泡剤を含有させ、加熱によって発泡させて型内成形
用の予備発泡粒子を得ようとしても発泡倍率の低い発泡
粒子しか得られない。
Polypropylene resin has the same flexibility, toughness, low-temperature properties, and chemical resistance as polyethylene resin, which is also a polyolefin-based resin, and has a high heat resistance and high rigidity and strength, so it is the same as polyethylene foam. In the case of a foam having a cushioning performance of 1, the density can be lower than that of polyethylene, and the cost of raw materials is reduced, which is economically advantageous, so there is a great advantage in obtaining a molded product with a high expansion ratio. However, polypropylene resin particles contain a blowing agent consisting of a low-boiling organic compound that is normally used in the manufacture of polystyrene foam and polyethylene by the bead method, and are foamed by heating to form a preliminary material for in-mold molding. Even if one attempts to obtain expanded particles, only expanded particles with a low expansion ratio can be obtained.

本発明者等は、かかるポリプロピレン系樹脂の問題点を
克服し高度に発泡した発泡粒子の製造法について鋭意研
究を電ねた結果、原料樹脂種、発泡方法、発泡剤の適切
な組合せのとき所望の高発泡倍率のポリプロピレン系樹
脂発泡粒子が得られることを見い出し本発明を完成させ
るに到った。
The inventors of the present invention have conducted intensive research into a method for producing highly foamed foamed particles that overcomes the problems of polypropylene resins, and have found that when appropriate combinations of raw material resin type, foaming method, and foaming agent are used, the desired result can be obtained. The present invention was completed based on the discovery that foamed polypropylene resin particles having a high expansion ratio of 100% can be obtained.

すなわち本発明は、ポリプロピレン系樹脂粒子を多段階
で発泡させる方法に於て、二段階目以降の発泡剤として
(a)無機ガスと(b)低沸点有機化金物とから成る混
合ガスを用いることを特徴とするポリプロピレン系樹脂
発泡粒子の製造法を提供するものである。
That is, the present invention uses a mixed gas consisting of (a) an inorganic gas and (b) a low-boiling organic metal compound as a foaming agent in the second and subsequent stages in a method for foaming polypropylene resin particles in multiple stages. The present invention provides a method for producing expanded polypropylene resin particles characterized by the following.

ポリスチレン樹脂やポリエチレン樹脂の場合は、発泡剤
の種類、量、加熱条件等を選択することにより、一度の
発泡で所定の倍率まで発泡させることが可能であるが、
ポリプロピレン系樹脂を用いた場合は発泡剤の種類、発
泡剤の量、加熱条件等を種々選択しても一度の発泡で高
度に発泡させることが困難である。
In the case of polystyrene resins and polyethylene resins, it is possible to foam them to a predetermined ratio in a single foaming process by selecting the type and amount of foaming agent, heating conditions, etc.
When a polypropylene resin is used, it is difficult to foam to a high degree in a single foaming process, even if the type of foaming agent, amount of foaming agent, heating conditions, etc. are variously selected.

ポリエチレンを多段に発泡させる類似の発泡方法(特開
昭54−81475、同54−52169、同55−2
780)が知られているが、ポリエチレンの場合は一度
の発泡でも所望の倍率まて発泡させることが可能であり
、このような発泡方法は発泡倍率のバラツキを小さくす
ることを主な目的としている。更に二段階目の発泡を行
なう為の発泡剤としては、空気、窒素、二酸化炭素、ヘ
リタム等の不活性ガスを用いるのが好ましいが、プロパ
ン、ペンタン等の有機揮発性物質を用いても発泡は達成
できると示されている。また特公昭48−84891に
もポリエチレンを多段に発泡させる類似の方法が示され
ているが、これによると二段目以降の発泡に用いる発泡
剤としては、常態下ガス又は易揮発性物質のうち、フロ
ン系のガス状化合物なかでもジクロロトリフルオロエタ
ンが最も好適であると示されている。このようにポリエ
チレン樹脂を多段で発泡させる方法に放て、2段階目以
降の発泡に用いる発泡剤としては、不活性ガス、有機揮
発性物質、あるいけこれらの混合物のいずれを用いても
発泡は達成できる。一方ポリプロピレン系樹脂の場合は
樹脂の持つ特性上、空気、窒素の如き不活性ガスだけを
2段、目以降の発泡剤として用いたのでは発泡倍率を高
度にすることが難しい。これはポリプロピレン系樹脂の
方がポリエチレン樹脂よりも気体の透過速度の遅いこと
等に起因している為と思われる。又、有機揮発性物質だ
けを2段目以降の発泡剤として用いた場合は、発泡剤を
含有させる処理中に発泡粒子が収縮してしまう為か、こ
れを加熱してもやはり高い発泡倍率の発泡粒子を得るこ
とFi難しい。
Similar foaming methods for foaming polyethylene in multiple stages (JP-A-54-81475, JP-A-54-52169, JP-A-55-2)
780) is known, but in the case of polyethylene, it is possible to foam to a desired expansion ratio even with one foaming, and the main purpose of this foaming method is to reduce the variation in expansion ratio. . Furthermore, as a blowing agent for the second stage of foaming, it is preferable to use an inert gas such as air, nitrogen, carbon dioxide, or heritum, but foaming cannot be achieved even if an organic volatile substance such as propane or pentane is used. has been shown to be achievable. In addition, a similar method for foaming polyethylene in multiple stages is shown in Japanese Patent Publication No. 48-84891, but according to this, the blowing agent used for the second and subsequent stages of foaming is one of gases or easily volatile substances under normal conditions. Among the fluorocarbon-based gaseous compounds, dichlorotrifluoroethane has been shown to be the most suitable. In this way, when polyethylene resin is subjected to a multi-stage foaming process, the foaming agent used for the second and subsequent stages of foaming can be either an inert gas, an organic volatile substance, or a mixture of these. It can be achieved. On the other hand, in the case of polypropylene resin, due to the characteristics of the resin, it is difficult to achieve a high expansion ratio if only an inert gas such as air or nitrogen is used as a blowing agent in the second and subsequent stages. This is thought to be due to the fact that polypropylene resin has a slower gas permeation rate than polyethylene resin. In addition, when only organic volatile substances are used as the blowing agent in the second and subsequent stages, even if heated, the foaming ratio is still high, probably because the foamed particles shrink during the process of incorporating the blowing agent. It is difficult to obtain expanded particles.

このようにポリエチレン樹脂とは異なった挙動を示すポ
リプロピレン系樹脂を発泡させるにあたり、多段発泡に
於て、2段目以降の発泡を行なわせる為の発泡剤として
無機ガスと低沸点有機化合物から成る混合ガスを使用す
ることによってはじめて所望の高発泡倍率の発泡粒子を
得ることができることがわかった。
When foaming polypropylene resin, which behaves differently from polyethylene resin, a mixture of inorganic gas and low-boiling point organic compound is used as a blowing agent for the second and subsequent stages of foaming in multi-stage foaming. It has been found that foamed particles with a desired high expansion ratio can only be obtained by using gas.

本発明に於て用いられるポリプロピレン系樹脂粒子とし
てはプロピレンとエチレンのランダムコポリマーまたは
プロピレン、エチレン、ブテンのランダムターポリマー
が好ましい。ポリプロピレンのホモポリマーまたは、プ
ロピレンとエチレンのブロックコポリマーを用いても発
泡は可能であるが、均一な気泡構造が得られず、また発
泡倍率も上がりにくい。一方プロピレンとエチレンのラ
ンダムコポリマー又はプロピレン、エチレン、ブテンの
ランダムターポリマーを用いた場合は、均一な気泡構造
を持ち且つ高発泡倍率の発泡粒子が得られる。その理由
は未だ解明するには到っていないが、エチレン、ブテン
のようなモノマーをランダム共重合させることによりポ
リプロピレンの結晶化度が低下し発泡温度領域での粘弾
性が改善される為と考えられる。またポリプロピレン系
樹脂には、本発明の目的を阻害しない範囲でポリエチレ
ン、ポリスチレン等の他のポリマーや紫外線吸収剤、帯
電防止剤、熱安定剤、着色側、無機質微粉末や気泡調節
剤として特定の化合物を含有させても良い。
The polypropylene resin particles used in the present invention are preferably random copolymers of propylene and ethylene or random terpolymers of propylene, ethylene, and butene. Foaming is possible using a polypropylene homopolymer or a block copolymer of propylene and ethylene, but a uniform cell structure cannot be obtained and the expansion ratio is difficult to increase. On the other hand, when a random copolymer of propylene and ethylene or a random terpolymer of propylene, ethylene, and butene is used, foamed particles having a uniform cell structure and a high expansion ratio can be obtained. The reason for this has not yet been elucidated, but it is believed that random copolymerization of monomers such as ethylene and butene reduces the crystallinity of polypropylene and improves its viscoelasticity in the foaming temperature range. It will be done. In addition, the polypropylene resin may contain other polymers such as polyethylene and polystyrene, ultraviolet absorbers, antistatic agents, heat stabilizers, coloring agents, inorganic fine powders, and bubble control agents, as long as they do not impede the purpose of the present invention. A compound may also be included.

本発明で用いられる一段発泡粒子の製造方法としては、
ポリプロピレン系樹脂粒子に低沸点の有機化合物、例え
ばプロパン、ブタン、ペンクン等の脂肪族炭化水素及び
メチレンクロライド、ジクロルジフルオルメタン、トリ
クロルモノフルオルメタン、モノクロルジフルオルメタ
ン等のハロゲン化炭化水素類から選ばれた一種又はそれ
等の二種以上の混合物を含有させ、加熱によって発泡さ
せる方法が一般的に行なわれる。本発明で用いられる無
機ガスには、空気、窒素、アルゴン、ネオン、ヘリウム
等があり、これらを単独又は混合して使用することがで
きるが、空気のような窒素を主成分とする無機ガスを用
いるのが経済的に有利である。これら無機ガスと混合し
て使用する低沸点有機化合物としては、沸点が一50〜
50°Cのジクロルジフルオルメタン、ジクロルテトラ
フルオルエタン、トリクロルモノフルオルメタン等のハ
ロゲン化炭化水素類やプロパン、ブタン、ペンタン等の
脂肪族炭化水素類又はこれらの二種以上の混合物があげ
られる。本発明の二段階目以降の発泡剤として用いられ
るこれら無機ガスと低沸点有機化合物とから成る混合ガ
スの組成は、樹脂の種類、粒子の発泡倍率、無機ガスの
種類、低沸点有機化合物の種類等によって好ましい組成
が変化するので、一義的に定めることができないが、低
沸点有機化合物の混合量が少量であっても効果があり、
通常無機ガス1モルに対する低沸点の有機化合物の混合
量が0.01〜8モルの範囲であれば、発泡倍率の高度
のものが得られ、好ましい。無機ガス1モルに対する低
沸点有機化合物の混合量が0.01モル未満では低沸点
有機化合物の混合効果が顕著でなく、発泡倍率が高度と
ならないし、無機ガス1モルに対する低沸点有機化合物
の混合量が8モルを超えると混合ガスを含有させる処理
中に発泡粒が収縮する現象が発生し好ましくない。
The method for producing the single-stage expanded particles used in the present invention includes:
Polypropylene resin particles contain organic compounds with low boiling points, such as aliphatic hydrocarbons such as propane, butane, and penkune, and halogenated hydrocarbons such as methylene chloride, dichlorodifluoromethane, trichloromonofluoromethane, and monochlorodifluoromethane. Generally, a method is carried out in which one selected from the following or a mixture of two or more thereof is contained and foamed by heating. Inorganic gases used in the present invention include air, nitrogen, argon, neon, helium, etc., and these can be used alone or in combination. It is economically advantageous to use The low boiling point organic compounds to be mixed with these inorganic gases have boiling points of 150 to
50°C halogenated hydrocarbons such as dichlorodifluoromethane, dichlorotetrafluoroethane, trichloromonofluoromethane, aliphatic hydrocarbons such as propane, butane, pentane, or a mixture of two or more of these. can be given. The composition of the mixed gas consisting of these inorganic gases and low-boiling organic compounds used as the blowing agent in the second and subsequent stages of the present invention is determined by the type of resin, the expansion ratio of the particles, the type of inorganic gas, and the type of low-boiling organic compound. Although it cannot be determined unambiguously because the preferred composition changes depending on factors such as
Generally, it is preferable that the amount of the low-boiling organic compound mixed per mole of the inorganic gas ranges from 0.01 to 8 moles because a high expansion ratio can be obtained. If the amount of the low-boiling organic compound mixed per mole of inorganic gas is less than 0.01 mole, the mixing effect of the low-boiling organic compound will not be significant, the foaming ratio will not be high, and the low-boiling organic compound will not be mixed per mole of the inorganic gas. If the amount exceeds 8 moles, the foamed particles will shrink during the process of containing the mixed gas, which is not preferable.

又、本発明の方法において、二段階または三段階で発泡
剤を含浸させ予備発泡させる場合には、二段目または三
段目の含浸に使う発泡剤は無機ガス1モルに対する低沸
点有機化合物の混合量は0゜1〜8.0モルの範囲であ
ることが好ましい。
In addition, in the method of the present invention, when pre-foaming is performed by impregnating a blowing agent in two or three stages, the blowing agent used in the second or third stage impregnation is a low boiling point organic compound per mole of inorganic gas. The mixing amount is preferably in the range of 0.1 to 8.0 moles.

本発明に放て二段目以降の発泡剤として混合ガスを含有
せしめる方法としては、混合ガスの加圧雰囲気下に発泡
粒子を置き、発泡粒子内に混合ガスを浸透させる気相含
浸の方法を用いるが、この時の混合ガスの全圧力として
は2〜50kg/cdの範囲とするのが好ましい。全圧
力が2 kg / c−未満では発泡剤の含有量が少な
く発泡倍率が高度とならないし、5okti/dを超え
ると発泡粒子が収縮する傾向が見られ、やはり高度に発
泡した粒子を得ることができない。混合ガスを含有せし
める時の処理温度は発泡粒が溶融する温度より低い温度
で行なう。
In the present invention, a method of incorporating a mixed gas as a blowing agent in the second and subsequent stages is a gas phase impregnation method in which foamed particles are placed in a pressurized atmosphere of mixed gas and the mixed gas is permeated into the foamed particles. However, the total pressure of the mixed gas at this time is preferably in the range of 2 to 50 kg/cd. When the total pressure is less than 2 kg/c-, the foaming agent content is small and the expansion ratio is not high; when it exceeds 5 okti/d, the foamed particles tend to shrink, and it is difficult to obtain highly foamed particles. I can't. The treatment temperature for containing the mixed gas is lower than the temperature at which the expanded beads melt.

本発明によって高度に発泡したポリプロピレン系樹脂発
泡粒子が得られるのは、低沸点有機化合物が発泡粒子の
樹脂膜に浸透し、樹脂膜を発泡に好適な粘弾性に調節す
ると共に、樹脂膜に対し透過速度の遅い無機ガスが発泡
に効率良く寄与する為り思われ、無機ガスと低沸点有機
化合物との相刺効果によって高い発泡倍率の発泡粒子が
得られると考えられる。
The reason why highly foamed polypropylene resin foam particles can be obtained by the present invention is that the low boiling point organic compound penetrates into the resin film of the foam particles, adjusts the viscoelasticity of the resin film to be suitable for foaming, and This is thought to be because the inorganic gas, which has a slow permeation rate, efficiently contributes to foaming, and it is thought that foamed particles with a high expansion ratio can be obtained due to the mutual stabilization effect between the inorganic gas and the low-boiling point organic compound.

本発明の方法によって、ポリプロピレン系樹脂粒子を多
段階に発泡させて発泡粒子を得ようとする場合、発泡段
階を多くすれば高発泡倍率を得るのに有利であり、且つ
発泡倍率のバラツキが小さくなる。発泡に要する発泡設
備及び製造上の経済性を考慮した場合、発泡の段階数は
2〜5であり、好ましくは2〜8である。更に二段階で
所望の高発泡倍率の発泡粒子を得るのが特に有利である
When attempting to obtain expanded particles by foaming polypropylene resin particles in multiple stages using the method of the present invention, increasing the number of foaming stages is advantageous in obtaining a high expansion ratio, and the variation in expansion ratio is small. Become. When considering the foaming equipment required for foaming and the economic efficiency of production, the number of foaming stages is 2 to 5, preferably 2 to 8. Furthermore, it is particularly advantageous to obtain expanded particles with the desired high expansion ratio in two stages.

二段階の場合、一段目の発泡に於ける発泡粒子の発泡倍
率が3〜20倍であり、二段目の発泡に於ける発泡粒子
の発泡倍率が10〜60倍であることが好ましい。高発
泡倍率の発泡粒子を得ようとする°場合、一段目の発泡
粒子の発泡倍率を高くしておく方が有利であるが、一段
目の発泡粒子の発泡倍率を20倍を超えて上げようとす
ると発泡粒の独立気泡率の低下をまねくので好ましくな
い。
In the case of two stages, it is preferable that the expansion ratio of the expanded particles in the first stage of foaming is 3 to 20 times, and the expansion ratio of the foamed particles in the second stage of foaming is 10 to 60 times. When trying to obtain foamed particles with a high expansion ratio, it is advantageous to increase the expansion ratio of the first stage foamed particles, but it is recommended to increase the expansion ratio of the first stage foamed particles to more than 20 times. This is not preferable because it causes a decrease in the closed cell ratio of the expanded beads.

又、一段目の発泡粒子の発泡倍率が3倍未満では二段目
の発泡が困難になる。
Furthermore, if the expansion ratio of the first stage foamed particles is less than 3 times, it becomes difficult to foam the second stage.

更に一段目の発泡粒子の独立気泡率は高いものであるこ
とが好ましい。独立気泡率とは全気泡に対する独立気泡
(気泡間隔壁によってへたてられ密閉されている気泡)
の割合であり、次の様にして測定することができる。
Furthermore, it is preferable that the first stage expanded particles have a high closed cell ratio. Closed cell ratio is the number of closed cells (cells that are flattened and sealed by cell partitions) to the total number of cells.
It can be measured as follows.

d:樹脂の密度 W:発泡粒子試料の重量 V二発泡粒子試料を水没し良く脱泡して測定した見掛体
積 V:空気比較式比重計(例えば東芝ペンクマン社製空気
比較式比重計930型)を用いて測定した発泡粒子試料
の体積 v−W/d 独立気泡率(%)−X  100 ■ 一段目の発泡粒の独立気泡率/r165%以上が好まし
く、更に85%以上がよシ好ましい。一段目の独立気馴
が65%未満では、加熱した際の発泡粒子の膨張が小さ
く、高度に発泡した発泡粒子が得られないし、成形する
際の発泡粒子の膨張圧が十分でなくなり、融着の良い、
外観美麗の緩衝性能の優れた成形体が得られにくい。
d: Density of the resin W: Weight of the foamed particle sample V: Apparent volume measured by submerging the foamed particle sample in water and thoroughly defoaming V: Air comparison type hydrometer (for example, air comparison type hydrometer 930 model manufactured by Toshiba Penkman Corporation) ) Volume of expanded particle sample measured using v-W/d Closed cell ratio (%) - . If the closed air compatibility in the first stage is less than 65%, the expansion of the foamed particles upon heating will be small and highly foamed foamed particles will not be obtained, and the expansion pressure of the foamed particles during molding will not be sufficient, resulting in fusion. good,
It is difficult to obtain a molded article with a beautiful appearance and excellent cushioning performance.

本発明によって得られるポリプロピレン系樹脂発泡粒子
は、更に発泡能を付与したうえで該発泡粒子を成形型内
に充填し、加熱することによって粒子間の融着が良好で
表面平滑な成形体を得ることができる。本発明の如き無
機ガスと低沸点有機化合物とから成る混合ガスを含有さ
せる方法によって発泡能を付与した場合は発泡能が大き
いので、無機ガスだけを含有させた場合に比べて成形加
熱時の熱量が少くても粒子間の融着が極めて良好で、表
面平滑な成形体を得ることが可能となる。無機ガスだけ
を含有させる方法の場合は、発泡倍率が上りにくく、か
つ二次発泡時及び成形加熱時に多大の熱量を要する。
The expanded polypropylene resin particles obtained by the present invention are further imparted with foaming ability, and then filled into a mold and heated to obtain a molded product with good interparticle fusion and a smooth surface. be able to. When foaming ability is imparted by the method of containing a mixed gas consisting of an inorganic gas and a low-boiling organic compound as in the present invention, the foaming ability is large, so the amount of heat during molding heating is greater than when only an inorganic gas is contained. Even if the amount is small, the fusion between the particles is extremely good, and it is possible to obtain a molded article with a smooth surface. In the case of a method in which only an inorganic gas is contained, it is difficult to increase the expansion ratio, and a large amount of heat is required during secondary foaming and heating for molding.

発泡及び成形時の加熱条件は、樹脂の種類、発泡粒子の
発泡倍率、混合ガスの組成、粒子の形状、大きさ等によ
って適宜選択されるが、水蒸気を加熱媒体とする場合、
水蒸気温度110〜160°C1加熱時間10秒〜10
分程度の範囲で行なうことができる。この際使用される
発泡機及び成形機は、通常ポリエチレンの発泡、成形に
使用されるものをそのまま、或いは若干の改良を加える
ことにより使用できる。
The heating conditions during foaming and molding are appropriately selected depending on the type of resin, the expansion ratio of the expanded particles, the composition of the mixed gas, the shape and size of the particles, etc., but when using water vapor as the heating medium,
Steam temperature 110-160°C 1 heating time 10 seconds-10
This can be done within a few minutes. The foaming machine and molding machine used in this case can be those normally used for foaming and molding polyethylene, as they are, or with some modifications.

このようにして得られた成形体は、発泡ポリエチレン収
形体に比ベポリプロピレン系樹脂の特性によって耐熱温
度が高く、比較的低密度にしても強度、緩衝性が損われ
ず、発泡ポリエチレン成形体並みの柔軟性、低温特性、
耐薬品性をもち、特に緩衝材、断熱材、包装材として好
適に使用される。
The molded product obtained in this way has a higher heat resistance than a foamed polyethylene molded product due to the characteristics of the polypropylene resin, and has strength and cushioning properties that are comparable to those of a foamed polyethylene molded product even when the density is relatively low. flexibility, low temperature properties,
It has chemical resistance and is particularly suitable for use as cushioning materials, insulation materials, and packaging materials.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

実施例、比較例1 グロピレンーエチレンランダムコポリマー(密度0.9
0g/d、MI=9、エチレン含有率4.3%、ビカッ
ト軟化点119°C)ペレット100重量部ヲジクロル
ジフルオルメタンの飽和蒸気と60’C,圧力15.6
に9/C−で4時間接触させ、ジタロルジフルオルーメ
タン27重量部含浸させた。
Examples, Comparative Example 1 Glopyrene-ethylene random copolymer (density 0.9
0g/d, MI=9, ethylene content 4.3%, Vicat softening point 119°C) 100 parts by weight of pellets were mixed with saturated steam of dichlorodifluoromethane at 60'C, pressure 15.6
9/C- for 4 hours to impregnate 27 parts by weight of ditaroldifluoromethane.

この発泡性樹脂をL7kQ/c−の水蒸気で40秒間加
熱、発泡させ、発泡倍率10倍の一段発泡粒を得た。こ
の一段発泡粒を常温、常圧雰囲気で24時間放置した後
、この一段発泡粒子を、窒素1モルに対するジクロルジ
フルオルメタンの混合量が0モル(A)、0.1モル(
B)、0.8モル(C)、1モル(D)、8モル(E)
、5モル(F)の混合ガス雰囲気に温度80°C1圧力
20に9/cdで4時間保持して発泡粒子内に(A)〜
(F)のガスを含有させた。
This foamable resin was heated and foamed with water vapor of L7kQ/c- for 40 seconds to obtain single-stage foamed beads with an expansion ratio of 10 times. After the single-stage foamed particles were left for 24 hours at room temperature and normal pressure, the mixed amount of dichlorodifluoromethane per mol of nitrogen was 0 mol (A), 0.1 mol (A), and 0.1 mol (A).
B), 0.8 mol (C), 1 mol (D), 8 mol (E)
, held in a mixed gas atmosphere of 5 mol (F) at a temperature of 80°C, a pressure of 20, and 9/cd for 4 hours to form (A) ~
(F) gas was contained.

次いで1.5〜2.5 kti/d −Gの水蒸気で4
0秒間加熱し発泡させた走きの結果を表−1に示す。
Then, with water vapor of 1.5 to 2.5 kti/d-G,
Table 1 shows the results of foaming after heating for 0 seconds.

表−1 実施例、比較例2 実施例1において得られた一段発泡粒子を用いる。この
一段発泡粒子を窒素1モルに対するジクロルジフルオル
メタンの混合量が0.1モルの混合ガス雰囲気に温度8
0’C1圧カ20kg/cdで4時間保持して発泡粒子
内に混合ガスを含有させ、次いで2.8 kg/d −
Gの水蒸気で40秒加熱発泡させ、発泡倍率84.8倍
の二段発泡粒子を得た。この二段発泡粒子を24時間室
温大気圧下に放置したのち、窒素1モルに対するジクロ
ルジフルオルメタンの混合量が0モル(A)、0.8モ
ル(B)のInガス雰囲気に温度90°C1圧力25に
9/dで4時間保持して発泡粒子内に(A) 、(B)
のガスを含有サセ、次イテ縦3 Q Q jai11横
aoog*、厚ミ50nの金型に充填し2.5#/d−
cの水蒸気で加熱し成形した結果を表−2に示す。
Table 1 Example, Comparative Example 2 The single-stage expanded particles obtained in Example 1 are used. These single-stage expanded particles were placed in a mixed gas atmosphere containing 0.1 mole of dichlorodifluoromethane per mole of nitrogen at a temperature of 8.
0'C1 pressure was held at 20 kg/cd for 4 hours to contain the mixed gas in the expanded particles, and then 2.8 kg/d -
The mixture was heated and foamed for 40 seconds with water vapor of G to obtain two-stage foamed particles with an expansion ratio of 84.8 times. After the two-stage expanded particles were left at room temperature and atmospheric pressure for 24 hours, they were placed in an In gas atmosphere containing 0 mole (A) and 0.8 mole (B) of dichlorodifluoromethane per mole of nitrogen at a temperature of 90 °C. (A), (B) inside the foamed particles by holding at 9/d for 4 hours at a pressure of 25°C and 25°C.
Fill a mold containing 50n of gas, vertically 3 Q Q jai11 horizontally, and 2.5#/d-
Table 2 shows the results of heating and molding with water vapor.

表−2Table-2

Claims (5)

【特許請求の範囲】[Claims] (1)ポリプロピレン系樹脂粒子への発泡剤の含浸と加
熱を多段階に行い、且つ二段階目以降の発泡剤として(
a)無機ガスと(b)低沸点有機化合物とから成る混合
ガスを用いることを特徴とするポリプロピレン系樹脂発
泡粒子の製造法。
(1) Impregnation of polypropylene resin particles with a blowing agent and heating are performed in multiple stages, and as a blowing agent in the second and subsequent stages (
A method for producing expanded polypropylene resin particles, characterized by using a mixed gas consisting of a) an inorganic gas and (b) a low-boiling point organic compound.
(2)ポリプロピレン系樹脂発泡粒子がプロピレンとエ
チレンのランダムコポリマー、又はプロピレン、エチレ
ン、フテンのランダムターポリマーを主成分とするポリ
マーである特許請求の範囲第1項記載のポリプロピレン
系樹脂発泡粒子の製造法。
(2) Production of foamed polypropylene resin particles according to claim 1, wherein the foamed polypropylene resin particles are a polymer whose main component is a random copolymer of propylene and ethylene, or a random terpolymer of propylene, ethylene, and phthene. Law.
(3)無機ガスが窒素を主成分とする無機ガスである特
許請求の範囲第1項記載のポリプロピレン系樹脂発泡粒
子の製造法。
(3) The method for producing expanded polypropylene resin particles according to claim 1, wherein the inorganic gas is an inorganic gas containing nitrogen as a main component.
(4)低沸点有機化合物が沸点−50〜50°Cの炭化
水素またはハロゲン化炭化水素またはこれらの混合物で
ある特許請求の範囲第1項記載のポリプロピレン系樹脂
発泡粒子の製造法。
(4) The method for producing expanded polypropylene resin particles according to claim 1, wherein the low-boiling organic compound is a hydrocarbon or halogenated hydrocarbon having a boiling point of -50 to 50°C, or a mixture thereof.
(5)無機ガスと低沸点有機化合物とから成る混合ガス
の組成が、無機ガス1モルに対する低沸点有機化合物の
混合量が0.01〜3モルである特許請求の範囲第1項
記載のポリプロピレン系樹脂発泡粒子の製造法。
(5) The polypropylene according to claim 1, wherein the composition of the mixed gas consisting of an inorganic gas and a low-boiling organic compound is such that the mixed amount of the low-boiling organic compound is 0.01 to 3 moles per mole of the inorganic gas. Method for producing foamed resin particles.
JP1926882A 1982-02-08 1982-02-08 Production of expanded propylene resin particle Pending JPS58136631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1926882A JPS58136631A (en) 1982-02-08 1982-02-08 Production of expanded propylene resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1926882A JPS58136631A (en) 1982-02-08 1982-02-08 Production of expanded propylene resin particle

Publications (1)

Publication Number Publication Date
JPS58136631A true JPS58136631A (en) 1983-08-13

Family

ID=11994693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1926882A Pending JPS58136631A (en) 1982-02-08 1982-02-08 Production of expanded propylene resin particle

Country Status (1)

Country Link
JP (1) JPS58136631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567208A (en) * 1983-12-07 1986-01-28 Japan Styrene Paper Corporation Preliminarily foamed particles of non-crosslinked polypropylene-type resin
JPS62299322A (en) * 1986-06-19 1987-12-26 Mitsui Toatsu Chem Inc Method and apparatus for continuously preparing foam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712035A (en) * 1980-06-25 1982-01-21 Japan Styrene Paper Co Ltd Production of polyolefin resin molded foam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712035A (en) * 1980-06-25 1982-01-21 Japan Styrene Paper Co Ltd Production of polyolefin resin molded foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567208A (en) * 1983-12-07 1986-01-28 Japan Styrene Paper Corporation Preliminarily foamed particles of non-crosslinked polypropylene-type resin
JPS62299322A (en) * 1986-06-19 1987-12-26 Mitsui Toatsu Chem Inc Method and apparatus for continuously preparing foam

Similar Documents

Publication Publication Date Title
EP0164855B1 (en) Process for the production of expanded particles of a polymeric material
JPS5943492B2 (en) Manufacturing method of polypropylene resin foam molding
EP0123144A1 (en) Polypropylene resin prefoamed particles
JPS5923731B2 (en) Polypropylene resin pre-expanded particles
GB2080813A (en) Process for producing foamed olefin resin articles
JPH0419258B2 (en)
JPS60168632A (en) Expanded molding of bridged polypropylene resin
JPS5943490B2 (en) Polypropylene synthetic resin foam molding
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JPH0559139B2 (en)
US3711430A (en) Expandable copolymers of alpha-olefins and alpha,beta-monoethylenically unsaturated carboxylic acids
JPH0239367B2 (en)
JPS58136631A (en) Production of expanded propylene resin particle
JP3582335B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
JP2001226513A (en) Polyolefin foam particle having high-density surface layer and its preparation method
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JPS6244778B2 (en)
JPH0250945B2 (en)
JPS58136633A (en) Expanded polypropylene resin particle and its preparation
JPS58136634A (en) Production of expanded polypropylene resin particle
JPH0218225B2 (en)
JPH01190736A (en) Production of expanded polyolefin resin particle
JPH02263843A (en) Expanded particle of polypropylene-based resin and production thereof
JPH0350693B2 (en)
JPS6324616B2 (en)