JPH0347297B2 - - Google Patents

Info

Publication number
JPH0347297B2
JPH0347297B2 JP17907482A JP17907482A JPH0347297B2 JP H0347297 B2 JPH0347297 B2 JP H0347297B2 JP 17907482 A JP17907482 A JP 17907482A JP 17907482 A JP17907482 A JP 17907482A JP H0347297 B2 JPH0347297 B2 JP H0347297B2
Authority
JP
Japan
Prior art keywords
foaming
resin
particles
polypropylene
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17907482A
Other languages
Japanese (ja)
Other versions
JPS5968340A (en
Inventor
Akira Fuje
Saburo Shinkai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17907482A priority Critical patent/JPS5968340A/en
Publication of JPS5968340A publication Critical patent/JPS5968340A/en
Publication of JPH0347297B2 publication Critical patent/JPH0347297B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発泡用のポリプロピレン系樹脂組成物
に関し、更に詳言すれば、加熱することにより高
倍率に発泡することのできる、成形性の優れたポ
リプロピレン系発泡体を得ることのできる組成物
に関する。 一般にポリプロピレンは機械的強度が強く、柔
軟性を兼ね備え、しかも耐熱性、耐薬品性、電気
的特性に優れているため、これらの特定を生かし
て、ポリプロピレンを用いた発泡体の開発が進め
られている。 従来までに広く用いられてきた方法は、特広昭
46−38716号公報に示される如く、特定のプロピ
レン−エチレン共重合体に架橋を施し、公知の化
学発泡剤の分解ガスを用いて発泡体シートを得る
方法、ポリエチレン系発泡粒子の製造法に関する
多くの開示技術に含まれるかのようにして、ポリ
プロピレンの上位概念であるポリオレフイン系発
泡粒子の製造法として紹介されている方法等があ
る。これら多くの文献中に共通している点は、ポ
リプロピレンに発泡能を付与するためには、基材
樹脂の架橋工程が必ず含まれている。すなわち、
従来技術では、発泡に先立ち樹脂の架橋工程を設
ける必要があつた。 最近に至り、特公昭56−1344号公報に、無架橋
のポリプロピレン系樹脂からなる発泡粒子の製造
方法が開示されている。 この技術によれば、水懸濁系にて樹脂粒子に発
泡剤を含有せしめ高温高圧下から一気に低圧域に
放出するという特殊な方法によつて高発泡粒子が
得られるとしているが、この方法では、特殊な高
圧設備を必要とし、また発泡時の温度が丁度、基
材樹脂の融点近傍でもあるため、わずかな温度
差、あるいは放出管の弁の開閉条件、つまり、発
泡せしめる際の圧力条件等により、発泡倍率及び
気泡の均一性が異なつてくる。 従つて、工業的に大量の発泡粒子を得る際に
は、バツチ毎に、又は同一バツチでも初期と終期
とでは、発泡倍率、気泡径の分布状態の異なる粒
子となり、安定して製造するという点に難点があ
るために、実用に供する迄には未だ改良の余地が
残されている。 従つて結局、ポリプロピレ系樹脂の発泡には公
知技術として広く知られている所謂発泡剤の含有
された樹脂粒子を加熱媒体で加熱して発泡せしめ
る方法を用いざるを得ないが、この方法では、ポ
リプロピレンについては、高発泡体が仲々得られ
にくく、数段にも及ぶ多段階発泡を経て、ようや
く高発泡粒子にするという現状にある。 つまり、この方法によると発泡剤の効率が低
く、しかも多段階にわたる加熱工程となり、熱エ
ネルギーを大量に消費する結果となり、工業的に
は採用し得ない。 さらには、多数回の冷熱サイクル及び気泡膜の
伸長を繰り返すことにより、基材樹脂そのものの
融点や結晶化度が上昇し、発泡せしめた粒子を金
型内に充填せしめ加熱により粒子同志を融着させ
た成形体とする際に、粒子間の融着性に乏しい成
形体となり、緩衝材料として充分満足できる物性
のものが得られなくなる欠点を有する。 本発明者らは、このような情況に鑑み、鋭意研
究を進めた結果、前述の欠点を解決し、工業的に
利用可能な技術を完成するに至つた。 本発明の目的は、実質無架橋で高発泡体を製造
できると共に、その発泡方法が従来から行なわれ
ているような簡単な方法でもよく、しかも均一微
細な気泡構造を有し、緩衝性、耐薬品性、耐熱性
に優れた高発泡体が得られる、発泡用のポリプロ
ピレン系樹脂組成物を提供することにある。 即ち、本発明は、ポリプロピレン系樹脂60〜95
重量%と脂肪族系石油樹脂、及び/又は脂環族系
石油樹脂5〜40重量%との混合物に発泡剤を含有
せしめた実質無架橋な状態で発泡させることがで
きる発泡用のポリプロピレン系樹脂組成物に係
る。 本発明の最大の特長は、ポリプロピレン系樹脂
と特定の石油系樹脂とを混合することによつて、
高倍率の発泡体が得られることにあり、さらに詳
しくは本発明の組成物を端に加熱媒体で加熱する
のみでも、均一微細な気泡を有する高発泡体が得
られる点にある。この事実は第二表に実証されて
いる。 即ち、第二表の結果によると、ポリプロピレン
系樹脂のみに発泡剤を含ませた組成物を加熱する
のみ(実験No.10、11、12)では低発泡の発泡粒子
しか得られないが、脂環族系石油樹脂及び脂肪族
系石油樹脂を混合することによつて高発泡体を得
る(実験No.1〜8)ことが可能となる。しかも、
得られた発泡粒子の気泡の均一性は前者に比べ優
れたものとなつている。 一般に石油系樹脂には、脂肪族系石油樹脂、脂
環族系石油樹脂、芳香族系石油樹脂があるが、こ
れらの内、芳香族系石油樹脂については、前述の
ようなポリプロピレンを高発泡体とする効果は殆
んど発現できない(第二表実験No.13)。 従つて本発明に適用しうる石油樹脂としては脂
肪族、及び/又は、脂環族系石油樹脂である。 このような石油系樹脂がポリプロピレン系樹脂
の発泡適用性を大きく改良する原因は、明確では
ないが、本発明者らは以下のように考える。 本発明の混合物では、互に相溶性が極めて高
く、しかも、ポリプロピレンの結晶融点を低下さ
せることなく結晶化度を低下させ、樹脂混合物の
軟化温度も低下させる。 そのため、樹脂混合物の軟化点と結晶融点との
間の温度差が大きくなり、軟化温度以上にあつて
もポリプロピレンの微結晶が存在し、疑架橋点と
して作用せしめることにより、発泡温度領域を広
く取ることを可能ならしめたものと考えられる。 この点において、ポリオレフイン系樹脂の発泡
には架橋反応が不可欠であるという従来概念とは
技術思想を異にするものであり、実質的に無架橋
で高発泡体を得ることが可能となつた。
The present invention relates to a polypropylene resin composition for foaming, and more specifically, to a composition capable of producing a polypropylene foam with excellent moldability, which can be foamed to a high magnification by heating. In general, polypropylene has strong mechanical strength and flexibility, as well as excellent heat resistance, chemical resistance, and electrical properties. Taking advantage of these characteristics, the development of foams using polypropylene is progressing. There is. The method that has been widely used up until now is
As shown in Japanese Patent No. 46-38716, there are many related to a method of crosslinking a specific propylene-ethylene copolymer and obtaining a foam sheet using decomposed gas of a known chemical blowing agent, and a method of producing polyethylene foam particles. There are methods introduced as a method for producing polyolefin foam particles, which is a superordinate concept of polypropylene, as if included in the disclosed technology. A common point in many of these documents is that in order to impart foaming ability to polypropylene, a crosslinking step of the base resin is always included. That is,
In the prior art, it was necessary to perform a resin crosslinking step prior to foaming. Recently, Japanese Patent Publication No. 56-1344 discloses a method for producing expanded particles made of non-crosslinked polypropylene resin. According to this technology, highly foamed particles can be obtained using a special method in which a foaming agent is contained in resin particles in an aqueous suspension system and then released all at once from a high temperature and high pressure region to a low pressure region. , special high-pressure equipment is required, and the temperature during foaming is just around the melting point of the base resin, so slight temperature differences or opening/closing conditions of the discharge pipe valve, in other words, pressure conditions during foaming, etc. Accordingly, the expansion ratio and bubble uniformity vary. Therefore, when producing a large amount of foamed particles industrially, the expansion ratio and the distribution of cell diameters are different for each batch, or even for the same batch at the initial stage and at the final stage, making it important to produce stably. However, there is still room for improvement before it can be put into practical use. Therefore, in the end, for foaming polypropylene resin, there is no choice but to use a widely known method of foaming resin particles containing a so-called foaming agent by heating them with a heating medium, but with this method, As for polypropylene, it is difficult to obtain highly foamed particles, and the current state is that highly foamed particles can only be obtained through multiple stages of foaming. In other words, according to this method, the efficiency of the blowing agent is low, and the heating process involves multiple stages, resulting in the consumption of a large amount of thermal energy, so that it cannot be adopted industrially. Furthermore, by repeating multiple cooling/heating cycles and stretching the bubble membrane, the melting point and crystallinity of the base resin itself rises, and the foamed particles are filled into a mold and heated to fuse the particles together. When a molded product is produced by using the same method, the resulting molded product has poor fusion properties between the particles, which has the disadvantage that it becomes impossible to obtain sufficiently satisfactory physical properties as a cushioning material. In view of these circumstances, the inventors of the present invention have carried out intensive research, and as a result have solved the above-mentioned drawbacks and completed an industrially applicable technology. An object of the present invention is to be able to produce a highly foamed material with virtually no crosslinking, and the foaming method can be as simple as conventionally used, and it has a uniform fine cell structure, has good cushioning properties, and has good resistance. It is an object of the present invention to provide a polypropylene resin composition for foaming, from which a highly foamed body having excellent chemical properties and heat resistance can be obtained. That is, the present invention uses polypropylene resins of 60 to 95
A polypropylene resin for foaming that can be foamed in a substantially non-crosslinked state by containing a blowing agent in a mixture of 5% to 40% by weight of aliphatic petroleum resin and/or alicyclic petroleum resin. It concerns a composition. The greatest feature of the present invention is that by mixing polypropylene resin and a specific petroleum resin,
The advantage is that a foam with a high magnification ratio can be obtained, and more specifically, a highly foamed article having uniform, fine cells can be obtained by simply heating the composition of the present invention with a heating medium. This fact is demonstrated in Table 2. In other words, according to the results in Table 2, heating only a composition containing a foaming agent in polypropylene resin (Experiment Nos. 10, 11, and 12) yields only foamed particles with low foaming; By mixing a cyclic petroleum resin and an aliphatic petroleum resin, it is possible to obtain a highly foamed body (Experiments Nos. 1 to 8). Moreover,
The uniformity of the bubbles in the foamed particles obtained is superior to that of the former. In general, petroleum resins include aliphatic petroleum resins, alicyclic petroleum resins, and aromatic petroleum resins.Among these, aromatic petroleum resins are made of highly foamed polypropylene as mentioned above. Almost no effect could be obtained (Experiment No. 13 in Table 2). Therefore, the petroleum resin applicable to the present invention is an aliphatic and/or alicyclic petroleum resin. The reason why such a petroleum-based resin greatly improves the foaming applicability of a polypropylene-based resin is not clear, but the present inventors think as follows. The mixture of the present invention has extremely high compatibility with each other, and also lowers the degree of crystallinity without lowering the crystalline melting point of polypropylene, and also lowers the softening temperature of the resin mixture. Therefore, the temperature difference between the softening point and the crystal melting point of the resin mixture increases, and even at temperatures above the softening temperature, polypropylene microcrystals exist and act as pseudo-crosslinking points, thereby widening the foaming temperature range. It is thought that this made it possible. In this respect, the technical concept is different from the conventional concept that a crosslinking reaction is essential for foaming polyolefin resins, and it has become possible to obtain highly foamed products with substantially no crosslinking.

【表】【table】

【表】 さらに、本発明の組成物を用いることによつ
て、多段発泡せしめることなく高発泡倍率の発泡
粒子を得ることができる。 従来技術として高発泡体を得るには、一次発泡
粒子に更に発泡剤を圧入せしめた後、加熱して発
泡を繰り返す多段発泡法があるが、これをポリプ
ロピレン系樹脂単独の発泡粒子に適用すると、第
三表実験No.15の結果のように0.030g/c.c.の密度
に到達せしめるには、三回の多段発泡が必要であ
る。これに比べ、本発明の組成、即ち、第三表実
験No.14では同一の密度0.031g/c.c.の発泡粒子を
得るのに、一回のみの発泡工程で到達可能であ
る。 すなわち、本発明の組成物を使用することによ
つて発泡剤の使用量、発泡工程数が低減でき、ひ
いては熱エネルギーの削減をもたらす。 また、何段もの発泡工程を経るとポリプロピレ
ン系樹脂の融点が上昇する現象をもたらす(第三
表参照)。この原因は明らかでないが、発泡時の
加熱処理及び発泡膜の面配向が相互に絡んで融点
を上昇させているものと思われる。第三表実験No.
15に見られるように、発泡粒子の融点が上昇する
と、このものを閉鎖しうるが密閉しえない金型に
充填し、型内成形を行なう際に、融点以上の高温
加熱が必要となり、しかも粒子間の融着不良の原
因となる。 しかるに、本発明の組成物から得られる発泡粒
子では多段の発泡を必要としなく、第三表実験No.
14に見るように、融点の上昇はないか又は上昇割
合が低減される。しかも、石油系樹脂の混合によ
り、基材樹脂の軟化点がポリプロピレン本来のも
のよりも低下しているため、発泡粒子を型内成形
する際に良好な粒子同志の融着性を可能にし、成
形温度域も低温側に広がり、発泡成形体の製造も
安定に且つ容易になる。 すなわち、成形温度が上昇すれば、水蒸気の飽
和蒸気圧も上昇し、設備上の耐圧強度の上昇、及
び水蒸気使用量も上昇をもたらすが、本発明の組
成物ではそのようなことはなく、経済的波及効果
には大きなものがある。
[Table] Furthermore, by using the composition of the present invention, foamed particles with a high expansion ratio can be obtained without performing multistage foaming. As a conventional technique, in order to obtain a highly foamed product, there is a multi-stage foaming method in which a blowing agent is further injected into the primary foamed particles, and then heated and foamed repeatedly, but when this method is applied to foamed particles made of polypropylene resin alone, In order to reach a density of 0.030 g/cc as shown in the results of Experiment No. 15 in Table 3, three multistage foaming steps are required. In contrast, in the composition of the present invention, ie, Experiment No. 14 in Table 3, foamed particles with the same density of 0.031 g/cc can be obtained by only one foaming step. That is, by using the composition of the present invention, the amount of blowing agent used and the number of foaming steps can be reduced, resulting in a reduction in thermal energy. Furthermore, multiple foaming steps lead to a phenomenon in which the melting point of the polypropylene resin increases (see Table 3). Although the cause of this is not clear, it is thought that the heat treatment during foaming and the planar orientation of the foamed film interact to raise the melting point. Table 3 Experiment No.
15, when the melting point of foamed particles increases, it becomes necessary to heat the foamed particles to a temperature higher than the melting point when filling them into a mold that can be closed but cannot be sealed and molding them in the mold. This causes poor fusion between particles. However, the expanded particles obtained from the composition of the present invention do not require multistage foaming, and Table 3 Experiment No.
14, there is no increase in the melting point or the rate of increase is reduced. Furthermore, the softening point of the base resin is lower than that of polypropylene due to the mixture of petroleum-based resin, which enables good particle-to-particle fusion when forming expanded particles in a mold. The temperature range also expands to the lower temperature side, and the production of foamed molded products becomes stable and easy. In other words, when the molding temperature increases, the saturated vapor pressure of water vapor also increases, resulting in an increase in the pressure resistance of the equipment and an increase in the amount of steam used.However, this does not occur with the composition of the present invention, and it is economical. The ripple effects are significant.

【表】【table】

【表】 本発明の組成物のもう一つの特徴は、第四表に
見られるように、脂能族系又は脂環族系石油樹脂
が混合されてもポリプロピレン単独の発泡体の有
する緩衝特性が維持され、耐熱性、耐薬品性の低
下も少ない点にある。 従来概念では、ポリプロピレン系樹脂の溶融発
泡適用性を充分にするために他の重合体を混合す
ると、得られる発泡体は、プロピレン系樹脂とし
ての特性を消滅させてしまう欠点を有するとされ
ていた。しかるに、本発明の組成物では、この現
象が現われず驚くべきことである。この原因はポ
リプロピレンと脂肪族系及び/又は脂環族系石油
樹脂との相溶性が高く、剛性も高いためと考えら
れる。
[Table] Another feature of the composition of the present invention is that, as shown in Table 4, even when aliphatic or alicyclic petroleum resin is mixed, the buffering properties of the polypropylene foam alone are maintained. The heat resistance and chemical resistance are maintained with little deterioration. The conventional concept was that if other polymers were mixed with polypropylene resin in order to make it suitable for melt foaming, the resulting foam would have the disadvantage of losing its properties as a propylene resin. . However, it is surprising that this phenomenon does not occur in the composition of the present invention. The reason for this is thought to be that polypropylene has high compatibility with aliphatic and/or alicyclic petroleum resins and also has high rigidity.

【表】 ここに、本発明に使用される脂肪族系及び/又
は脂環族系石油樹脂の混合割合は、ポリプロピレ
ン系樹脂の高発泡化を可能にする下限値と得られ
る発泡体の物性、中でも最も影響を受け易い加熱
寸法変化が実用上問題のない範囲で選択される。
第一表の実験No.1〜4、10及び第四表実験No.16〜
20の結果から得られた本分末の第一図を参照する
と、その混合割合はポリプロピレン系樹脂95〜60
重量%と脂肪族系石油樹脂、及び/又は脂環族系
石油樹脂5〜40重量%がよい。 さらに樹脂同志の混練の容易性をも考慮すると
好ましくは、上述の石油樹脂を10〜30重量%とす
るのが良い。 本発明に用いるポリプロピレン系樹脂として
は、プロピレン単独重合体、プロピレンを50重量
%以上とし、他の1種以上の共重合可能な単量体
からなるブロツク、ランダム、グラフト等、種々
の型の共重合体或いはこれらのいずれかを主とす
るブレンド物等である。例えな、エチレン−プロ
ピレンブロツク共重合体、エチレン−プロピレン
−ランダム共重合体、エチレン−プロピレン−ブ
テン−1−ランダム共重合体、或いは、プロピレ
ン単独重合体又は上記の共重合体と低密度ポリエ
チレン、高密度ポリエチレン、エチレン−酢酸ビ
ニル共重合体、エチレン−プロピレン共重合体ゴ
ム、スチレン−ブタジエン共重合体ゴム等との混
合物等がある。これらの内、発泡体製造時のエネ
ルギーコスト等の面から、好ましくはエチレン−
プロピレン−ブテン−1−ランダム共重合体が良
い。これら、ポリプロピレン系重合体と混合され
る必須の構成物である石油樹脂は、石油、ナフサ
等のクラツキング時に生じるC4〜C9留分を重合
して得られる。 脂肪族系石油樹脂はC4,C5留分のオレフイン、
ジオレフイン、例えば主要成分としてイソブチレ
ン、ブタジエン、イソブレン、ピペリン等を原料
としフリーデルクラフツト触媒により重合して得
られ、平均分子量が300〜10000のものである。 脂肪族系石油樹脂の具体例を挙げれば、三井石
油化学社のハイレツツ、東燃石油化学工業社のエ
スコレツツ、日本ゼオン社のクイントン、住友化
学工業社のタツキロール等がある。 脂環族系石油樹脂とは脂環族留分、例えばシク
ロペンタジエン、ジシクロペンタジエンなどを重
合したものか、芳香族石油樹脂を水素化して得ら
れる。ここに、芳香族石油樹脂とはC9,C10留分、
例えば主要成分としてビニルトルエン、インデ
ン、メチルインデン等を重合原料とする樹脂であ
り、このものを水素化することにより無色透明な
樹脂となり、脂環族系石油樹脂となる。この樹脂
の具体例は、例えば荒川化学工業社のアルコン、
日本ゼオン社のクイントン1500、1700等がある。 蒸気の石油系樹脂の軟化点はASTM E−28−
67のボール&リング法で80〜100℃、好ましくは
90〜150℃のものが用いられる。石油樹脂の軟化
点は目的とするポリプロピレン系樹脂発泡体の要
求される加熱寸法安定性の程度、及びポリプロピ
レン系重合体その混練性、つまり均一な混練が可
能である範囲から適宜選択され、樹脂混合物の軟
化点と結晶融点との温度差を目的に合わせて設定
できる。 上記の樹脂混合物に発泡剤を含有せしめる方法
としては公知の方法が使用でき、目的に合わせて
選択できる。 例えば、あらかじめポリプロピレン系樹脂と石
油系樹脂とを押出機、バンバリーミキサー、ニー
ダーローラー等で混練し、混合樹脂粒子とした
後、密閉容器内に該粒子を入れ揮発性の有機発泡
剤を導入し、加熱加圧下に直接または水懸濁系で
含浸する方法、又は、二種の樹脂を混合する際同
時に加熱溶融下で発泡剤を添加又は圧入して混合
する方法としては、化学発泡剤の場合は上記の混
合装置をそのまま使用できるし、揮発性の発泡剤
であれば、押出機中の樹脂が加熱溶融された状態
下に圧入する方法等がとり得る。 この際に用いられる発泡剤としては、通常の化
学発泡剤、揮発性発泡剤である。特に好ましくは
揮発性有機発泡剤であり、該樹脂混合物の融点以
下で沸騰する如何なる発泡剤であつてもよい。代
表的なものとして、プロパン、ブタン、ペンタ
ン、ヘキサン等の脂肪族炭化水素類、シクロブタ
ン、シクロペンタン等の脂環式炭化水素類、及び
トリクロロフルオロメタン、ジクロロジフルオロ
メタン、ジクロロテトラフルオロエタン、メチル
クロライド、エチルクロライド、メチレンクロラ
イド等のハロゲン化炭化水素類がある。又、化学
発泡剤としてはアゾジカルボンアミド、アゾビス
イソブチロニトリル、ジニトロソペンタメチレン
テトラミン、パラトルエンスルホニルヒドラジド
等がある。 本発明の発泡用の組成物から発泡体を得るには
樹脂混合物の軟化点以上、結晶融点+10℃以下の
温度範囲で発泡させる公知の方法が使用できる。
例えば、上述の樹脂混合物の粒子を密閉容器中で
発泡剤を直接又は水懸濁系で含浸せしめた後冷却
し、取り出して風乾させた後、水蒸気等の加熱媒
体で樹脂混合物の軟化点以上、結晶融点+10℃の
温度以下に加熱発泡させる方法、樹脂混合物の粒
子を密閉容器中に水懸濁系で発泡剤を高温高圧下
で含浸し、樹脂混合物の軟化点以上、結晶融点+
10℃以下の温度範囲で一気に低温低圧域に放出し
て発泡させる方法、さらには樹脂混合物を加熱溶
融下に発泡剤を添加又は圧入して混合し、低圧域
に押出発泡させる方法等、目的に合わせて選択出
来る。 本発明の組成物では、上述の方法の内、予め混
合された樹脂混合物に発泡剤を含浸せしめる工程
を経る方法に対し効果的であり、さらには、発泡
剤を含浸せした樹脂混合物を加熱して発泡させる
方法に対し有効である。 上述のようにして製造されたポリプロピレン系
樹脂の発泡粒子は、型内で膨張する能力を付与す
るため、粒子の内圧を高めたり或いは粒子を圧縮
する工程、該粒子を型内に充填し、発泡粒子相互
を発泡・熱融着させ、型通りの発泡成形体にする
工程、該発泡成形体を冷却し、取り出す工程、更
に該発泡成形体を熟成する工程を経て最終的に発
泡成形体が得られる。 本発明の組成物から得られる発泡粒子の軟化点
は石油系樹脂と軟化点及び混合割合に依存して低
下するため、金型に充填し発泡成形体とする際
に、粒子間の融着性が、ポリプロピレン系樹脂単
独の場合に比較して向上し、低温でしかも成形時
の加熱温度幅が広がる利点がある。 以上のように本発明の組成物から得られるポリ
プロピレン系樹脂発泡体は、ポリプロピレン樹脂
の有する特性を充分に生かし、耐熱性、耐薬品
性、柔軟性等に優れ、且つ、充分な剛性をそなえ
たものである。 以下、本発明で評価する特性の評価方法、評価
基準を述べる。 気泡の均一性 発泡粒子サンプル約20ケについて、その中心断
面で切断したサンプル断面について50倍に拡大し
目視観察した。
[Table] Here, the mixing ratio of the aliphatic and/or alicyclic petroleum resin used in the present invention is based on the lower limit that enables high foaming of the polypropylene resin, the physical properties of the resulting foam, Among them, the heating dimensional change that is most susceptible is selected within a range that causes no practical problems.
Experiment No. 1 to 4, 10 in Table 1 and Experiment No. 16 to Table 4
Referring to Figure 1 of this section, which was obtained from the results of No. 20, the mixing ratio is 95 to 60% polypropylene resin.
% by weight and aliphatic petroleum resin and/or alicyclic petroleum resin from 5 to 40% by weight. Furthermore, considering the ease of kneading the resins together, it is preferable that the amount of the above-mentioned petroleum resin be 10 to 30% by weight. The polypropylene resin used in the present invention includes various types of copolymers such as propylene homopolymer, block, random, and graft polymers containing 50% by weight or more of propylene and one or more other copolymerizable monomers. It is a polymer or a blend mainly composed of any of these. For example, ethylene-propylene block copolymer, ethylene-propylene-random copolymer, ethylene-propylene-butene-1-random copolymer, propylene homopolymer or the above copolymer and low density polyethylene, Examples include mixtures with high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer rubber, styrene-butadiene copolymer rubber, and the like. Among these, ethylene-
Propylene-butene-1-random copolymer is good. These petroleum resins, which are essential constituents to be mixed with polypropylene polymers, are obtained by polymerizing C 4 to C 9 fractions produced during cracking of petroleum, naphtha, and the like. Aliphatic petroleum resins are C 4 and C 5 fraction olefins,
Diolefins are obtained by polymerizing with a Friedel-Crafts catalyst using, for example, isobutylene, butadiene, isobrene, piperine, etc. as main components, and have an average molecular weight of 300 to 10,000. Specific examples of aliphatic petroleum resins include Hiretsu from Mitsui Petrochemicals, Escorets from Tonen Petrochemicals, Quinton from Nippon Zeon, and Tatsukiroll from Sumitomo Chemical. Alicyclic petroleum resins are obtained by polymerizing alicyclic fractions such as cyclopentadiene and dicyclopentadiene, or by hydrogenating aromatic petroleum resins. Here, aromatic petroleum resins are C 9 and C 10 fractions,
For example, it is a resin whose main component is vinyltoluene, indene, methylindene, etc. as a polymerization raw material. By hydrogenating this resin, it becomes a colorless and transparent resin, and becomes an alicyclic petroleum resin. Specific examples of this resin include Arakawa Chemical Co., Ltd.'s Alcon,
There are Quinton 1500, 1700, etc. made by Zeon Corporation. The softening point of petroleum resin in steam is ASTM E-28-
67 ball & ring method at 80-100℃, preferably
A temperature range of 90 to 150°C is used. The softening point of the petroleum resin is appropriately selected based on the degree of heating dimensional stability required for the target polypropylene resin foam and the kneadability of the polypropylene polymer, that is, the range that allows uniform kneading. The temperature difference between the softening point and the crystal melting point can be set according to the purpose. Any known method can be used to incorporate the blowing agent into the resin mixture, and the method can be selected depending on the purpose. For example, a polypropylene resin and a petroleum resin are kneaded in advance using an extruder, a Banbury mixer, a kneader roller, etc. to form mixed resin particles, and then the particles are placed in a closed container and a volatile organic blowing agent is introduced. In the case of chemical blowing agents, there are two methods: directly impregnating under heat and pressure or in an aqueous suspension system, or when mixing two types of resins, adding or press-injecting a blowing agent at the same time under heat and melting. The above-mentioned mixing device can be used as is, and if the foaming agent is a volatile foaming agent, a method of press-fitting the foaming agent into the heated and melted state of the resin in the extruder can be used. The blowing agents used in this case are ordinary chemical blowing agents and volatile blowing agents. Particularly preferred are volatile organic blowing agents, and any blowing agent that boils below the melting point of the resin mixture may be used. Typical examples include aliphatic hydrocarbons such as propane, butane, pentane, and hexane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, and trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, and methyl chloride. , ethyl chloride, methylene chloride, and other halogenated hydrocarbons. Chemical blowing agents include azodicarbonamide, azobisisobutyronitrile, dinitrosopentamethylenetetramine, paratoluenesulfonylhydrazide, and the like. In order to obtain a foam from the foaming composition of the present invention, a known method can be used in which foaming is carried out in a temperature range of above the softening point of the resin mixture and below the crystal melting point +10°C.
For example, particles of the resin mixture described above are impregnated with a blowing agent directly or in an aqueous suspension in a closed container, cooled, taken out and air-dried, and then heated with a heating medium such as steam to a temperature above the softening point of the resin mixture. A method of heating and foaming the resin mixture to a temperature below the crystal melting point + 10℃, in which particles of the resin mixture are impregnated with a foaming agent in a water suspension system in a closed container under high temperature and pressure.
There are methods for foaming by blowing it all at once into a low-temperature, low-pressure region in a temperature range of 10°C or less, and methods for adding or press-feeding a foaming agent to a resin mixture while heating and melting it, and then extruding it into a low-pressure region. You can select both. The composition of the present invention is effective over the above-mentioned method, which involves a step of impregnating a premixed resin mixture with a blowing agent. This method is effective for foaming methods. In order to give the expanded polypropylene resin particles produced as described above the ability to expand within a mold, a process of increasing the internal pressure of the particles or compressing the particles, filling the particles into a mold, and foaming the particles is performed. A foamed molded product is finally obtained through the steps of foaming and heat-sealing the particles to form a foam molded product according to the shape, cooling and taking out the foamed molded product, and further aging the foamed molded product. It will be done. The softening point of the foamed particles obtained from the composition of the present invention decreases depending on the softening point and mixing ratio of the petroleum resin. is improved compared to the case of polypropylene resin alone, and has the advantage of being able to be heated at a low temperature and widening the heating temperature range during molding. As described above, the polypropylene resin foam obtained from the composition of the present invention makes full use of the properties of polypropylene resin, has excellent heat resistance, chemical resistance, flexibility, etc., and has sufficient rigidity. It is something. The evaluation method and evaluation criteria for the characteristics evaluated in the present invention will be described below. Uniformity of bubbles Approximately 20 foamed particle samples were visually observed in a cross section cut at the center section under 50x magnification.

【表】 融点の測定 DSC(パーキン・エルマー社製)にて試料を約
10mg秤量し、10℃/分の昇温速度で常法に従い測
定し、融解ピークの頂点を融点とした。 成形品の諸特性 (1) 融着度 成形品の厚さ20mm以上の部分から100×100mm
正方の試験片を切り出し、その中央部に深さ2
mmの切れ目を入れ、切れ目にそつて折り曲げ成
形品を開裂させ、切開断面に存在する全粒子数
に対する材料破断して切裂している粒子数の百
分率を求めた。 評価基準
[Table] Melting point measurement Using DSC (manufactured by Perkin-Elmer),
10 mg was weighed out and measured according to a conventional method at a heating rate of 10°C/min, and the top of the melting peak was taken as the melting point. Characteristics of molded products (1) Degree of fusion 100 x 100 mm from parts of molded products with a thickness of 20 mm or more
Cut out a square test piece and make a 2-deep hole in the center.
A cut of mm was made, and the molded product was bent and split along the cut, and the percentage of the number of particles that were broken and torn relative to the total number of particles present in the cut cross section was determined. Evaluation criteria

【表】 (2) 密度 JIS K6767に準じて測定した。 (3) 圧縮永久歪 JIS K6767に準じて測定した。 試験条件は25%定圧縮とした。 (4) JIS K6767に準じて測定した。 試験条件は25%定圧縮とした。 (5) 加熱寸法変化 200mm正方に切出した成形体サンプルを25℃
に24時間静置し、その中央部に100×100mmの正
方形と中心十字線を描き各線分の長さを精測し
100℃±1℃に調温した恒温槽内に
[Table] (2) Density Measured according to JIS K6767. (3) Compression set Measured according to JIS K6767. The test conditions were 25% constant compression. (4) Measured according to JIS K6767. The test conditions were 25% constant compression. (5) Heating dimensional change A molded sample cut into a 200 mm square was heated at 25°C.
Let it stand for 24 hours, then draw a square of 100 x 100 mm and a central cross in the center and measure the length of each line segment accurately.
In a constant temperature bath controlled at 100℃±1℃

【表】 96時間静置し、取り出したのち25℃で1時間放
冷し標線の寸法を精測し元の寸法からの変化率
(%)を求めその平均値を求めた。 評価基準 4%未満……実用上問題なし 4%以上……使用に耐えない 以下に、本発明を実施例で詳細に説明する。
尚、実施例中の樹脂は第一表に示されたものを用
いる。 実施例、比較例1 第一表に示すポリプロピレンと石油樹脂とを第
二表に示す混合割合でドライブレンドし、40mmφ
の単軸押出機にて、溶融混練し、約2.5mmφのペ
レツトを作成した。該混合樹脂粒子100重量部に
対し、水400重量部、ポリビニルアルコール(ゴ
ーセノールGH−17、日本合成(株))1重量部及び
ジクロロジフルオロメタン30重量部を密閉容器中
に入れ、撹拌しながら80℃に昇温し、0.5時間保
持した後、冷却し、発泡剤が含浸された樹脂粒子
を取り出し、風乾した後、直ちに、水蒸気で加熱
し、一次発泡粒子を得た。 この時の発泡温度、発泡粒子の密度及び融点、
及び本文中記載の方法に従つて、気泡の均一性を
評価した結果を第二表に示す。 第二表の実験No.1〜4と10との結果から、ポリ
プロピレン単独の発泡に比べると、石油樹脂を混
合することによつて、一次発泡のみで高発泡化が
可能で、しかも、発泡温度が低下できることが明
らかである。更に発泡粒子の気泡の均一性も良好
となる。 また、実験No.7、8と11、12を比べるとポリプ
ロピレンでも、プロピレン単独重合体や、エチレ
ン−プロピレンブロツク共重合体では、発泡温度
も高く、発泡倍率が低くなる傾向にあるが、本発
明の組成物とすることによつてこの欠点が改良さ
れ、特定組成のプロピレン系共重合体を必ずしも
必要としないことが明らかである。 実施例、比較例2 第二表の実験No.10の一次発泡粒子の密度を実験
No.3の一次発泡粒子の密度と同等にならしめるた
めに、発泡粒子の内圧が約1.6Kg/cm2(ゲージ圧)
になるよう、密閉容器中にて80℃、10Kg/cm2の条
件で空気を圧入させた後、直ちに水蒸気で加熱発
泡させた。これを繰り返し、三次発泡で、ようや
く密度0.030g/c.c.の発泡粒子を得た。 こうして得られたNo.10′の発泡粒子について、
発泡温度、発泡剤の効率、発泡粒子の密度、及び
発泡粒子を構成する樹脂の融点を実験No.3の発泡
粒子と対比して第三表に示す。 さらに、実験No.3の一次発泡粒子および上述の
実験No.10(三次発泡)の粒子について内圧が1.0
Kg/cm2になるよう80℃、10Kg/cm2で空気を圧入さ
せ直ちに、その粒子を内容積が120×120×30mm3
の板状物を形成する金型内に充填し、水蒸気で加
熱し、成形体とした。 この場合の加熱には1Kg/cm2の水蒸気を用い約
15秒の予備加熱と、第三表に示すスチーム圧力で
10秒間成形加熱し、後、冷却して取り出した。取
り出した成形体は90℃の室内で8時間熟成させ
た。 得られた、各成形体の密度及び本文中記載の評
価法に基づく融着度について第三表に示す。 以上の結果から、ポリプロピレンのみの組成に
おいては三回の高次発泡で到達する発泡粒子の密
度が、本発明の組成物とすることによつてたつた
一回の発泡工程で前者と同等の密度とすることが
可能となり、工程数の低減用役費の低減と経済的
波及効果が大きい。 また、発泡回数を増すに従い、構成樹脂の融点
が上昇する現象が見られる。 この原因は明らかではないが、型内成形時に粒
子同志を融着せしめるためには、構成樹脂の融点
以上の加熱が必要であることから、この融点の上
昇は粒子間の融着性を阻害し、さらにはスチーム
の消費量を増加させ不利益をもたらす。さらに、
加熱水蒸気の圧力が上昇し、成形機そのものの耐
圧強度を増加させねばならない。しかるに本発明
の組成物からなる発泡粒子では、発泡回数も少な
く、融点の上昇も小さい為、工業的にも極めて有
利であることがわかる。 実施例 3 第二表の実験No.1、2の一次発泡粒子を実施例
2と同様の方法によつて二次発泡せしめた発泡粒
子及び実験No.6の一次発泡粒子を、実施例2と同
様の方法によつて型内成形体を得た。 こうして得た成形体及び実施例、比較例2で得
た成形体の諸物性を本文中記載の評価法に従つて
測定した結果を第四表に示す。 第四表の結果から、本発明の組成物からなる成
形体においてはポリプロピレンのみからなる成形
体よりも融着度が高く、成形に要するスチームの
圧力も低くて良いことが明らかである。また成形
体の圧縮強度及び圧縮永久歪等の物性もポリプロ
ピレンのみからなる成形体と同等の物性を維持し
ていることがわかる。 ここに、第二表の実験No.1、2、3、4、10の
一次発泡粒子の密度と石油樹脂含量、及び第四表
の実験No.16、17、18、19、20の発泡成形体の加熱
寸法変化と石油樹脂含量の関係を第一図に示す。
この図面から、高発泡化可能でかつ、ポリプロピ
レン発泡体としての性質を維持できるのは、石油
樹脂含有量として95〜60%の範囲であることが明
らかである。 以上に説明されたように、本発明は工業的な利
用価値の高いものであると考えられる。
[Table] After being left to stand still for 96 hours, the sample was taken out and left to cool at 25°C for 1 hour. The dimensions of the marked lines were precisely measured, and the rate of change (%) from the original dimensions was determined, and the average value was determined. Evaluation Criteria: Less than 4%: No practical problem More than 4%: Not usable Below, the present invention will be explained in detail with reference to Examples.
The resins used in the examples are those shown in Table 1. Examples, Comparative Example 1 Polypropylene shown in Table 1 and petroleum resin were dry blended at the mixing ratio shown in Table 2, and a 40mmφ
The mixture was melt-kneaded using a single-screw extruder to create pellets with a diameter of approximately 2.5 mm. For 100 parts by weight of the mixed resin particles, 400 parts by weight of water, 1 part by weight of polyvinyl alcohol (Gohsenol GH-17, Nippon Gosei Co., Ltd.) and 30 parts by weight of dichlorodifluoromethane were placed in a closed container, and the mixture was heated to 80 parts by weight while stirring. The temperature was raised to .degree. C., maintained for 0.5 hours, cooled, and the resin particles impregnated with the foaming agent were taken out, air-dried, and immediately heated with steam to obtain primary foam particles. The foaming temperature at this time, the density and melting point of the foamed particles,
Table 2 shows the results of evaluating the uniformity of bubbles according to the method described in the text. From the results of Experiment Nos. 1 to 4 and 10 in Table 2, it is clear that compared to foaming polypropylene alone, by mixing petroleum resin, high foaming can be achieved with only primary foaming, and that the foaming temperature It is clear that this can be reduced. Furthermore, the uniformity of the bubbles in the expanded particles is also improved. Furthermore, comparing Experiment Nos. 7 and 8 with 11 and 12, even with polypropylene, propylene homopolymer and ethylene-propylene block copolymer tend to have higher foaming temperatures and lower expansion ratios, but the present invention It is clear that this drawback is improved by creating a composition of 1, and that a propylene copolymer having a specific composition is not necessarily required. Example, Comparative Example 2 Experiment on the density of primary foam particles in Experiment No. 10 in Table 2
In order to equalize the density of No. 3 primary foamed particles, the internal pressure of the foamed particles should be approximately 1.6Kg/cm 2 (gauge pressure).
Air was injected into the container under pressure at 80° C. and 10 kg/cm 2 so that the resultant mixture was heated and foamed immediately with water vapor. By repeating this process and performing tertiary foaming, expanded particles with a density of 0.030 g/cc were finally obtained. Regarding the foamed particles No. 10′ obtained in this way,
Table 3 shows the foaming temperature, the efficiency of the foaming agent, the density of the foamed particles, and the melting point of the resin constituting the foamed particles in comparison with the foamed particles of Experiment No. 3. Furthermore, the internal pressure was 1.0 for the primary foamed particles of Experiment No. 3 and the particles of Experiment No. 10 (tertiary foamed) described above.
Immediately inject air at 80℃ and 10Kg/cm 2 to obtain a particle size of 120 x 120 x 30 mm 3
The mixture was filled into a mold for forming a plate-like product, and heated with steam to form a molded product. In this case, 1 kg/cm 2 of water vapor is used for heating.
With 15 seconds of preheating and the steam pressure shown in Table 3.
The mold was heated for 10 seconds, then cooled and taken out. The molded body taken out was aged in a room at 90°C for 8 hours. Table 3 shows the density of each molded body obtained and the degree of fusion based on the evaluation method described in the text. From the above results, it can be seen that the density of foamed particles reached by three times of high-order foaming in the composition of only polypropylene is the same as that achieved in one foaming process with the composition of the present invention. This makes it possible to reduce the number of processes, reduce utility costs, and have a large economic ripple effect. Furthermore, as the number of foaming increases, a phenomenon is observed in which the melting point of the constituent resin increases. The cause of this is not clear, but since heating above the melting point of the constituent resin is required to fuse the particles together during in-mold molding, this increase in the melting point may impede the fusion properties between the particles. , and further increases the amount of steam consumed, resulting in a disadvantage. moreover,
As the pressure of the heated steam increases, the pressure resistance of the molding machine itself must be increased. However, the expanded particles made of the composition of the present invention have a small number of foaming times and a small increase in melting point, and therefore are found to be extremely advantageous from an industrial perspective. Example 3 The primary expanded particles of Experiment Nos. 1 and 2 in Table 2 were subjected to secondary foaming in the same manner as in Example 2, and the primary expanded particles of Experiment No. 6 were used as Example 2. An in-mold molded body was obtained by the same method. Table 4 shows the results of measuring the physical properties of the molded bodies thus obtained and the molded bodies obtained in Examples and Comparative Example 2 according to the evaluation method described in the text. From the results in Table 4, it is clear that the molded article made of the composition of the present invention has a higher degree of fusion than the molded article made only of polypropylene, and requires less steam pressure for molding. It can also be seen that the physical properties of the molded product, such as compressive strength and compression set, are comparable to those of a molded product made only of polypropylene. Here, the density and petroleum resin content of the primary foam particles of Experiment Nos. 1, 2, 3, 4, and 10 in Table 2, and the foam molding of Experiments No. 16, 17, 18, 19, and 20 in Table 4 Figure 1 shows the relationship between the dimensional change of the body upon heating and the petroleum resin content.
From this drawing, it is clear that a petroleum resin content in the range of 95 to 60% allows for high foaming and maintains the properties as a polypropylene foam. As explained above, the present invention is considered to have high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明組成物における石油樹脂含量
(重量%)の変化に伴なう一次発泡粒子の密度の
変化および発泡成形体の加熱寸法変化(%)の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the change in the density of the primary foamed particles and the dimensional change (%) on heating of the foamed molded product as the petroleum resin content (% by weight) changes in the composition of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリプロピレン系樹脂60〜95重量%と脂肪族
系石油樹脂、及び/又は、脂環族系石油樹脂5〜
40重量%との混合物に、発泡剤を含有せしめた実
質無架橋な状態で発泡させることが出来る発泡用
のポリプロピレン系樹脂組成物。
1 60 to 95% by weight of polypropylene resin and 5 to 95% by weight of aliphatic petroleum resin and/or alicyclic petroleum resin
A foaming polypropylene resin composition that contains a foaming agent in a mixture of 40% by weight and can be foamed in a substantially non-crosslinked state.
JP17907482A 1982-10-14 1982-10-14 Foaming polypropylene resin composition Granted JPS5968340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17907482A JPS5968340A (en) 1982-10-14 1982-10-14 Foaming polypropylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17907482A JPS5968340A (en) 1982-10-14 1982-10-14 Foaming polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPS5968340A JPS5968340A (en) 1984-04-18
JPH0347297B2 true JPH0347297B2 (en) 1991-07-18

Family

ID=16059631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17907482A Granted JPS5968340A (en) 1982-10-14 1982-10-14 Foaming polypropylene resin composition

Country Status (1)

Country Link
JP (1) JPS5968340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274264A (en) * 2007-04-03 2008-11-13 Sumitomo Chemical Co Ltd Polypropylene-based resin composition and foamed molded product comprising the same
US9102820B2 (en) 2007-04-03 2015-08-11 Sumitomo Chemical Company, Limited Polypropylene resin composition and molded article comprising the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082900A (en) * 1989-03-29 1992-01-21 Chisso Corporation Opacified molded product
CA2012729C (en) * 1989-04-07 1997-05-20 Takashi Kuroda Dulled stretched molding and process for producing the same
JPH0637572B2 (en) * 1990-02-20 1994-05-18 チッソ株式会社 Stretched molding having pearly luster and method for producing the same
AU1129097A (en) * 1995-12-08 1997-07-03 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of bimodalpropylene copolymers
JP4863542B2 (en) * 2000-08-24 2012-01-25 株式会社カネカ Method for producing polyolefin resin pre-expanded particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274264A (en) * 2007-04-03 2008-11-13 Sumitomo Chemical Co Ltd Polypropylene-based resin composition and foamed molded product comprising the same
US9102820B2 (en) 2007-04-03 2015-08-11 Sumitomo Chemical Company, Limited Polypropylene resin composition and molded article comprising the same

Also Published As

Publication number Publication date
JPS5968340A (en) 1984-04-18

Similar Documents

Publication Publication Date Title
JP5107692B2 (en) Polypropylene-based resin foamed particles and molded article of the foamed particles
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
JP3380816B2 (en) Ultra-low density polyolefin foams, foamable polyolefin compositions and methods of making them
EP1036814A1 (en) Expandable polypropylene resin beads and products of in-mold expansion
JPH08504472A (en) Open-cell polypropylene foam and method for producing the same
JPH011741A (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JP4083807B2 (en) Automotive bumper core
JP2002523587A (en) Foams made from blends of syndiotactic polypropylene and thermoplastic polymers
JPH0347297B2 (en)
JP2907749B2 (en) Method for producing modified polypropylene resin foam, method for producing molded article, and foam and molded article obtained from those methods
US5430069A (en) Pre-expanded particles of polyethylene resin
JP2637504B2 (en) Polypropylene-based resin pre-expanded particles and method for producing the same
JP3583543B2 (en) Polypropylene resin foam particles
JP2505543B2 (en) Method for producing foam containing crystalline propylene resin
JP3205225B2 (en) Polypropylene resin foam
JPS5828289B2 (en) Propylene − Ethylene cage
JP3888837B2 (en) Polypropylene resin foam molded article and method for producing the same
JPS5831102B2 (en) Method for manufacturing polyolefin foam
JPH0881590A (en) Resin composition
JPS6249303B2 (en)
JPH0873642A (en) Heat-resistant foamed product
JPS599572B2 (en) Manufacturing method of polyolefin foam
JP3306189B2 (en) Olefin resin composition for foaming
JP3281497B2 (en) Polypropylene resin foam
JPH0415235A (en) Crosslinked polyolefin resin foam