JPH011741A - Non-crosslinked linear low density polyethylene pre-expanded particles - Google Patents

Non-crosslinked linear low density polyethylene pre-expanded particles

Info

Publication number
JPH011741A
JPH011741A JP62-156310A JP15631087A JPH011741A JP H011741 A JPH011741 A JP H011741A JP 15631087 A JP15631087 A JP 15631087A JP H011741 A JPH011741 A JP H011741A
Authority
JP
Japan
Prior art keywords
expanded particles
density polyethylene
temperature
linear low
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-156310A
Other languages
Japanese (ja)
Other versions
JPH0739501B2 (en
JPS641741A (en
Inventor
英樹 桑原
橋場 正博
真人 内藤
Original Assignee
日本スチレンペ−パ−株式会社
Filing date
Publication date
Priority claimed from JP62156310A external-priority patent/JPH0739501B2/en
Priority to JP62156310A priority Critical patent/JPH0739501B2/en
Application filed by 日本スチレンペ−パ−株式会社 filed Critical 日本スチレンペ−パ−株式会社
Priority to CA000568915A priority patent/CA1308863C/en
Priority to US07/204,010 priority patent/US4948817A/en
Priority to EP88109344A priority patent/EP0296438B1/en
Priority to DE8888109344T priority patent/DE3870991D1/en
Publication of JPS641741A publication Critical patent/JPS641741A/en
Publication of JPH011741A publication Critical patent/JPH011741A/en
Priority to US07/519,271 priority patent/US5053435A/en
Publication of JPH0739501B2 publication Critical patent/JPH0739501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無架橋直鎖状低密度ポリエチレン予備発泡粒子
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to non-crosslinked linear low density polyethylene pre-expanded particles.

〔従来の技術及び発明が解決しようとする問題点〕予備
発泡粒子を型内圧充填し加熱し発泡させて得られる、い
わゆるビーズ発泡成型体(型内成型体)Fi緩衝性、断
熱性等に優れ、緩衝材、包装材、断熱材、建築資材等広
範囲に利用され、その需要は近年富みに増大している。
[Problems to be solved by the prior art and the invention] A so-called bead foam molded product (in-mold molded product) obtained by filling pre-expanded particles under pressure inside a mold, heating and foaming it.It has excellent Fi buffering properties, heat insulation properties, etc. It is used in a wide range of applications such as cushioning materials, packaging materials, insulation materials, and construction materials, and the demand for it has increased greatly in recent years.

この種成型体として従来、ポリスチレン発泡粒子からな
る成型体が知られていたが、ポリスチレンのビーズ発泡
成型体は、脆いという致命的な欠点がある上、耐薬品性
にも劣るという欠点を有し、早くからその改善が望まれ
ていた。かかる欠点を解決するものとしてポリエチレン
発泡粒子からなる成型体が提案されたが、ポリエチレン
樹脂Fi融点付近での粘度低下が著しいため、通常架橋
したものが用いられておシ、架橋ポリエチレン予備発泡
粒子の場合は、型内成型によって低密度(高発泡)の成
型体を得ることが困難であり、強いて低密度の成型体を
得ようとすると、収縮が著しく、しかも吸水性が大きい
、物性の劣った成型体しか得られず、実用に供し得る低
密度ポリエチレン成型体は到底得ることができなかった
。更に架倫ポリエチレ/の原料には、架橋性が良いこと
から主として高圧法低密度ポリエチレンが用いられてぃ
るが、高圧法低密度ポリエチレンは耐熱性に当シ、剛性
が不足することから必然的に比較的低発泡倍率とせざる
を得なかった。
Conventionally, molded bodies made of polystyrene foam beads have been known as this type of molded body, but polystyrene bead foam molded bodies have the fatal disadvantage of being brittle and have the disadvantage of being inferior in chemical resistance. , improvements have been desired for a long time. A molded product made of polyethylene foam particles has been proposed as a solution to these drawbacks, but since the viscosity of polyethylene resin Fi drops significantly near the melting point, crosslinked products are usually used. In some cases, it is difficult to obtain a molded product with a low density (high foaming) by in-mold molding, and if you try to obtain a molded product with a low density, the product shrinks significantly, has high water absorption, and has poor physical properties. Only a molded body could be obtained, and a practically usable low-density polyethylene molded body could not be obtained at all. Furthermore, high-pressure low-density polyethylene is mainly used as a raw material for cross-linked polyethylene due to its good crosslinking properties, but high-pressure low-density polyethylene has poor heat resistance and lacks rigidity, so it is unavoidable. Therefore, the foaming ratio had to be relatively low.

これらの問題を解決する方法として、特公昭60−10
047号公報には無架橋直鎖状低密度ポリエチレンよシ
なる予備発泡粒子を用いて成型する方法が提案されてい
るが、無架橋ポリエチレンよシなる予備発泡粒子は成型
時の加熱温度範囲が狭く充分く加熱できないことと、無
架橋直鎖状低密度ポリエチレンの結晶構造とに起因して
、発泡能を付与しないと充分な二次発泡が行なわれず良
好な成型体が得られない。このため無架橋直鎖状低密度
ポリエチレン予備発泡粒子を成型する場合、成mK先だ
って予備発泡粒子に発泡剤ガスや空気等の無機ガスを適
温して内圧を付与する方法を採用している。しかしなが
ら予備発泡粒子に発泡用ガスや無機ガスを適温すること
は、設備上及び経費上で多大な出費がかさみ、成型体の
製造コストが高くつくという問題があった。しかも一般
にポリオレフィン系樹脂予備発泡粒子は、無機ガス等を
適温して内圧を高めることによって発泡能を付与しても
、粒子内ガスが抜は易いために発泡能を長時間維持する
ことが困難であシ、これら従来の方法において優れた成
型体を得るKは内圧付与後、予備発泡粒子を短時間で消
費しなければならず、成型業者が予備発泡粒子製造業者
から予備発泡粒子の供給を受けるだけで、容易に成型体
を製造することができるというものではなかった。
As a way to solve these problems,
Publication No. 047 proposes a method of molding using pre-expanded particles made of non-crosslinked linear low-density polyethylene, but pre-expanded particles made of non-crosslinked polyethylene have a narrow heating temperature range during molding. Due to the inability to heat sufficiently and the crystal structure of non-crosslinked linear low-density polyethylene, sufficient secondary foaming will not occur unless foaming ability is imparted, and a good molded product will not be obtained. For this reason, when molding non-crosslinked linear low-density polyethylene pre-expanded particles, a method is adopted in which a blowing agent gas or an inorganic gas such as air is heated to an appropriate temperature and internal pressure is applied to the pre-expanded particles prior to molding. However, heating the foaming gas or inorganic gas to the pre-expanded particles at an appropriate temperature requires a large amount of equipment and expense, and there is a problem in that the manufacturing cost of the molded body is high. Moreover, in general, pre-expanded polyolefin resin particles have difficulty maintaining foaming ability for a long time because the gas inside the particles is easily released, even if they are given foaming ability by increasing the internal pressure with inorganic gas at an appropriate temperature. However, in order to obtain an excellent molded product using these conventional methods, the pre-expanded particles must be consumed in a short time after applying internal pressure, and the molding company receives the supply of pre-expanded particles from the pre-expanded particle manufacturer. However, it was not possible to easily produce a molded body just by using the method described above.

一方、特公昭55−7816号公報には架橋したポリエ
チレン系樹脂予備発泡粒子に無機ガス等を適温して内圧
を付与する前処理を行わずに成型し、次いで樹脂の軟化
温度以下〜常温まで冷却した後、樹脂の軟化温度以下〜
軟化温度から40℃低い温度に昇温し、その後徐冷し成
型体を得る方法が開示されているが、架橋したポリエチ
レン予備発泡粒子は内圧付与の前処理せずに成型できた
としても、前述したように低密度の成型体を得ることが
困難であるという問題を有し、いずれの方法も充分満足
のいくものではなかった。
On the other hand, Japanese Patent Publication No. 55-7816 discloses that cross-linked polyethylene resin pre-expanded particles are molded without pretreatment of applying an internal pressure by injecting an inorganic gas at an appropriate temperature, and then cooling from the softening temperature of the resin to room temperature. After that, below the softening temperature of the resin ~
A method is disclosed in which the temperature is raised to a temperature 40°C lower than the softening temperature and then slowly cooled to obtain a molded body. As mentioned above, there is a problem in that it is difficult to obtain a molded product with a low density, and none of the methods are fully satisfactory.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の点に鑑み鋭意研究した結果、示差走
査熱量測定によって得られるDSC曲線に2つの吸熱ピ
ークが現われ、かつ高温側の吸熱ピークのエネルギーか
ら5119以上である結晶構造を有する無架橋直鎖状低
密度ポリエチレン予備発泡粒子が内圧付与の前処理を行
なうことなく成型でき、吸水率が低く、収縮のない等優
れた物性の低密度成型体を容易に提供し得ることを見出
し本発明を完成するに至った。
As a result of intensive research in view of the above points, the present inventors found that two endothermic peaks appeared in the DSC curve obtained by differential scanning calorimetry, and based on the energy of the endothermic peak on the high temperature side, it was found that a crystal structure with a crystal structure of 5119 or higher was found. It was discovered that cross-linked linear low-density polyethylene pre-expanded particles can be molded without pretreatment to apply internal pressure, and that low-density molded products with excellent physical properties such as low water absorption and no shrinkage can be easily provided. The invention was completed.

即ち本発明は無架橋直鎖状低密度ポリエチレン予備発泡
粒子であって、水差走査熱量測定によって得られるDS
C411M(ただし予備発泡粒子1〜5 mgを示差走
査熱量計によって10℃/分の昇温速度で220℃まで
昇温したときに得られるDSC曲線)に2つの吸熱ピー
クが現われ、かつ高温側の吸熱ピークのエネルギーが5
 J/77以上である結晶構造を有することを特徴とす
る無架橋直鎖状低密度ポリエチレン予備発泡粒子を要旨
とする。
That is, the present invention provides non-crosslinked linear low-density polyethylene pre-expanded particles, which have a DS obtained by differential scanning calorimetry.
Two endothermic peaks appear in C411M (the DSC curve obtained when 1 to 5 mg of pre-expanded particles are heated to 220°C at a temperature increase rate of 10°C/min using a differential scanning calorimeter), and two endothermic peaks appear on the high temperature side. The energy of the endothermic peak is 5
The gist of the present invention is non-crosslinked linear low-density polyethylene pre-expanded particles characterized by having a crystal structure of J/77 or higher.

本発明予備発泡粒子の基材樹脂である無架橋直鎖状低密
度ポリエチレン(以下LLDPIと略称する。)として
はエチレンと炭素数4〜10のα〜オレフィンとの共重
合体が挙げられ、炭素数4〜lOのα−オレフィンとし
ては1−ブテン、1−ペンテン、1−ヘキセン、3.3
−’)メチル−1−プテン、4−メチル−1−ペンテン
、4.4〜ジメチル−1−ペンテン、ニーオクテン等が
挙げられるが特に1−ブテンが好ましい。またこれらα
−オレフィンのLLDPE中の含有率は通常3〜12重
量%であるが、特に6〜9重量%が好塘しい。
Non-crosslinked linear low density polyethylene (hereinafter abbreviated as LLDPI), which is the base resin of the pre-expanded particles of the present invention, includes a copolymer of ethylene and an α-olefin having 4 to 10 carbon atoms. Examples of α-olefins having numbers 4 to 10 include 1-butene, 1-pentene, 1-hexene, 3.3
-') Methyl-1-butene, 4-methyl-1-pentene, 4.4-dimethyl-1-pentene, ni-octene, etc., but 1-butene is particularly preferred. Also these α
- The content of olefin in LLDPE is usually 3 to 12% by weight, preferably 6 to 9% by weight.

本発明予備発泡粒子は、示差走査熱f fill定によ
って得られるDSC曲線に2つの吸熱ピークが現われ、
かつ高温側の吸熱ピークのエネルギーが5J/11以上
である結晶構造を有する。高温側ピークと低温側ピーク
の谷の部分の温度は使用する原料のDSC曲線に現われ
る吸熱ピークの温度より高al側にあることが好ましい
The pre-expanded particles of the present invention exhibit two endothermic peaks in the DSC curve obtained by differential scanning calorimetry f fill determination,
And it has a crystal structure in which the energy of the endothermic peak on the high temperature side is 5J/11 or more. The temperature of the valley between the high-temperature peak and the low-temperature peak is preferably on the higher Al side than the temperature of the endothermic peak appearing in the DSC curve of the raw material used.

上記DSC曲線とは、予備発泡粒子1〜5 、119を
水差走査熱量計によって1007分の昇温速度で220
℃まで昇温して測定した時に得られるDSC曲線であシ
、DSC曲線における固有ピークと高温ピークとは例え
ば試料を室温から220′cまで10℃/分で昇温測定
した時に得られるDSC曲線である。
The above DSC curve refers to pre-expanded particles 1 to 5 and 119 measured by a differential scanning calorimeter at a heating rate of 1007 minutes to 220.
This is the DSC curve obtained when the sample is heated to 220°C and measured at a rate of 10°C/min. It is.

低温側の吸熱ピークは予備発泡粒子の基材樹脂である無
架橋直鎖状低密度ポリエチレンの所謂融解の際の吸熱に
よるものと考えられる。一方高温側の吸熱ピークは低温
側の吸熱ピークとして現われる構造とは異なる結晶構造
の存在によるものと考えられ、原料樹脂粒子を同一条件
で測定して得たDSC曲線には、樹脂の融解に起因する
と考えられる1つの吸熱ピークのみが現われ、2つの吸
熱ピークは現われない。従って高温側の吸熱ピークは基
材樹脂自体の結晶構造等に起因するものではなく、予備
発泡粒子としての形態における結晶構造等に起因するも
のと考えられる(第1図に予備発泡粒子のDSC曲線を
実線で、原料樹脂粒子のDSC曲線を点線で示す。)。
The endothermic peak on the low temperature side is considered to be due to endotherm during so-called melting of non-crosslinked linear low-density polyethylene, which is the base resin of the pre-expanded particles. On the other hand, the endothermic peak on the high temperature side is thought to be due to the existence of a crystal structure different from the structure that appears as the endothermic peak on the low temperature side. Then, only one possible endothermic peak appears, and two endothermic peaks do not appear. Therefore, the endothermic peak on the high temperature side is not due to the crystal structure of the base resin itself, but is considered to be due to the crystal structure of the pre-expanded particles (Figure 1 shows the DSC curve of the pre-expanded particles. is shown by a solid line, and the DSC curve of the raw resin particles is shown by a dotted line).

高温側の吸熱ピークのエネルギーは第1図において高温
側ピークと低温側ピーク゛の谷の部分(a)で高温側ピ
ーク(b)と低温側ピーク(c)を分割し、谷の部分(
aJより高温側のピークの面積を高温側ピーク(b)の
面積とし、この面積よシ求めた値である。
The energy of the endothermic peak on the high temperature side is calculated by dividing the high temperature side peak (b) and the low temperature side peak (c) at the valley part (a) between the high temperature side peak and the low temperature side peak (c) in Figure 1, and calculating the energy of the endothermic peak on the high temperature side (
The area of the peak on the higher temperature side than aJ is taken as the area of the higher temperature side peak (b), and this value is calculated based on this area.

9遥側の吸熱ピークのチャート上の面積−、より 以下の式により高温側の吸熱ピークのエネルギーを求め
ることができる。
9. The area of the endothermic peak on the far side on the chart -, the energy of the endothermic peak on the high temperature side can be determined by the following formula.

高温側の吸熱ピークのエネルギー(J/11 ) =〔
高温側の吸熱ピークのチャート上の面@R(cIl) 
〕x〔チャー)1c!I当たシの熱t(J/cd)〕÷
〔測定サンプルIi量(,9)〕 上記エネルギーは特に5〜25J/iであることが好ま
しい。
Energy of endothermic peak on high temperature side (J/11) = [
Surface on the chart of the endothermic peak on the high temperature side @R (cIl)
]x [Char) 1c! I hit the heat t (J/cd)] ÷
[Amount of measurement sample Ii (,9)] It is particularly preferable that the above energy is 5 to 25 J/i.

本発明予備発泡粒子は樹脂粒子と揮発性発泡剤とを容器
内で例えば水等の分散媒に分散させて加熱保持した後、
容器内よシ低圧下に樹脂粒子と分散媒とを放出して発泡
させるに際し、容器内にて樹脂粒子を融解終了温度:T
m(℃)以上に加熱することなく、発泡温度(放出時の
温度)を樹脂の融点−20℃以上、融点−10℃未満の
範囲とすることにより得られる。上記樹脂の融解終了温
度:Tmは、発泡に使用する樹脂粒子を10℃/分で昇
温した時に得られるDSCIlllMにおける融解終了
温度であり、約2〜5 mgのサンプル量で測定すれる
。融点は上記測定(よって得られるDSC曲線のピーク
の頂点の温度である。また予備発泡粒子製造に用いる樹
脂粒子は一旦融点以上に加熱した後、結晶化温度−40
℃以下の雰囲気において急冷したものが好ましい。尚、
結晶化温度とは10℃/分の昇温速度で一担200℃に
昇温し、その後10℃/分の降温速度で降温した時に得
られるDSC1lIl線のピークの頂点の温度をいう。
The pre-expanded particles of the present invention are prepared by dispersing resin particles and a volatile blowing agent in a dispersion medium such as water in a container, heating and holding the mixture, and then
When the resin particles and dispersion medium are discharged under low pressure inside the container to cause foaming, the resin particles are melted in the container at a temperature of T:
It can be obtained by setting the foaming temperature (temperature at the time of release) to a range of -20°C or more to the melting point of the resin and less than -10°C, without heating above m (°C). The melting end temperature of the resin: Tm is the melting end temperature in DSCIllM obtained when the resin particles used for foaming are heated at 10° C./min, and is measured using a sample amount of about 2 to 5 mg. The melting point is the temperature at the apex of the peak of the DSC curve obtained by the above measurement.Also, the resin particles used for producing pre-expanded particles are heated above the melting point and then heated to a crystallization temperature of −40°C.
Preferably, the material is rapidly cooled in an atmosphere of .degree. C. or lower. still,
The crystallization temperature refers to the temperature at the top of the peak of the DSC1lIl line obtained when the temperature is raised to 200°C at a rate of 10°C/min and then lowered at a cooling rate of 10°C/min.

本発明予備発泡粒子の製造に使用される揮発性発泡剤と
しては、沸点が一50〜120℃の炭化水素またはハロ
ゲン化炭化水素、たとえばプロパン、ブタン、ペンタン
、ヘキサン、ヘゲタン、シクロヘンタン、シクロヘキサ
ン、モノクロロメタン、ツク00メタン、モノクClC
2エタン、トリクロロモノフルオロメタン、ジクロロジ
フルオロメタン、ジクロロモノフルオロメタン、トリク
ロロトリフルオロエタン、ジクロロテトラフルオロエタ
ンなどが挙げられる。これらは単独で用いてもよく、2
種以上併用してもよい。これらの揮発性発泡剤は無架橋
直鎖状低密度ポリエチレ7100部(重量部、以下同様
)に対して5〜40部となるように含浸せしめて発泡に
供せられる。
Volatile blowing agents used in the production of the pre-expanded particles of the present invention include hydrocarbons or halogenated hydrocarbons having a boiling point of 150 to 120°C, such as propane, butane, pentane, hexane, hegetane, cyclohentane, cyclohexane, monochrome Lomethane, Tsuku 00 Methane, Monoku ClC
Examples include 2ethane, trichloromonofluoromethane, dichlorodifluoromethane, dichloromonofluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, and the like. These may be used alone, or 2
More than one species may be used in combination. These volatile foaming agents are impregnated in an amount of 5 to 40 parts with respect to 7100 parts (parts by weight, hereinafter the same) of non-crosslinked linear low-density polyethylene and used for foaming.

水に分散せしめられる無架橋直鎖状低密度ポリエチレン
粒子の量としては、水100部に対して10〜100部
が生産性および分散安定性をよくし、ユーティリティコ
スト低減などの点から好ましい。また上記樹脂粒子とと
もに水に分散せしめる揮発性発泡剤の量は、発泡剤の種
類、所望する発泡倍率、容器内の樹脂量と容器内空間と
の比率などを考慮して樹脂中の発泡剤の含有量が前記範
囲になるように決められる。
The amount of non-crosslinked linear low density polyethylene particles to be dispersed in water is preferably 10 to 100 parts per 100 parts of water to improve productivity and dispersion stability and to reduce utility costs. In addition, the amount of the volatile blowing agent to be dispersed in water together with the resin particles is determined by considering the type of blowing agent, the desired expansion ratio, the ratio of the amount of resin in the container to the space inside the container, etc. The content is determined to be within the above range.

樹脂粒子を水に分散せしめるに際して必要に応じて分散
剤を用いることもできる。分散剤は加熱時の樹脂粒子同
士の#集を防止するために使用されるものであり、たと
えばポリビニルアルコール、メチルセルロース、N−ポ
リビニルピロリドンなどの水溶性高分子、リン酸カルシ
ウム、ピロリン酸マグ本シウム、炭酸亜鉛、酸化チタン
、酸化アルミニウムなどの難水溶性の無機物質の微粉末
が用いられる。前記無機物質を使用する場合には、分散
助剤として少量のアルキルベンゼンスルホン酸ソーダ、
α−オレフィンスルホン酸ソーダ、アルキルスルホン酸
ソーダなどの界面活性剤を併用して無機物質の使用量を
少なくすることが、成形時の予備発泡粒子同士の融着を
よくするために好ましい。この場合、樹脂粒子100部
に対して難水溶性無機物質微粉末0.1〜3部、アニオ
ン界面活性剤0.001〜0.5部程度使用される。ま
た水溶性高分子が用いられる場合には、樹脂粒子100
部に対して0.1〜5部程度使用される。
A dispersant can also be used if necessary when dispersing the resin particles in water. Dispersants are used to prevent resin particles from clumping together during heating, and include water-soluble polymers such as polyvinyl alcohol, methylcellulose, and N-polyvinylpyrrolidone, calcium phosphate, magmotosium pyrophosphate, and carbonic acid. Fine powder of poorly water-soluble inorganic substances such as zinc, titanium oxide, and aluminum oxide is used. When using the above inorganic substance, a small amount of sodium alkylbenzenesulfonate as a dispersion aid,
It is preferable to use a surfactant such as α-olefin sodium sulfonate or alkyl sodium sulfonate in combination to reduce the amount of inorganic substance used, in order to improve the fusion of the pre-expanded particles during molding. In this case, approximately 0.1 to 3 parts of poorly water-soluble inorganic substance fine powder and 0.001 to 0.5 parts of anionic surfactant are used per 100 parts of resin particles. In addition, when water-soluble polymer is used, resin particles 100
It is used about 0.1 to 5 parts per part.

本発明予備発泡粒子はビーズ発泡成型体製造用に用いら
れるが、本発明予備発泡粒子は成型に先だって、内圧付
与の前処理を行なわずに用いても収縮等のない低密度の
優れた成型体を得ることができる。
The pre-expanded particles of the present invention are used for producing bead-foamed molded products, and the pre-expanded particles of the present invention can be used to produce excellent molded products with low density without shrinkage even when used without pretreatment of applying internal pressure prior to molding. can be obtained.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳mK説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜3、比較例1〜2 エチレンと1−ブテンを共重合せしめてなシ、第1表に
示す密度、メルトフローレイ)(MFR)融点を有する
LLDPEを押出機にて溶融し、その後ダイスからスト
ランド状に押出し、水中で急冷し約4ny/個のペレッ
トに造粒した。その後400tのオートクレーブに上記
ベレノ)100に9.水2001及び分散剤として微粒
状酸化アルミニウム0.3 kgを仕込み、攪拌しなが
らジクロロジフロロメタン35kgを加え、該粒子の融
解終了温度以上に昇温することなく第1表に示す発泡温
度に昇温しで10分間保持した。この時のオートクレー
ブ内圧は22に9/d・Gであった。次いで同温度にて
容器下端の放出用パルプを開放し、樹脂粒子と水とを大
気圧下に放出して樹脂粒子を発泡せしめた。放出の間、
容器内に空気を送り込んで容器内圧を3okg/cd−
Gに保った。得られた予備発泡粒子の平均発泡倍率及び
示差走査熱量測定の結果を第1表に示す。この予備発泡
粒子を室温で大気圧下に24時間放置して熟成後、30
0mX300■X60mの金型に充填し、次いで金量内
の空気を排気した後、1.2 kg/d −Gの蒸気で
加熱して成型を行なった。水冷した後、型から取出した
成型体を80℃で20時間養生してから諸物性を測定し
た。結果を第2表に示す。
Examples 1 to 3, Comparative Examples 1 to 2 LLDPE made by copolymerizing ethylene and 1-butene and having the density and melt flow rate (MFR) melting point shown in Table 1 was melted in an extruder, Thereafter, it was extruded into a strand from a die, rapidly cooled in water, and granulated into pellets of about 4 ny/piece. After that, the above Veleno was placed in a 400t autoclave for 100 to 9. Water 2001 and 0.3 kg of finely divided aluminum oxide as a dispersant were charged, and 35 kg of dichlorodifluoromethane was added while stirring, and the temperature was raised to the foaming temperature shown in Table 1 without raising the temperature above the melting end temperature of the particles. It was kept warm for 10 minutes. The internal pressure of the autoclave at this time was 229/d·G. Next, at the same temperature, the discharge pulp at the bottom end of the container was opened, and the resin particles and water were discharged under atmospheric pressure to foam the resin particles. During the release,
Inject air into the container to increase the container internal pressure to 3okg/cd-
I kept it in G. Table 1 shows the average expansion ratio and differential scanning calorimetry results of the obtained pre-expanded particles. The pre-expanded particles were aged at room temperature and under atmospheric pressure for 24 hours.
A mold measuring 0 m x 300 mm x 60 m was filled, and after the air in the metal was evacuated, it was heated with steam at 1.2 kg/d-G to perform molding. After cooling with water, the molded product was taken out from the mold and cured at 80° C. for 20 hours, after which various physical properties were measured. The results are shown in Table 2.

第2表 *I  ASTM  D3576 K準拠して測定した
Table 2 *I Measured according to ASTM D3576K.

*2  JIS K6767B法に準拠して測定し、0
.005Ii/cj未満・・・・・・・・・・・・・・
・OO,005,9/−以上・・・・・・・・・・・・
・・・×として判定した。
*2 Measured in accordance with JIS K6767B method, 0
.. Less than 005Ii/cj・・・・・・・・・・・・・・・
・OO,005,9/- or more・・・・・・・・・・・・
...It was determined as ×.

*3 成型蒸気圧を1.2 ky/ad −c〜1.6
 k!il/cffl・Gまで変えて成型したときの成
型の安定性を観察し、 どの蒸気圧でも同様に成型できる・・・・・・・・・・
・・・・・○蒸気圧の違いによって成型に安定性がない
・・・・・・・・・×として判定した。
*3 Molding vapor pressure 1.2 ky/ad -c ~ 1.6
k! We observed the stability of molding when molding was performed by changing the temperature of il/cffl/G, and found that molding could be performed in the same way at any vapor pressure.
・・・・・・○ There is no stability in molding due to the difference in vapor pressure ・・・・・・・・It was judged as ×.

*4  JIS  K6767 Kよる。*4 According to JIS K6767K.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明無架橋直鎖状低密度ポリエチ
レン予備発泡粒子は示差走査熱量測定によって得られる
DSC曲線に2つの吸熱ピークが現われ、かつ高温側の
吸熱ピークのエネルギーが5 J/1以上である結晶構
造を有することによって、無架橋直鎖状低密度ポリエチ
レン予備発泡粒子でありながら成型時の加熱温度範囲が
広く、内圧付与の前処理を施さすとも良好な成型体を得
ることができ、内圧付与のための設備や内圧付与工程K
かかる経費を削減することができる。更に本発明予備発
泡粒子によれば収縮が少なく、吸水性の低い等、優れた
物性を有し、しかも低密度の成型体を容易に得ることが
できる等の効果を有する。
As explained above, in the non-crosslinked linear low density polyethylene pre-expanded particles of the present invention, two endothermic peaks appear in the DSC curve obtained by differential scanning calorimetry, and the energy of the endothermic peak on the high temperature side is 5 J/1 or more. Due to its crystal structure, although it is a non-crosslinked linear low-density polyethylene pre-expanded particle, it can be heated over a wide temperature range during molding, and a good molded product can be obtained even after pre-treatment to apply internal pressure. , Equipment for applying internal pressure and internal pressure applying process K
Such expenses can be reduced. Further, the pre-expanded particles of the present invention have excellent physical properties such as low shrinkage and low water absorption, and also have the effect that a low-density molded product can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料樹脂粒子及び本発明予備発泡粒子の示差走
立熱量測定によって得られるDSC1ill線であシ、
実線は本発明の予備発泡粒子の、破線は本発明予備発泡
粒子の製造に用いた原料樹脂粒子のDSC曲線である。
FIG. 1 is a DSC1ill line obtained by differential scanning calorimetry of raw resin particles and pre-expanded particles of the present invention.
The solid line is the DSC curve of the pre-expanded particles of the present invention, and the broken line is the DSC curve of the raw resin particles used for producing the pre-expanded particles of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 無架橋直鎖状低密度ポリエチレン予備発泡粒子であって
、示差走査熱量測定によって得られるDSC曲線(ただ
し予備発泡粒子1〜5mgを示差走査熱量計によって1
0℃/分の昇温速度で220℃まで昇温したときに得ら
れるDSC曲線)に2つの吸熱ピークが現われ、かつ高
温側の吸熱ピークのエネルギーが5J/g以上である結
晶構造を有することを特徴とする無架橋直鎖状低密度ポ
リエチレン予備発泡粒子。
Non-crosslinked linear low-density polyethylene pre-expanded particles, DSC curve obtained by differential scanning calorimetry (however, 1 to 5 mg of pre-expanded particles are measured by differential scanning calorimetry).
It must have a crystal structure in which two endothermic peaks appear in the DSC curve obtained when the temperature is raised to 220°C at a heating rate of 0°C/min, and the energy of the endothermic peak on the high temperature side is 5 J/g or more. Non-crosslinked linear low-density polyethylene pre-expanded particles characterized by:
JP62156310A 1987-06-23 1987-06-23 Non-crosslinked linear low density polyethylene pre-expanded particles Expired - Fee Related JPH0739501B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62156310A JPH0739501B2 (en) 1987-06-23 1987-06-23 Non-crosslinked linear low density polyethylene pre-expanded particles
CA000568915A CA1308863C (en) 1987-06-23 1988-06-08 Pre-foamed particles of uncrosslinked, linear low-density polyethylene and production method thereof
US07/204,010 US4948817A (en) 1987-06-23 1988-06-08 Pre-foamed particles of uncrosslinked, linear low-density polyethylene and production method thereof
EP88109344A EP0296438B1 (en) 1987-06-23 1988-06-11 Pre-foamed particles of uncrosslinked, linear low-density polyethylene and production method thereof
DE8888109344T DE3870991D1 (en) 1987-06-23 1988-06-11 PRE-FOAMED PARTICLES FROM BRANCHED LLPDE AND METHOD FOR THE PRODUCTION THEREOF.
US07/519,271 US5053435A (en) 1987-06-23 1990-05-04 Pre-foamed particles of uncrosslinked, linear low-density polyethylene and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62156310A JPH0739501B2 (en) 1987-06-23 1987-06-23 Non-crosslinked linear low density polyethylene pre-expanded particles

Publications (3)

Publication Number Publication Date
JPS641741A JPS641741A (en) 1989-01-06
JPH011741A true JPH011741A (en) 1989-01-06
JPH0739501B2 JPH0739501B2 (en) 1995-05-01

Family

ID=15625003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62156310A Expired - Fee Related JPH0739501B2 (en) 1987-06-23 1987-06-23 Non-crosslinked linear low density polyethylene pre-expanded particles

Country Status (5)

Country Link
US (2) US4948817A (en)
EP (1) EP0296438B1 (en)
JP (1) JPH0739501B2 (en)
CA (1) CA1308863C (en)
DE (1) DE3870991D1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739501B2 (en) * 1987-06-23 1995-05-01 日本スチレンペ−パ−株式会社 Non-crosslinked linear low density polyethylene pre-expanded particles
CA2030754C (en) * 1989-11-24 1997-06-03 Kazuo Turugai Production method of prefoamed synthetic resin particles
US5389320A (en) * 1991-10-28 1995-02-14 General Electric Company Method of making expandable polyphenylene ether and polyolefin blend
JP2878527B2 (en) * 1992-06-22 1999-04-05 鐘淵化学工業株式会社 Pre-expanded particles of polyethylene resin
DE4221603A1 (en) * 1992-07-01 1994-01-05 Basf Ag Process and device for the pressure treatment of pre-expanded particles made of a thermoplastic polymer
JP3279382B2 (en) * 1993-03-17 2002-04-30 株式会社ジエイエスピー Non-crosslinked polyethylene resin foam particles and method for producing the same
DE4420590A1 (en) * 1994-06-13 1995-12-14 Basf Ag Polyolefin foam particles with a wide melting range for mouldings
JP3995714B2 (en) * 1995-11-15 2007-10-24 旭化成ケミカルズ株式会社 Polyethylene pre-expanded particles
WO1998006777A1 (en) 1996-08-12 1998-02-19 Jsp Corporation Shock absorbing material
JP3638960B2 (en) * 1996-12-13 2005-04-13 株式会社ジェイエスピー Polyolefin resin expanded particles and method for producing the same
US6818161B2 (en) 1997-04-01 2004-11-16 Jsp Corporation Molded body of thermoplastic resin having sound absorption characteristics
TW369475B (en) 1997-06-18 1999-09-11 Jsp Corp Production apparatus of expansion-molded article, auxiliary member for transfer of foamed particles and production method of expansion-molded article
DE69827294T2 (en) 1997-12-01 2006-03-09 Jsp Corp. EXPANDED POLYPROPYLENE RESIN PERSONS AND SHAPED ARTICLES
JP3692760B2 (en) * 1998-01-30 2005-09-07 株式会社カネカ Method for producing foamed molded product in polypropylene resin mold
MY114837A (en) * 1998-03-23 2003-01-31 Jsp Corp Foamed and expanded beads of polypropylene resin for molding
DE69903593T2 (en) * 1998-06-11 2003-06-18 Jsp Corp., Tokio/Tokyo Molded item made of expanded and expanded propylene beads
US6114025A (en) * 1998-06-15 2000-09-05 Tenneco Protective Packaging, Inc. Foam and film/foam laminates using linear low density polyethylene
JP3950557B2 (en) 1998-07-30 2007-08-01 株式会社カネカ Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
DE60037273T2 (en) * 1999-12-27 2008-10-09 Asahi Kasei Kabushiki Kaisha THERMOPLASTIC NETWORKED RUBBER COMPOSITIONS
US6770682B2 (en) 1999-12-28 2004-08-03 Kaneka Corporation Expandable styrene resin beads and foams produced therefrom
FR2809075B1 (en) * 2000-05-18 2004-04-02 Norton Sa Performance Plastics METHOD FOR MANUFACTURING A READY-TO-GLUE MODULAR ELEMENT AND MOUNTING METHOD
GB2395948A (en) * 2002-12-06 2004-06-09 Pactiv Europ B V Polyolefin foam
HUE045308T2 (en) 2010-01-15 2019-12-30 Kaneka Corp Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
JP7130080B1 (en) * 2021-03-15 2022-09-02 株式会社ジェイエスピー Expanded polyethylene resin particles, method for producing expanded polyethylene resin particles
JP7295450B2 (en) 2021-10-21 2023-06-21 株式会社ジェイエスピー Expanded polyethylene resin particles and method for producing the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1008525B (en) * 1972-12-19 1976-11-30 Kanegafuchi Chemical Ind CONNECTION OF BLOCK SKIS TO INERTIA METHOD AND MOLDING EQUIPMENT FOR EXPANDED POLYOLEFIN RESINS
GB1474774A (en) * 1973-10-09 1977-05-25 Furukawa Electric Co Ltd Process and apparatus for producing a foamed thermoplastic resin article
US4168353A (en) * 1976-04-21 1979-09-18 Sekisui Kaseihin Kogyo Kabushiki Kaisha Process for producing foamable polyethylene resin particles
DE2834965C3 (en) * 1977-08-15 1986-04-17 Asahi Kasei Kogyo K.K., Osaka Process for the production of finely divided foamed particles from crosslinked olefin polymer, the finely divided foamed particles and their use for the production of molded parts
JPS557816A (en) 1978-06-30 1980-01-21 Nippon Oils & Fats Co Ltd Vegitable oil purification
JPS5923731B2 (en) * 1980-11-22 1984-06-04 日本スチレンペ−パ−株式会社 Polypropylene resin pre-expanded particles
JPS58101025A (en) * 1981-12-09 1983-06-16 Japan Styrene Paper Co Ltd Method of treatment of prefoamed particle of polyolefin resin under pressure
AU559244B2 (en) * 1982-05-13 1987-03-05 Kanegafuchi Kagaku Kogyo K.K. Expanded polyolefin particles
US4464484A (en) * 1982-12-20 1984-08-07 Japan Styrene Paper Corporation Process for producing prefoamed polymer particles
DE3466700D1 (en) * 1983-03-25 1987-11-12 Japan Styrene Paper Corp Polypropylene resin prefoamed particles
AU560618B2 (en) * 1983-04-05 1987-04-09 Kanegafuchi Kagaku Kogyo K.K. Pre-expanded polyolefin particle
US4525485A (en) * 1983-09-08 1985-06-25 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Pre-expanding process and apparatus for the same
JPS60110734A (en) * 1983-11-21 1985-06-17 Japan Styrene Paper Co Ltd Pre-expanded particle of uncrosslinked polypropylene resin
JPS60123540A (en) * 1983-12-07 1985-07-02 Japan Styrene Paper Co Ltd Noncrosslinked polypropylene resin prefoamed particle
US4704239A (en) * 1984-04-28 1987-11-03 Japan Styrene Paper Corp. Process for the production of expanded particles of a polymeric material
JPS60252636A (en) * 1984-05-30 1985-12-13 Japan Styrene Paper Co Ltd Preparation of preexpanded particle
JPS6151008A (en) * 1984-08-21 1986-03-13 Japan Styrene Paper Co Ltd Pre-expanded polyethylene resin particle
JPH0686544B2 (en) * 1985-07-12 1994-11-02 鐘淵化学工業株式会社 Non-crosslinked linear low density polyethylene pre-expanded particles and molding method thereof
US4778829A (en) * 1985-07-12 1988-10-18 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing pre-expanded particles of thermoplastic resin
JPS6218214A (en) * 1985-07-17 1987-01-27 Japan Styrene Paper Co Ltd Apparatus for heat-treating polyolefine resin particle
JPH0649795B2 (en) * 1985-11-29 1994-06-29 日本スチレンペ−パ−株式会社 Method for producing pre-expanded polypropylene resin molded product
JPH0660258B2 (en) * 1986-06-26 1994-08-10 鐘淵化学工業株式会社 Method for pre-expanding thermoplastic resin particles
CA1280549C (en) * 1986-05-27 1991-02-19 Kyoichi Nakamura Pre-expanded particles of propylene resin
JPH0629334B2 (en) * 1987-02-20 1994-04-20 鐘淵化学工業株式会社 Method for producing linear low-density polyethylene resin in-mold foam molding
JPH082989B2 (en) * 1987-05-11 1996-01-17 日本スチレンペ−パ−株式会社 Pre-expansion method of polyolefin resin particles
JPH0739501B2 (en) * 1987-06-23 1995-05-01 日本スチレンペ−パ−株式会社 Non-crosslinked linear low density polyethylene pre-expanded particles

Similar Documents

Publication Publication Date Title
JPH011741A (en) Non-crosslinked linear low density polyethylene pre-expanded particles
US4948817A (en) Pre-foamed particles of uncrosslinked, linear low-density polyethylene and production method thereof
US4840973A (en) Polypropylene resin prefoamed particles
EP0212204B1 (en) Pre-expanded particles of non-crosslinked linear low density polyethylene and process for producing cellular materials therefrom
US4596833A (en) Polypropylene foamed particles
US4861531A (en) Process for production of expansion-molded articles in a mold of linear low density polyethylene resins
US5032620A (en) Propylene resin foamed particles and foamed mold article
JPH0419258B2 (en)
JP4083807B2 (en) Automotive bumper core
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
EP0928806A1 (en) Expanded resin beads
JPS6042432A (en) Foamed particle
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPS60188435A (en) Production of polyolefin resin foam particle
JP3582335B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
EP1055700A1 (en) Expansion-molded product of electrically conductive polypropylene-based resin
JPS6344779B2 (en)
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JPS63258939A (en) Polypropylene resin prefoamed beads
KR20230051191A (en) Polyolefin-based resin expanded particles, manufacturing method thereof, and molded products of polyolefin-based resin expanded particles
JPS6324618B2 (en)
JP2000219766A (en) Foamed polypropylene resin molding and automotive interior furnishing material
JPH0464335B2 (en)
JPH01190736A (en) Production of expanded polyolefin resin particle