JP2000219766A - Foamed polypropylene resin molding and automotive interior furnishing material - Google Patents

Foamed polypropylene resin molding and automotive interior furnishing material

Info

Publication number
JP2000219766A
JP2000219766A JP11025478A JP2547899A JP2000219766A JP 2000219766 A JP2000219766 A JP 2000219766A JP 11025478 A JP11025478 A JP 11025478A JP 2547899 A JP2547899 A JP 2547899A JP 2000219766 A JP2000219766 A JP 2000219766A
Authority
JP
Japan
Prior art keywords
foamed
temperature
dsc curve
endothermic peak
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11025478A
Other languages
Japanese (ja)
Inventor
Hidehiro Sasaki
秀浩 佐々木
Masakazu Sakaguchi
正和 坂口
Mitsuhiro Akiyama
光宏 秋山
Toshio Tokoro
寿男 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP11025478A priority Critical patent/JP2000219766A/en
Publication of JP2000219766A publication Critical patent/JP2000219766A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a foamed polypropylene resin molding with its surface capable of lamination with or bonding to a skinning material by pressure- molding foamed resin particles obtained by foaming a polypropylene random copolymer. SOLUTION: A base resin is obtained which has a melting point of 140 deg.C or above and comprising a polypropylene random copolymer obtained by copolymerizing propylene with 0.05-10.0 wt.% comonomer selected from ethylene and a 4C or higher α-olefin. Foamed resin particles obtained by foaming this resin are packed into a mold and foamed by heating to obtain a molding having a difference of at least 5 J/g between the heat quantity in an endothermic peak in the first DSC curve (an endothermic peak in a DSC curve as obtained when 2-4 mg of a sample of the foamed molding is first heated to 220 deg.C at a rate of temperature rise of 10 deg.C/min on a differential scanning calorimeter) and the heat quantity in an endothermic curve in the second DSC curve (an endothermic peak as obtained when the molding heated to 220 deg.C is cooled to 40 deg.C at a rate of temperature fall of 10 deg.C/min and heated again to 220 deg.C).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリプロピレン系樹
脂発泡成型体及び自動車内装材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foamed molded article of a polypropylene resin and an interior material for an automobile.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ポリオ
レフィン系樹脂発泡成型体は、衝撃吸収性、軽量性に優
れることから自動車部材、主に衝撃吸収材として広く使
用されている。又、ポリオレフィン系樹脂はリサイクル
性にも優れているので、ポリオレフィン系樹脂発泡体の
自動車の内装材としての使用範囲も広がりつつある。し
かしながら、発泡加工性に優れるポリオレフィン系樹脂
は一般に耐熱性が低いため、自動車内装材に要求される
耐熱性を満足することは難しく、ポリオレフィン系樹脂
発泡体の自動車内装材としての利用範囲は限られてい
た。従って、ポリオレフィン系樹脂発泡体の耐熱性を向
上させれば自動車内装材として広範囲に使用することが
可能になる。
2. Description of the Related Art A foamed polyolefin resin article is widely used as an automobile member, mainly as a shock absorbing material because of its excellent shock absorbing property and light weight. Further, since polyolefin-based resins are excellent in recyclability, the range of use of polyolefin-based resin foams as interior materials for automobiles is expanding. However, since polyolefin resins having excellent foaming processability generally have low heat resistance, it is difficult to satisfy the heat resistance required for automotive interior materials, and the range of use of polyolefin resin foams as automotive interior materials is limited. I was Therefore, if the heat resistance of the polyolefin-based resin foam is improved, it can be widely used as an automobile interior material.

【0003】そこで、本発明者等は、融点が160℃以
上のホモポリプロピレン樹脂を基材樹脂とする発泡樹脂
粒子を用いて発泡成型体を製作することを試みた。一般
的に、融点の高い基材樹脂を使用すれば耐熱性を向上さ
せることができることが知られているからである。
Therefore, the present inventors have attempted to produce a foamed molded article using foamed resin particles having a homopolypropylene resin having a melting point of 160 ° C. or higher as a base resin. This is because it is generally known that heat resistance can be improved by using a base resin having a high melting point.

【0004】しかしながら、上記高融点のホモポリプロ
ピレン樹脂は低圧雰囲気下に放出して発泡樹脂粒子を得
る際の温度条件を従来使用してきた樹脂より高く設定し
なければならなかった。又、発泡樹脂粒子を金型内等に
充填して加熱成型する際に必要な成型蒸気(スチーム)
圧も従来の樹脂より高くしなければならなかった。従っ
て、高融点のホモポリプロピレン樹脂を使用すると、耐
熱性は向上するが、従来使用してきた既存の生産設備を
使用できないという問題が発生した。
[0004] However, the above-mentioned homopolypropylene resin having a high melting point must be released under a low-pressure atmosphere to obtain foamed resin particles, and the temperature condition must be set higher than that of a conventionally used resin. In addition, molding steam (steam) required when filling foamed resin particles into a mold and performing heat molding
The pressure had to be higher than the conventional resin. Therefore, when a homopolypropylene resin having a high melting point is used, the heat resistance is improved, but there has been a problem that existing production equipment conventionally used cannot be used.

【0005】又、仮に多額の設備投資を行い設備を改修
したとしても、ホモポリプロピレン樹脂は、発泡可能な
適正温度範囲が狭い上に、金型内等での加熱成型の適正
条件範囲も非常に狭いという特性を有するので、安定し
た生産は難しいという問題が発生した。更に、ホモポリ
プロピレン樹脂の発泡成型体は脆いという問題も有して
いた。従って、ホモポリプロピレン樹脂よりも脆くない
ポリプロピレン系ランダム共重合体を基材樹脂とする耐
熱性の良好な発泡成型体の出現が望まれていた。
[0005] Even if the equipment is renovated by investing a large amount of equipment, the appropriate temperature range in which the homopolypropylene resin can be foamed is narrow and the appropriate condition range of the hot molding in a mold or the like is extremely limited. Due to the narrow characteristic, there has been a problem that stable production is difficult. Further, the foam molded article of the homopolypropylene resin has a problem that it is brittle. Therefore, it has been desired to develop a foamed molded article having good heat resistance using a polypropylene random copolymer that is less brittle than a homopolypropylene resin as a base resin.

【0006】本発明者等は鋭意研究を重ねた結果、本発
明に到達した。即ち本発明は、従来のポリプロピレン系
ランダム共重合体を基材樹脂とする発泡成型体と融点が
同一であっても、より耐熱性に優れている発泡成型体を
提供することを目的とする。
The present inventors have made intensive studies and, as a result, have arrived at the present invention. That is, an object of the present invention is to provide a foamed molded article having more excellent heat resistance even if it has the same melting point as a conventional foamed molded article using a polypropylene-based random copolymer as a base resin.

【0007】[0007]

【課題を解決するための手段】本発明のポリプロピレン
系樹脂発泡成型体は、プロピレンと、エチレン及び炭素
数4以上のα−オレフィンよりなる群から選ばれたコモ
ノマーの1種又は2種以上とを共重合して得られたポリ
プロピレン系ランダム共重合体を基材樹脂の主成分と
し、且つ融点が140℃以上である基材樹脂を原料とし
て発泡せしめた発泡樹脂粒子を、加熱成型して得たポリ
プロピレン系樹脂発泡成型体であって、該発泡成型体の
1回目のDSC曲線における吸熱ピーク(但し、試料量
2〜4mgの発泡成型体を示差走査熱量計によって、最
初に10℃/分の昇温速度で220℃まで昇温したとき
に得られるDSC曲線の吸熱ピーク)熱量から、2回目
のDSC曲線における吸熱ピーク(但し、上記220℃
まで昇温した試料量2〜4mgの発泡成型体を示差走査
熱量計によって10℃/分の降温速度にて40℃まで降
温した後、再度10℃/分の昇温速度で220℃まで昇
温したときに得られるDSC曲線の吸熱ピーク)熱量を
差し引いた値が5J/g以上であることを特徴とする。
The foamed polypropylene resin of the present invention comprises propylene and one or more comonomers selected from the group consisting of ethylene and α-olefins having 4 or more carbon atoms. Foamed resin particles obtained by foaming a polypropylene-based random copolymer obtained by copolymerization as a main component of a base resin and using a base resin having a melting point of 140 ° C. or higher as a raw material were obtained by heat molding. An endothermic peak in the first DSC curve of the polypropylene-based resin foam molded article (however, the foamed molded article having a sample amount of 2 to 4 mg was first heated at 10 ° C./min by a differential scanning calorimeter). From the calorific value of the DSC curve obtained when the temperature was raised to 220 ° C. at the temperature rate, the endothermic peak in the second DSC curve (however, the above-mentioned 220 ° C.)
The temperature of the foamed molded product having a sample amount of 2 to 4 mg raised to 40 ° C. was lowered by a differential scanning calorimeter at a rate of 10 ° C./min to 220 ° C. again at a rate of 10 ° C./min. The value obtained by subtracting the calorific value from the endothermic peak of the DSC curve obtained when the above is performed is 5 J / g or more.

【0008】本発明のポリプロピレン系樹脂発泡成型体
は、融点が145℃〜160℃であることが好ましく、
密度は0.02〜0.45g/cm3 であることが好ま
しい。又、該ポリプロピレン系樹脂発泡成型体は、上記
示差走査熱量測定によって得られる1回目のDSC曲線
において、2回目のDSC曲線の吸熱ピークより高温側
に、2回目のDSC曲線には現れない吸熱ピークが現れ
る結晶構造を有し、且つ該高温側の吸熱ピークの熱量が
4J/g以上であることが好ましい。
[0008] The foamed polypropylene resin molded article of the present invention preferably has a melting point of 145 ° C to 160 ° C,
The density is preferably from 0.02 to 0.45 g / cm 3 . In addition, in the first DSC curve obtained by the above differential scanning calorimetry, the polypropylene resin foam molded article has an endothermic peak that does not appear in the second DSC curve on a higher temperature side than the endothermic peak of the second DSC curve. And the calorie of the endothermic peak on the high temperature side is preferably 4 J / g or more.

【0009】本発明の自動車内装材は、上記ポリプロピ
レン系樹脂発泡成型体の表面に、表皮材を積層または接
着することによって得ることができる。
The automobile interior material of the present invention can be obtained by laminating or bonding a skin material on the surface of the above-mentioned polypropylene resin foam molded article.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のポリプロピレン系樹脂発泡成型体(以下、「発
泡成型体」と略称する。)の基材樹脂は、プロピレン
と、エチレン及び炭素数4以上のα−オレフィンよりな
る群から選ばれたコモノマーの1種又は2種以上とを共
重合して得られたポリプロピレン系ランダム共重合体を
主成分とする。該プロピレン系共重合体は、重合条件を
適宜調整して共重合することによって得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The base resin of the polypropylene resin foam molded article of the present invention (hereinafter abbreviated as “foam molded article”) is propylene, a comonomer selected from the group consisting of ethylene and α-olefins having 4 or more carbon atoms. The main component is a polypropylene-based random copolymer obtained by copolymerizing one or more kinds. The propylene-based copolymer can be obtained by appropriately adjusting polymerization conditions and copolymerizing.

【0011】上記炭素数4以上のα−オレフィンとして
は、1−ブテン、1−ペンテン、1−ヘキセン、3,3
−ジメチル1−ブテン、4−メチル−ペンテン、4,4
−ジメチル−1−ペンテン、1−オクテン等が挙げられ
る。これらエチレン又はα−オレフィンの上記共重合体
中における含有率は0.05〜10.0重量%が好まし
い。該含有率が10.0重量%を越えると基材樹脂の融
点を140℃以上にすることが困難となり、得られる発
泡成型体の耐熱性が悪くなる。逆に、該含有率が0.0
5重量%未満であると、得られる発泡成型体は脆くなっ
て割れやすくなる。従って、このような観点から該含有
率は0.1〜5.0重量%であることがより好ましい。
As the α-olefin having 4 or more carbon atoms, 1-butene, 1-pentene, 1-hexene, 3,3
-Dimethyl 1-butene, 4-methyl-pentene, 4,4
-Dimethyl-1-pentene, 1-octene and the like. The content of the ethylene or α-olefin in the copolymer is preferably 0.05 to 10.0% by weight. If the content exceeds 10.0% by weight, it becomes difficult to raise the melting point of the base resin to 140 ° C. or higher, and the heat resistance of the obtained foamed molding deteriorates. Conversely, when the content is 0.0
When the content is less than 5% by weight, the obtained foamed molded article becomes brittle and easily cracked. Therefore, from such a viewpoint, the content is more preferably 0.1 to 5.0% by weight.

【0012】上記基材樹脂には、本発明の効果を損なわ
ない範囲で、副成分として他の樹脂又はエラストマーを
混合することができる。該他の樹脂としては、例えば、
高密度ポリエチレン、直鎖状低密度ポリエチレン、超低
密度ポリエチレンや低密度ポリエチレン、エチレン−酢
酸ビニル共重合体、エチレン−アクリル酸エステル共重
合体、エチレン−アクリル酸共重合体、エチレン−メタ
クリル酸共重合体等のポリオレフィン系樹脂、ポリスチ
レン系樹脂等の各種熱可塑性樹脂を挙げることができ
る。
The above-mentioned base resin may be mixed with other resins or elastomers as sub-components as long as the effects of the present invention are not impaired. As the other resin, for example,
High-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene and low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer Examples include various thermoplastic resins such as polyolefin resins such as polymers and polystyrene resins.

【0013】上記エラストマーとしては、例えば、エチ
レン−プロピレンゴム、エチレン−1−ブテンゴム、プ
ロピレン−1−ブテンゴム、スチレン−ブタジエンゴ
ム、及びその水添物、イソプレンゴム、ネオプレンゴ
ム、ニトリルゴム等の固形ゴム、又はスチレン−ブタジ
エンブロック共重合体エラストマー、及びその水添物等
のポリスチレン系エラストマーの他、各種エラストマー
を使用することができる。
Examples of the elastomer include solid rubbers such as ethylene-propylene rubber, ethylene-1-butene rubber, propylene-1-butene rubber, styrene-butadiene rubber, and hydrogenated products thereof, isoprene rubber, neoprene rubber, and nitrile rubber. Or a styrene-butadiene block copolymer elastomer and a polystyrene-based elastomer such as a hydrogenated product thereof, and various elastomers can be used.

【0014】上記副成分の添加量は、ポリプロピレン系
ランダム共重合体100重量部に対して50重量部未満
が好ましく、30重量部未満がより好ましく、20重量
部未満が特に好ましい。該副成分の添加量が少ないほ
ど、発泡成型体の耐熱性を高く維持しやすくなる。
The addition amount of the above-mentioned subcomponent is preferably less than 50 parts by weight, more preferably less than 30 parts by weight, and particularly preferably less than 20 parts by weight based on 100 parts by weight of the polypropylene random copolymer. The smaller the amount of the subcomponent added, the easier it is to maintain high heat resistance of the foamed molded article.

【0015】又、本発明の基材樹脂には各種添加剤を配
合することができる。添加剤としては、例えば、酸化防
止剤、紫外線吸収剤、帯電防止剤、難燃剤、金属不活性
化剤、顔料、染料、無機物、又は結晶核剤等が挙げられ
る。上記無機物としては、ホウ酸亜鉛、タルク、炭酸カ
ルシウム、ホウ砂、水酸化アルミニウム等が挙げられ
る。これらの添加剤は、基材樹脂100重量部に対して
20重量部以下、好ましくは5重量部以下の添加量で混
合する。尚、添加剤の添加量は、発泡成型体に要求され
る物性によって適宜定められる。
The base resin of the present invention can contain various additives. Examples of the additive include an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a metal deactivator, a pigment, a dye, an inorganic substance, and a nucleating agent. Examples of the inorganic substance include zinc borate, talc, calcium carbonate, borax, and aluminum hydroxide. These additives are mixed in an amount of 20 parts by weight or less, preferably 5 parts by weight or less based on 100 parts by weight of the base resin. The amount of the additive is appropriately determined depending on the physical properties required for the foam molded article.

【0016】上記主成分、副成分、及び添加剤は、一般
には、溶融混練により混合され、例えば、ロール、スク
リュー、バンバリミキサー、ニーダー、ブレンダー、ミ
ル等の各種混練機を用いて所望の温度で混練される。該
混練された基材樹脂は更に押出機で溶融混練した後、ス
トランド状に押し出して、冷却後適宜長さに切断する
か、或いは適宜長さに切断後冷却する等の手段でペレッ
ト状の発泡用樹脂粒子として形成される。
The above main components, subcomponents, and additives are generally mixed by melt-kneading. For example, using a kneader such as a roll, a screw, a Banbury mixer, a kneader, a blender, or a mill at a desired temperature. Kneaded. The kneaded base resin is further melt-kneaded with an extruder, extruded into strands, and cut into appropriate lengths after cooling, or cut into appropriate lengths and then cooled into pellets by means such as cooling. It is formed as resin particles for use.

【0017】上記基材樹脂の融点(Tm)は140℃以
上であることを要する。融点が140℃未満では、自動
車内装用の発泡成型体として要求される耐熱性を得るこ
とができない。又、該基材樹脂の融点は160℃以下で
あることが好ましい。融点が160℃を越えると金型内
等で安定して加熱成型を行うことが困難になる虞があ
る。
The melting point (Tm) of the base resin must be 140 ° C. or higher. When the melting point is lower than 140 ° C., the heat resistance required as a foam molded article for automobile interior cannot be obtained. Further, the melting point of the base resin is preferably 160 ° C. or less. If the melting point exceeds 160 ° C., it may be difficult to perform heat molding stably in a mold or the like.

【0018】上記基材樹脂の融点は、示差走査熱量測定
によって得られるDSC曲線から求められる。具体的に
は、試料量2〜4mgの発泡成型体を、示差走査熱量計
によって10℃/分の昇温速度で最初に220℃まで昇
温して1回目の測定を行い、次に該220℃まで昇温し
た試料2〜4mgを10℃/分の降温速度にて40℃ま
で降温した後、再度10℃/分の昇温速度で220℃ま
で昇温して2回目の測定を行い、該2回目の測定におい
て得られるDSC曲線の吸熱ピークの頂点を基材樹脂の
融点とする。
The melting point of the base resin is determined from a DSC curve obtained by differential scanning calorimetry. Specifically, a foamed molded product having a sample amount of 2 to 4 mg was first heated to 220 ° C. at a heating rate of 10 ° C./min by a differential scanning calorimeter, and the first measurement was performed. 2-4 mg of the sample heated to 10 ° C. was cooled to 40 ° C. at a rate of 10 ° C./min, and then again heated to 220 ° C. at a rate of 10 ° C./min to perform a second measurement. The vertex of the endothermic peak of the DSC curve obtained in the second measurement is defined as the melting point of the base resin.

【0019】図1は、発泡成型体に対する上記2回目の
測定において得られた基材樹脂のDSC曲線の一例を示
す図面であって、cは吸熱ピークを、Tmは融点を、T
eは融解終了温度をそれぞれ示す。尚、上記示差走査熱
量計は、株式会社島津製作所製「島津流束示差走査熱量
計DSC−50」を使用した(以下のDSC曲線の測定
においても同様である。)。
FIG. 1 is a drawing showing an example of a DSC curve of a base resin obtained in the second measurement of the foamed molded article, where c is an endothermic peak, Tm is a melting point, and Tm is a melting point.
e indicates the melting end temperature, respectively. As the differential scanning calorimeter, "Shimadzu Flux Differential Scanning Calorimeter DSC-50" manufactured by Shimadzu Corporation was used (the same applies to the measurement of the following DSC curve).

【0020】本発明の発泡成型体は、該発泡成型体の示
差走査熱量測定によって得られるDSC曲線における1
回目のピーク熱量から、2回目のDSC曲線における吸
熱ピーク熱量を差し引いた値が5J/g以上であることを
要する。該吸熱ピーク熱量の差を5J/g以上にすること
により、基材樹脂の融点が同じであっても該吸熱ピーク
熱量の差が5J/g未満の発泡成型体に比較すると、より
耐熱性に優れた発泡成型体を得ることができる。尚、本
発明においては、後述する基準により選択したポリプロ
ピレン系ランダム共重合体を使用することにより、上記
吸熱ピークの差を5J/gにすることができる。
The expanded molded article of the present invention has a 1
It is necessary that the value obtained by subtracting the endothermic peak calorie in the second DSC curve from the second peak calorie is 5 J / g or more. By making the difference between the endothermic peak calories 5 J / g or more, even if the melting point of the base resin is the same, the difference in the endothermic peak calories is less than 5 J / g when compared with a foamed molded article having less heat resistance. An excellent foam molded article can be obtained. In the present invention, the difference between the above-mentioned endothermic peaks can be reduced to 5 J / g by using a polypropylene random copolymer selected according to the criteria described later.

【0021】上記1回目の吸熱ピーク熱量とは、試料量
2〜4mgの発泡成型体を示差走査熱量計によって、最
初に10℃/分の昇温速度で220℃まで昇温したとき
に得られるDSC曲線(以下、「1回目のDSC曲線」
と略称する。)の吸熱ピークをいい、上記2回目のDS
C曲線の吸熱ピークとは、上記220℃まで昇温した試
料量2〜4mgの発泡成型体を示差走査熱量計によって
10℃/分の降温速度にて40℃まで降温した後、再度
10℃/分の昇温速度で220℃まで昇温したときに得
られるDSC曲線(以下、「2回目のDSC曲線」と略
称する。)の収熱ピークをいう。
The above-mentioned first endothermic peak calorific value is obtained when a foamed molded product having a sample amount of 2 to 4 mg is first heated to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter. DSC curve (hereinafter, "first DSC curve"
Abbreviated. )), The second DS above
The endothermic peak of the C curve means that the foamed molded body having a sample amount of 2 to 4 mg heated to 220 ° C. was cooled to 40 ° C. by a differential scanning calorimeter at a temperature decreasing rate of 10 ° C./min, and then 10 ° C./min. This is a heat collection peak of a DSC curve (hereinafter abbreviated as “second DSC curve”) obtained when the temperature is raised to 220 ° C. at a rate of temperature rise per minute.

【0022】図2は、発泡成型体に対する上記1回目の
測定において得られたDSC曲線の一例を示す図面であ
る。図2において、aは低温側に現われる吸熱ピーク
を、bは1回目のDSC曲線には現れるが2回目のDS
C曲線には現れない吸熱ピークであって、図1における
上記2回目のDSC曲線の吸熱ピークcより高温側に現
れる吸熱ピークを、TEは融解終了温度であって、吸熱
ピークbの高温側の据がベースラインの位置に戻ったと
きの温度をそれぞれ示す。
FIG. 2 is a drawing showing an example of the DSC curve obtained in the first measurement of the foam molded article. In FIG. 2, a is an endothermic peak appearing on the low temperature side, and b is a second DS curve which appears on the first DSC curve.
An endothermic peak which does not appear in the C curve and which appears on the higher temperature side than the endothermic peak c of the second DSC curve in FIG. 1, TE is the melting end temperature, and is the endothermic peak on the higher temperature side of the endothermic peak b. Shows the temperature when the setting returns to the baseline position.

【0023】DSC曲線における1回目の吸熱ピーク熱
量は、図2に示すようにDSC曲線上の80℃の点α
と、発泡成型体の融解終了温度TEを示すDSC曲線上
の点βとを結ぶ直線を引き、点αと点βとを結ぶ直線
と、DSC曲線によって囲まれる部分(図2の斜線部
分)に相当する熱量である。DSC曲線における2回目
の吸熱ピーク熱量も同様に、図1に示すようにDSC曲
線上の80℃の点αと、該基材樹脂の融解終了温度Te
を示すDSC曲線上の点βとを結ぶ直線を引き、点αと
点βとを結ぶ直線と、DSC曲線によって囲まれる部分
(図1の斜線部分)に相当する熱量である。
As shown in FIG. 2, the first endothermic peak calorific value in the DSC curve is a point α at 80 ° C. on the DSC curve.
And a straight line connecting the point β on the DSC curve indicating the melting end temperature TE of the foam molded article, and a straight line connecting the points α and β and a portion surrounded by the DSC curve (a hatched portion in FIG. 2) This is the corresponding amount of heat. Similarly, as shown in FIG. 1, the second endothermic peak calorie in the DSC curve is a point α at 80 ° C. on the DSC curve and the melting end temperature Te of the base resin.
Is a heat amount corresponding to a straight line connecting the point α and the point β on the DSC curve indicating the point (α) and a portion (hatched portion in FIG. 1) surrounded by the DSC curve.

【0024】1回目のDSC曲線の吸熱ピーク熱量か
ら、2回目のDSC曲線における吸熱ピーク熱量を差し
引いた値が5J/g以上である発泡成型体を得ることが可
能な基材樹脂の主成分として使用することができるポリ
プロピレン系ランダム共重合体は以下の基準によって選
択する。
As a main component of a base resin capable of obtaining a foamed molded product having a value obtained by subtracting the endothermic peak calorific value in the second DSC curve from the endothermic peak calorific value in the first DSC curve is 5 J / g or more. The polypropylene-based random copolymer that can be used is selected according to the following criteria.

【0025】まず、ポリプロピレン系ランダム共重合体
を試料とし、試料量2〜4mgを示差走査熱量計によっ
て室温から220℃まで昇温速度10℃/分で昇湿して
1回目の測定を行い、次いで220℃から降温速度10
℃/分で40℃まで降温し、続いて昇温速度10℃/分で
40℃から220℃まで昇温して得られる2回目のDS
C曲線の吸熱ピーク熱量(B)とピーク温度(C)を測
定する。
First, a polypropylene random copolymer was used as a sample, and the sample amount of 2 to 4 mg was heated from room temperature to 220 ° C. at a heating rate of 10 ° C./min by a differential scanning calorimeter to perform a first measurement. Next, the temperature was lowered from 220 ° C. to 10
The second DS obtained by lowering the temperature to 40 ° C. at a rate of 10 ° C./min and then increasing the temperature from 40 ° C. to 220 ° C. at a rate of 10 ° C./min.
The endothermic peak calorie (B) and peak temperature (C) of the C curve are measured.

【0026】次に上記のものとは別に用意した同一のポ
リプロピレン系ランダム共重合体を試料とし、試料量2
〜4mgを示差走査熱量計によって室温からピーク温度
(C)より5℃低い温度まで昇温速度10℃/分で昇温
後、該温度で20分間保持し、その後、降温速度10℃
/分で40℃まで降温し、次いで昇温速度10℃/分で2
20℃まで昇温したときに得られる2回目のDSC曲線
の吸熱ピーク熱量(A)を測定する。
Next, the same polypropylene random copolymer prepared separately from the above was used as a sample.
44 mg by a differential scanning calorimeter from a room temperature to a temperature 5 ° C. lower than the peak temperature (C) at a rate of 10 ° C./min, hold at that temperature for 20 minutes, and then decrease the temperature by 10 ° C.
/ Min at 40 ° C / min.
The endothermic peak calorie (A) of the second DSC curve obtained when the temperature is raised to 20 ° C. is measured.

【0027】この測定において、吸熱ピーク熱量(A)
−吸熱ピーク熱量(B)が10J/g以上となるプロピレ
ン系ランダム共重合体を基材樹脂の主成分として選択す
れば本発明の発泡成型体を得ることが可能になる。この
ような物性を示すプロピレン系ランダム共重合体として
は、例えば、出光石油化学株式会社製の「出光ポリプロ
F714NP」、「出光ポリプロJ740GP」を挙げ
ることができる。
In this measurement, the endothermic peak calorific value (A)
-If a propylene random copolymer having an endothermic peak calorie (B) of 10 J / g or more is selected as a main component of the base resin, the foam molded article of the present invention can be obtained. Examples of the propylene random copolymer exhibiting such physical properties include “Idemitsu Polypro F714NP” and “Idemitsu Polypro J740GP” manufactured by Idemitsu Petrochemical Co., Ltd.

【0028】本発明の発泡成型体の密度は、通常は0.
006〜0.6g/cm3の範囲内で用途に応じて選定さ
れるが、0.020〜0.45g/cm3であることが好
ましく、0.040〜0.30g/cm3であることがよ
り好ましく、0.050〜0.20g/cm3であること
が特に好ましい。発泡成型体の密度が、0.020g/
cm3未満では、衝撃吸収性に劣るので自動車内装材と
しての適性に劣る虞があり、0.45g/cm3を越える
と固くなりすぎて自動車内装材として使用できなくなる
虞がある。
The density of the foamed molded article of the present invention is usually 0.1.
006~0.6g / cm 3 of but is selected according to the application within the scope, it is preferably 0.020~0.45g / cm 3, a 0.040~0.30g / cm 3 Is more preferable, and particularly preferably 0.050 to 0.20 g / cm 3 . The density of the foamed molding is 0.020 g /
If it is less than 3 cm 3 , it may be inferior in shock absorbing properties and thus may be less suitable as an automobile interior material. If it exceeds 0.45 g / cm 3, it may be too hard to be used as an automobile interior material.

【0029】上記発泡成型体の密度は、発泡成型体の外
形寸法から体積V(cm3)を求め、該体積V(cm3
と該成型体の重量W(g)から次式によって求める。 発泡成型体の密度(g/cm3)=W/V
The density of the foamed molded article is obtained by calculating a volume V (cm 3 ) from the outer dimensions of the foamed molded article, and calculating the volume V (cm 3 ).
And the weight W (g) of the molded body is determined by the following equation. Density of foam (g / cm 3 ) = W / V

【0030】本発明の発泡成型体は、上記1回目のDS
C曲線において、2回目のDSC曲線の吸熱ピークより
高温側に、2回目のDSC曲線には現れない吸熱ピーク
が現われる結晶構造を有することが好ましい。1回目の
DSC曲線の該高温側のピークが現れない場合は、成型
性が悪くなり、品質が良好な独立気泡率が高い発泡成型
体を得ることができなくなる虞がある。
The foamed molded article of the present invention is obtained by the first DS
It is preferable that the C curve has a crystal structure in which an endothermic peak not appearing in the second DSC curve appears at a higher temperature side than the endothermic peak of the second DSC curve. When the peak on the high temperature side of the first DSC curve does not appear, the moldability is deteriorated, and there is a possibility that a foamed molded article having good quality and a high closed cell rate cannot be obtained.

【0031】以下、1回目のDSC曲線において高温側
に現われる吸熱ピークと低温側に現われる吸熱ピークに
ついて説明する。1回目のDSC曲線の一例を示す図2
において、低温側に現れている吸熱ピーク(以下、「固
有ピーク」という。)aは、基材樹脂の主成分であるポ
リプロピレン共重合体の融解時の吸熱によるものであ
る。一方、上記高温側に現れるている吸熱ピーク(以
下、「高温ピーク」という。)bは、1回目のDSC曲
線には現れるが2回目のDSC曲線には現れないという
特異的な性質を有する。
Hereinafter, the endothermic peak appearing on the high temperature side and the endothermic peak appearing on the low temperature side in the first DSC curve will be described. FIG. 2 showing an example of a first DSC curve
In the above, the endothermic peak a that appears on the low temperature side (hereinafter, referred to as “inherent peak”) a is due to the endothermic time of the melting of the polypropylene copolymer which is the main component of the base resin. On the other hand, the endothermic peak b which appears on the high temperature side (hereinafter, referred to as “high temperature peak”) has a specific property that it appears on the first DSC curve but does not appear on the second DSC curve.

【0032】上記高温ピークbの出現は、ポリプロピレ
ン系ランダム共重合体の結晶が加熱され融解することに
起因し、結晶構造と結びついた現象である。従って、結
晶構造の違いにより高温ピークbの大きさ、形状は変化
し、高温ピークbが現れない場合もある。但し、高温ピ
ークbの出現は、基材樹脂自体の結晶構造に起因するも
のではなく、熱履歴を経た結果としての発泡樹脂粒子が
有する特有の結晶構造に起因するものである。即ち、固
有ピークaは1回目のDSC曲線にも、2回目のDSC
曲線にも現れることから、基材樹脂自体の結晶構造等に
起因すると考えることができる。これに対し、高温ピー
クbは発泡樹脂粒子が発泡した状態を維持している1回
目のDSC曲線には現れるが、220℃まで一度加熱し
て完全に溶融してから、10℃/分の速度で40℃まで
降温した後に、再度1回目と同一条件で昇温を行った2
回目のDSC曲線には現れない。従って、高温ピークb
が現れる現象は、発泡樹脂粒子が発泡という熱履歴を経
た結果として有する特有の結晶構造に起因するものであ
ると考えることができる。尚、該特有の結晶構造の大部
分は、発泡樹脂粒子を加熱成型することによって得られ
る発泡成型体にも引き継がれる。
The appearance of the high temperature peak b is caused by the fact that the crystal of the polypropylene random copolymer is heated and melted, and is a phenomenon associated with the crystal structure. Accordingly, the size and shape of the high-temperature peak b change depending on the crystal structure, and the high-temperature peak b may not appear. However, the appearance of the high-temperature peak b is not due to the crystal structure of the base resin itself, but to the characteristic crystal structure of the foamed resin particles as a result of passing through the heat history. That is, the unique peak a is the same as that of the first DSC curve and the second DSC curve.
Since it also appears on the curve, it can be considered that it is caused by the crystal structure or the like of the base resin itself. On the other hand, the high temperature peak “b” appears in the first DSC curve in which the expanded resin particles maintain the expanded state, but after heating once to 220 ° C. and completely melting, the rate of 10 ° C./min. After the temperature was lowered to 40 ° C., the temperature was raised again under the same conditions as the first time.
It does not appear in the second DSC curve. Therefore, the high temperature peak b
Can be considered to be attributable to the unique crystal structure of the foamed resin particles as a result of undergoing the thermal history of foaming. In addition, most of the specific crystal structure is carried over to a foam molded article obtained by subjecting the foamed resin particles to heat molding.

【0033】1回目のDSC曲線に現れる高温ピークb
の頂点の温度と、2回目のDSC曲線に現れる固有ピー
クaの頂点の温度との差は、5℃以上が好ましく、10
℃以上が特に好ましい。該温度差が小さいと、得られた
発泡樹脂粒子の独立気泡率が小さくなる傾向があり、独
立気泡率が小さい発泡樹脂粒子を成型して得られる発泡
成型体は機械的物性に劣るので好ましくない。尚、図2
には2つの吸熱ピークa,bが滑らかな曲線で描かれて
いるが、DSC曲線は必ずしもこのように滑らかな曲線
になるとは限らず、複数の吸熱ピークの重なりがDSC
曲線に現れ、全体として、固有ピークと高温ピークとの
2つの吸熱ピークが、DSC曲線上に現れる場合もあ
る。
High temperature peak b appearing in the first DSC curve
Is preferably 5 ° C. or higher, and the difference between the temperature at the top of the peak and the temperature at the top of the unique peak a appearing in the second DSC curve is preferably 10 ° C. or more.
C. or higher is particularly preferred. When the temperature difference is small, the closed cell ratio of the obtained foamed resin particles tends to be small, and a foamed molded product obtained by molding the foamed resin particles having a small closed cell ratio is inferior in mechanical properties, which is not preferable. . FIG.
In FIG. 2, two endothermic peaks a and b are drawn as smooth curves. However, the DSC curve is not always such a smooth curve.
In some cases, two endothermic peaks appearing on the curve, an intrinsic peak and a high-temperature peak, appear on the DSC curve.

【0034】本発明の発泡成型体の高温ピークの熱量
(以下、「高温ピーク熱量」と略称する。)は、4J/g
以上であることが好ましい。該高温ピーク熱量が4J/g
未満の場合は、発泡成型体の曲げ強度や圧縮強度等の機
械的物性が著しく低下し、耐熱性も低下する虞がある。
かかる観点から、高温ピーク熱量は10J/g以上である
ことがより好ましい。しかし、高温ピーク熱量が大きく
なりすぎると、発泡成型体の成型に使用する水蒸気の温
度を高くしなければならなくなったり、発泡成型体を構
成する発泡樹脂粒子相互間の空隙が多くなって、発泡成
型体の外観が悪くなる傾向がある。かかる観点から、高
温ピーク熱量は40J/gを上限とすることが好ましい。
The calorie at the high temperature peak of the foamed molded article of the present invention (hereinafter, abbreviated as “high temperature peak calorie”) is 4 J / g.
It is preferable that it is above. The high temperature peak calorie is 4 J / g
If it is less than 1, the mechanical properties such as the bending strength and the compressive strength of the foamed molded article are significantly reduced, and the heat resistance may be reduced.
From such a viewpoint, the high-temperature peak calorie is more preferably 10 J / g or more. However, if the high-temperature peak calorific value becomes too large, the temperature of steam used for molding the foamed molded article must be increased, or the voids between the foamed resin particles constituting the foamed molded article increase, and The appearance of the molded article tends to be poor. From such a viewpoint, the upper limit of the high-temperature peak calorific value is preferably set to 40 J / g.

【0035】高温ピーク熱量は、図2に示すようにDS
C曲線上の80℃の点αと、該樹脂の融解終了温度TE
を示すDSC曲線上の点βとを結ぶ直線を引き、次に、
固有ピークaと高温ピークbとの間の谷部にあたるDS
C曲線上の点γから、点αと点βとを結んだ直線へ、グ
ラフの縦軸に平行な線を引き、その交点を点δとし、こ
のようにして求めた点δと点βとを結ぶ直線、点γと点
δとを結ぶ直線、及び点γと点βとを結ぶDSC曲線に
よって囲まれる部分に相当する熱量である。
The high-temperature peak calorific value is DS as shown in FIG.
The point α at 80 ° C. on the C curve and the melting end temperature TE of the resin
Draw a straight line connecting the point β on the DSC curve indicating
DS corresponding to the valley between the characteristic peak a and the high temperature peak b
From the point γ on the C curve, a line parallel to the vertical axis of the graph is drawn to a straight line connecting the points α and β, and the intersection thereof is defined as a point δ. , A straight line connecting the point γ and the point δ, and a heat amount corresponding to a portion surrounded by a DSC curve connecting the point γ and the point β.

【0036】本発明の発泡成型体は、所定の特性を具備
した発泡樹脂粒子を金型内に充填し、加熱水蒸気等を圧
入して加熱発泡させることにより得ることができる。該
発泡樹脂粒子は、密閉容器内において前記ペレット状に
形成された基材樹脂を発泡剤の存在下において、必要に
応じて添加した分散剤と共に分散媒に分散させ、次い
で、上記樹脂粒子を軟化点以上に加熱して該樹脂粒子内
に発泡剤を含浸させ、しかる後に密閉容器内の下方に位
置する一端を開放し、容器内圧力を発泡剤の蒸気圧以上
の圧力に保持しながら樹脂粒子と分散媒とを同時に容器
内よりも低圧の雰囲気下(通常は大気圧下)に放出して
樹脂粒子を発泡させる方法によって得ることができる。
The foamed molded article of the present invention can be obtained by filling foamed resin particles having predetermined characteristics in a mold, and pressurizing heated steam or the like to foam by heating. The foamed resin particles are dispersed in a dispersion medium together with a dispersant added as necessary, in the presence of a foaming agent, in the presence of a foaming agent, and the resin particles are softened. The resin particles are heated to a point or more to impregnate the resin particles with the foaming agent, and thereafter, one end located below in the closed container is opened, and the resin particles are kept at a pressure equal to or higher than the vapor pressure of the foaming agent. And the dispersion medium are simultaneously released under a lower pressure atmosphere than the inside of the container (usually under atmospheric pressure) to foam the resin particles.

【0037】上記発泡剤として、通常、プロパン、ブタ
ン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素
類、シクロブタン、シクロペンタン等の環式脂肪族炭化
水素類、クロロフロロメタン、トリフロロメタン、1,
1−ジフロロエタン、1,2,2,2−テトラフロロエ
タン、メチルクロライド、エチルクロライド、メチレン
クロライド等のハロゲン化炭化水素類等の揮発性発泡剤
や、窒素、二酸化炭素、アルゴン、空気等の無機ガス系
発泡剤、又はこれらの混合物が用いられる。これらの中
では、無機ガス系発泡剤がオゾン層を破壊することなく
且つ安価であるため好ましく、特に窒素、空気、二酸化
炭素がより好ましい。
As the foaming agent, there are usually used aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane, cycloaliphatic hydrocarbons such as cyclobutane and cyclopentane, chlorofluoromethane, trifluoromethane, ,
Volatile blowing agents such as halogenated hydrocarbons such as 1-difluoroethane, 1,2,2,2-tetrafluoroethane, methyl chloride, ethyl chloride and methylene chloride; and inorganic materials such as nitrogen, carbon dioxide, argon and air. A gas-based blowing agent or a mixture thereof is used. Among these, an inorganic gas-based blowing agent is preferable because it does not destroy the ozone layer and is inexpensive, and nitrogen, air, and carbon dioxide are particularly preferable.

【0038】上記発泡剤の使用量は、脂肪族炭化水素
類、環式脂肪族炭化水素類、ハロゲン化炭化水素類等の
揮発性発泡剤の場合は、通常、樹脂粒子100重量部当
り、2〜50重量部である。又、窒素や空気等の無機ガ
ス系発泡剤の場合は、通常、発泡(放出)開始直前の密
閉容器内の圧力が1〜60kgf/cm2 Gの圧力範囲
となるように発泡剤を密閉容器内に圧入する。これら発
泡剤の使用量(又は圧入量)は、発泡樹脂粒子の目的と
する発泡倍率と目的とする高温ピーク熱量との関係から
適宜選定する。
The amount of the foaming agent used is usually 2 parts per 100 parts by weight of resin particles in the case of volatile foaming agents such as aliphatic hydrocarbons, cycloaliphatic hydrocarbons and halogenated hydrocarbons. 5050 parts by weight. In the case of an inorganic gas-based foaming agent such as nitrogen or air, the foaming agent is usually placed in a closed container so that the pressure in the closed container immediately before the start of foaming (release) is in a pressure range of 1 to 60 kgf / cm 2 G. Press into. The use amount (or press-fit amount) of these foaming agents is appropriately selected from the relationship between the desired expansion ratio of the foamed resin particles and the desired high-temperature peak calorific value.

【0039】基材樹脂粒子を分散させるための分散媒と
しては、樹脂粒子を溶解しないものであればとくに限定
されない。このような分散媒としては、例えば、水、エ
チレングリコール、グリセリン、メタノール、エタノー
ル等が挙げることができるが、通常は水が使用される。
The dispersion medium for dispersing the base resin particles is not particularly limited as long as it does not dissolve the resin particles. Examples of such a dispersion medium include water, ethylene glycol, glycerin, methanol, ethanol, and the like, but water is usually used.

【0040】基材樹脂粒子を分散媒に分散させるには、
必要に応じて分散剤を添加する。該分散剤としては、マ
グネシウム、塩基性炭酸亜鉛、炭酸カルシウム、カオリ
ン、マイカ、クレー等が使用される。通常、これらは基
材樹脂100重量部に対して0.2〜2重量部の割合で
分散媒に添加する。
To disperse the base resin particles in the dispersion medium,
Add a dispersant as needed. As the dispersant, magnesium, basic zinc carbonate, calcium carbonate, kaolin, mica, clay and the like are used. Usually, these are added to the dispersion medium at a ratio of 0.2 to 2 parts by weight based on 100 parts by weight of the base resin.

【0041】本発明の発泡成型体は、前記の如く、1回
目のDSC曲線に吸熱ピークとして高温ピークが現れる
結晶構造を有し、且つ該高温ピークの熱量が4J/g以上
であることが好ましい。かかる特性を備えた発泡成型体
は、1回目のDSC曲線に固有ピークと高温ピークが現
れ、且つ該高温ピークの熱量が4J/g以上の値を示す発
泡樹脂粒子を用いて成型することによって得ることがで
きる。該発泡樹脂粒子は、次に説明するように、密閉容
器内において基材樹脂粒子を所定の温度で所定の時間保
持することによって得ることができる。尚、発泡樹脂粒
子の高温ピーク熱量は発泡成型体の高温ピーク熱量を求
めるのと同様の方法で発泡樹脂粒子の1回目のDSC曲
線から求めることができ、その値は発泡成型体の高温ピ
ーク熱量と略等しい値を示す。
As described above, the foam molded article of the present invention preferably has a crystal structure in which a high-temperature peak appears as an endothermic peak in the first DSC curve, and the calorific value of the high-temperature peak is 4 J / g or more. . A foamed molded article having such characteristics is obtained by molding using foamed resin particles in which a unique peak and a high-temperature peak appear on the first DSC curve and the calorific value of the high-temperature peak is 4 J / g or more. be able to. The expanded resin particles can be obtained by holding the base resin particles in a closed container at a predetermined temperature for a predetermined time, as described below. The high-temperature peak calorie of the foamed resin particles can be obtained from the first DSC curve of the foamed resin particles in the same manner as the method for obtaining the high-temperature peak calorie of the foamed molded product. Indicates a value approximately equal to.

【0042】上記特性の発泡成型体の製造に使用できる
発泡樹脂粒子の製造は、密閉容器内において基材樹脂粒
子を所定の保持温度Ta、Tbの二段階に分けてそれぞ
れ所定時間保持することによって行う。かかる手段によ
れば、発泡樹脂粒子、更に発泡成型体の高温ピーク熱量
を4J/g以上に制御することが容易となる。
The production of foamed resin particles which can be used for producing a foamed molded article having the above characteristics is carried out by dividing the base resin particles into two stages of a predetermined holding temperature Ta and Tb in a closed container and holding each for a predetermined time. Do. According to such means, it is easy to control the high-temperature peak calorie of the expanded resin particles and the expanded molded article to 4 J / g or more.

【0043】上記保持温度Taは[融点Tm−15℃]
〜[Te]未満の範囲内の任意に選択した温度、保持温
度Tbは[融点Tm−15℃]〜[融解終了温度Te+
5℃]の範囲内の任意に選択した温度、それぞれの温度
における保持時間は共に10〜60分の範囲内の任意に
選択した時間である。具体的には、密閉容器内の分散媒
を、融解終了温度Te以上に昇温させずに温度Taに昇
温し、該温度Taで10〜60分の範囲内に保持し、そ
の後、温度Tbに調節して、10〜60分の範囲内に保
持してから大気圧下に放出して発泡させる。このように
発泡させれば、DSC曲線に高温ピークが現れる結晶構
造を有する発泡樹脂粒子を得ることができる。又、発泡
樹脂粒子の高温ピーク熱量の大小は、主として、上記温
度Taと該温度Taにおける保持時間、上記温度Tbと
該温度Tbにおける保持時間、並びに昇温速度に依存す
る。
The holding temperature Ta is [melting point Tm-15 ° C.]
The temperature arbitrarily selected and the holding temperature Tb in the range of less than to [Te] are [melting point Tm−15 ° C.] to [melting end temperature Te +
5 ° C.], and the holding time at each temperature is an arbitrarily selected time within a range of 10 to 60 minutes. Specifically, the temperature of the dispersion medium in the closed container is raised to the temperature Ta without being raised to the melting end temperature Te or higher, and the temperature is kept within the range of 10 to 60 minutes at the temperature Ta, and then the temperature Tb And maintained within the range of 10 to 60 minutes, and then released under atmospheric pressure to foam. By foaming in this manner, foamed resin particles having a crystal structure in which a high-temperature peak appears on a DSC curve can be obtained. The magnitude of the high-temperature peak calorific value of the foamed resin particles mainly depends on the temperature Ta and the holding time at the temperature Ta, the temperature Tb and the holding time at the temperature Tb, and the heating rate.

【0044】尚、上記温度範囲は、発泡剤として無機ガ
ス系発泡剤を使用した場合の温度範囲であって、発泡剤
として有機揮発性発泡剤を使用した場合は、その種類や
使用量に応じてその適切な温度範囲は上記温度範囲より
も低温側にシフトする傾向がある。
The above temperature range is a temperature range when an inorganic gas-based blowing agent is used as a blowing agent. When an organic volatile blowing agent is used as a blowing agent, the temperature range depends on the type and amount of the organic volatile blowing agent. The appropriate temperature range tends to shift to a lower temperature than the above temperature range.

【0045】本発明の発泡成型体は、上記発泡樹脂粒子
に必要に応じて内圧付与等の前処理を施した後、発泡樹
脂粒子を開閉し得るが密閉し得ない成型用金型内に充填
して、2.0〜6.0kg/cm2 G程度のスチームを
注入することにより、発泡樹脂粒子を加熱して二次発泡
せしめるとともに相互に融着せしめた後に、冷却するこ
とによって得ることができる。
The foamed molded article of the present invention is subjected to a pretreatment such as application of an internal pressure, if necessary, to the foamed resin particles, and then filled in a molding die which can be opened and closed but cannot be sealed. Then, by injecting about 2.0 to 6.0 kg / cm 2 G of steam, the foamed resin particles are heated to cause secondary foaming and are fused to each other, and then cooled to be obtained. it can.

【0046】又、本発明の発泡成型体は連続成型法(例
えば、特開平9−104026、特開平9−10402
7、及び特開平10−180888号に記載される成型
方法)により製造することもできる。該連続成型法は、
上記発泡樹脂粒子を必要に応じて気泡内圧を高めてか
ら、通路内の上下に沿って連続的に移動するベルト間に
連続的に供給し、加熱領域を通過する際に発泡樹脂粒子
同士を膨張融着させ、その後に設けられている冷却領域
を通過する際に冷却し、次に得られた発泡成型体を通路
内から取出し、適宜長さに順次切断する方法である。
尚、上記発泡樹脂粒子の内圧付与は、密閉容器内におい
て加圧空気を供給して発泡樹脂粒子の内圧を所定の圧力
にまで高めることによって行う。
Further, the foamed molded article of the present invention can be obtained by a continuous molding method (for example, Japanese Patent Application Laid-Open Nos. 9-104026 and 9-10402).
7, and the molding method described in JP-A-10-180888). The continuous molding method,
After increasing the internal pressure of the foam as required, the foamed resin particles are continuously supplied between the belts that move continuously up and down in the passage, so that the foamed resin particles expand when passing through the heating area. This is a method of fusing, cooling when passing through a cooling area provided thereafter, and then taking out the obtained foam molded article from the passage and sequentially cutting it into appropriate lengths.
The application of the internal pressure of the expanded resin particles is performed by supplying pressurized air in a closed container to increase the internal pressure of the expanded resin particles to a predetermined pressure.

【0047】上記方法によって製造された本発明の発泡
成型体は、ASTM−D2856−70の手順Cに基づ
く連続気泡率が40%以下であることが好ましく、30
%以下であることがより好ましく、25以下であること
が特に好ましい。連続気泡率が小さいほど、機械的強度
に優れた発泡成型体を得ることができるからである。
The foam molded article of the present invention produced by the above method preferably has an open cell ratio of 40% or less based on Procedure C of ASTM-D2856-70,
%, More preferably 25% or less, particularly preferably 25% or less. This is because the smaller the open cell ratio is, the more a foam molded article having excellent mechanical strength can be obtained.

【0048】本発明の型内成型体は、自動車バンパー芯
材等のような衝撃吸収材や、表皮材と一体化することに
よりダッシュボード、コンソールボックス、コンソール
リッド、インストルメントパネル、ドアパネル、ドアト
リム、天井材、ピラー部の自動車内装材、サンバイザ
ー、アームレスト、ヘッドレスト等の自動車内装材とし
て好適に用いることができる。また、自動車用途以外に
もヘルメットの芯材、断熱材、船舶や飛行機の構造材、
緩衝材、建材等にも広く利用することができる。
The in-mold molded product of the present invention is integrated with a shock absorbing material such as an automobile bumper core material and a skin material to form a dashboard, console box, console lid, instrument panel, door panel, door trim, and the like. It can be suitably used as an automobile interior material such as a ceiling material, an automobile interior material of a pillar portion, a sun visor, an armrest, and a headrest. In addition to automotive applications, core materials for helmets, heat insulating materials, structural materials for ships and airplanes,
It can be widely used for cushioning materials and building materials.

【0049】[0049]

【実施例】以下、実施例と比較例を挙げて、本発明を更
に詳細に説明する。 〔実施例1〜3〕表1に示す特性の各種ポリプロピレン
系ランダム共重合体に、発泡助剤として富田製薬株式会
社製「ホウ酸亜鉛2335」を500ppm含まれるよ
うに添加して押出機内で溶融混練し、これをダイからス
トランド状に押し出して水中で急冷し、次に所定の長さ
に切断してペレット状(1ペレット当たり約2mg)に
造粒した。尚、表1には、プロピレンと共重合させたα
−オレフィンの種類、該α−オレフィンの含量(重量
%)、MFR(g/10分)、融点Tm(℃)、及び上
記吸熱ピーク熱量(A)−吸熱ピーク熱量(B)(「吸
熱ピーク熱量差(A)−(B)」と表記した。)を示
す。
The present invention will be described below in more detail with reference to examples and comparative examples. [Examples 1 to 3] To a variety of polypropylene random copolymers having the characteristics shown in Table 1, "Zinc borate 2335" manufactured by Tomita Pharmaceutical Co., Ltd. was added as a foaming aid so as to contain 500 ppm and melted in an extruder. The mixture was extruded into a strand from a die, quenched in water, cut into a predetermined length, and granulated into pellets (about 2 mg per pellet). Table 1 shows that α was copolymerized with propylene.
-The type of olefin, the content (wt%) of the α-olefin, the MFR (g / 10 min), the melting point Tm (° C), and the endothermic peak calorie (A)-the endothermic peak calorie (B) (“the endothermic peak calorie” Difference (A)-(B) ").

【0050】上記ペレット1000gを、密閉容器(容
積5リットル)内で水3000ccに分散させ、発泡剤
としてそれぞれ表1に示す量のドライアイス(CO2
を添加すると共に、分散剤としてカオリン5g、界面活
性剤としてドデシルベンゼンスルホン酸ソーダ0.05
gを添加して、密閉容器内で攪拌しながら、基材樹脂の
融解終了温度Te以上の温度に昇温することなく、表1
に示す加熱保持温度Taまで昇温して15分間保持し
た。次に、基材樹脂の融解終了温度Te以上の温度に昇
温することなく、表1に示す発泡温度Tbまで昇温して
15分間保持した後に、加圧窒素の導入によって発泡剤
の「平衡蒸気圧+10kg/cm2 G」の背圧をかけ、
その圧力を保持したまま容器の下方に位置する一端を解
放することによって基材樹脂粒子と水とを同時に放出
し、基材樹脂粒子を発泡せしめて発泡樹脂粒子を得た。
1000 g of the above pellets were dispersed in 3000 cc of water in a closed container (volume: 5 liters), and the amount of dry ice (CO 2 ) shown in Table 1 was used as a foaming agent.
And 5 g of kaolin as a dispersant and 0.05% of sodium dodecylbenzenesulfonate as a surfactant.
g, and the mixture was stirred in an airtight container without heating to a temperature equal to or higher than the melting end temperature Te of the base resin.
And held for 15 minutes. Next, after the temperature was raised to the foaming temperature Tb shown in Table 1 and maintained for 15 minutes without increasing to the temperature equal to or higher than the melting end temperature Te of the base resin, “equilibrium” of the foaming agent was performed by introducing pressurized nitrogen. Back pressure of "vapor pressure + 10 kg / cm 2 G"
By releasing one end located below the container while maintaining the pressure, the base resin particles and water were simultaneously released, and the base resin particles were expanded to obtain expanded resin particles.

【0051】次に、発泡樹脂粒子を60℃のオーブン内
で24時間乾燥した後、特に内圧を高めることなく、こ
れを閉鎖し得るが密閉し得ない金型内(成型空間の寸法
は、300mm×300mm×50mm)に充填し、表
2に示す圧力の過熱水蒸気を金型内に圧入して加熱を行
ない成型した。冷却後、金型から取り出した成型体を6
0℃のオーブン内で24時間乾燥して本発明の発泡成型
体を得た。
Next, after the foamed resin particles are dried in an oven at 60 ° C. for 24 hours, they can be closed but not sealed without increasing the internal pressure (the size of the molding space is 300 mm). × 300 mm × 50 mm), and superheated steam having a pressure shown in Table 2 was pressed into a mold and heated to perform molding. After cooling, remove the molded body from the mold to 6
The foam was dried in an oven at 0 ° C. for 24 hours to obtain a foamed molded product of the present invention.

【0052】〔比較例1〕表1に示す特性のポリプロピ
レン系ランダム共重合体を使用して、実施例1〜3と同
様に、表1に示す条件で基材樹脂粒子を発泡せしめて発
泡樹脂粒子を得た。次に、実施例1〜3と同様に乾燥し
た後、表2に示す圧力の過熱水蒸気を金型内に圧入して
加熱を行ない成型した後、成型体を60℃のオーブン内
で24時間乾燥して発泡成型体を得た。
[Comparative Example 1] Using a polypropylene random copolymer having the characteristics shown in Table 1, the base resin particles were foamed under the conditions shown in Table 1 in the same manner as in Examples 1 to 3 to obtain a foamed resin. Particles were obtained. Next, after drying in the same manner as in Examples 1 to 3, superheated steam having the pressure shown in Table 2 was pressed into the mold and heated to mold, and then the molded body was dried in an oven at 60 ° C. for 24 hours. To obtain a foam molded article.

【0053】実施例1〜3及び比較例1において得られ
た発泡樹脂粒子の高温ピーク熱量、及び、嵩密度を測定
した。その結果を表1に示す。 発泡樹脂粒子の嵩密度
は、容量1000cm3 の上部に開口部を持つ容器を用
意し、常温常圧下にて、該容器内に発泡樹脂粒子を充填
し、容器の開口部を越えた発泡樹脂粒子を取り除き、発
泡樹脂粒子の嵩高さを容器の開口部と略一致させ、その
時の容器内の発泡樹脂粒子の重量(g)を1000cm
3 で除すことにより求めた。
The high-temperature peak calorie and bulk density of the foamed resin particles obtained in Examples 1 to 3 and Comparative Example 1 were measured. Table 1 shows the results. For the bulk density of the expanded resin particles, a container having an opening at the top with a capacity of 1000 cm 3 is prepared, and the expanded resin particles are filled in the container under normal temperature and pressure, and the expanded resin particles having passed through the opening of the container are prepared. , The height of the foamed resin particles is made to substantially match the opening of the container, and the weight (g) of the foamed resin particles in the container at that time is 1000 cm.
It was determined by dividing by 3 .

【0054】実施例1〜3及び比較例1において得られ
た発泡成型体の発泡成型体の高温ピーク熱量、密度、1
回目及び2回目のDSC曲線の吸熱ピーク熱量、及び、
発泡成型体の高温下でのたわみ量について測定した。そ
の結果を表2に示す。
The foamed molded articles obtained in Examples 1 to 3 and Comparative Example 1 had high-temperature peak calories, densities,
Endothermic peak calories of the second and second DSC curves, and
The amount of deflection of the foam molded article at a high temperature was measured. Table 2 shows the results.

【0055】高温下でのたわみ量の測定方法を次の通り
である。図3に示すように、センター間の距離が150
mmとなるように平行に立設され、且つ上端が曲率半径
R=1mmとなるように丸められた縦85mm、横60
mm、厚み2mmの2枚の支持板2、2を用意した。次
に、該支持板2、2に、得られた発泡成型体の表層部分
から縦200mm、横40mm、厚み10mmで切り取
った試験片1を、成型体の表面であった面が上側とな
り、且つその長手方向が支持板2、2と直交するように
均等に跨がせた。次いで、上記試験片1上において、2
枚の支持板2、2の間の略中央となる位置に、半径3m
m、長さ60mmの円柱状錘3(重量5g)を各支持板
2、2と平行になるように横にねかせて載置し、130
℃の温度雰囲気下で22時間放置した。
The method for measuring the amount of deflection under high temperature is as follows. As shown in FIG. 3, the distance between the centers is 150
mm, and the upper end is rounded so as to have a radius of curvature R = 1 mm, a length of 85 mm and a width of 60 mm.
Two support plates 2 and 2 having a thickness of 2 mm and a thickness of 2 mm were prepared. Next, on the support plates 2 and 2, the test piece 1 cut out from the surface layer portion of the obtained foamed molded product at a length of 200 mm, a width of 40 mm, and a thickness of 10 mm, the surface of the molded body facing upward, and They were straddled evenly so that the longitudinal direction was orthogonal to the support plates 2 and 2. Next, on the test piece 1, 2
A radius of 3 m at a position substantially at the center between the two support plates 2 and 2
The columnar weight 3 (weight: 5 g) having a length of 60 mm and a length of 60 mm is placed on the supporting plate 2, 2 in such a manner that the columnar weight 3 is laid sideways so as to be parallel to the supporting plates 2, 2.
It was left for 22 hours in an atmosphere at a temperature of ° C.

【0056】成型体の高温下でのたわみ量(D)は、次
式により計算する。 D=L1 −L2 但し、L2 は上記高温雰囲気下で22時間放置した直後
の、支持板2、2間の中央部における試験片の下面と、
水平面を有する台座4の上面との最短長さ、L 1 は高温
雰囲気下におく直前の同最短長さである。又、本実施
例、比較例及び後述する参考例におけるL1 はいずれも
85mmとした。尚、図3(b)は図3(a)に示す状
態を上から見た図面である。
The amount of deflection (D) of the molded body under high temperature is as follows.
It is calculated by the formula. D = L1 -LTwo Where LTwo Immediately after being left in the above high temperature atmosphere for 22 hours
A lower surface of a test piece at a central portion between the support plates 2 and 2,
The shortest length from the upper surface of the pedestal 4 having a horizontal plane, L 1 Is high temperature
It is the same shortest length immediately before being placed in the atmosphere. Also, this implementation
L in Examples, Comparative Examples and Reference Examples described later.1 Are both
85 mm. FIG. 3B shows the state shown in FIG.
It is the drawing which looked at a state from the top.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【発明の効果】以上説明したように、本発明は、プロピ
レンと、エチレン及び炭素数4以上のα−オレフィンよ
りなる群から選ばれたコモノマーの1種又は2種以上と
を共重合して得られたポリプロピレン系ランダム共重合
体を基材樹脂の主成分とし、且つ該基材樹脂のDSC曲
線から求められる融点が140℃以上である基材樹脂を
原料として用い、更に該基材樹脂を発泡し成型して得た
発泡成型体の1回目のDSC曲線における吸熱ピーク熱
量から、2回目のDSC曲線における吸熱ピーク熱量を
差し引いた値が5J/g以上とすることにより、衝撃吸収
性、軽量性に優れていることに加え、従来のポリプロピ
レン系樹脂と略同一の成型条件で成型でき、且つ融点が
同一の従来の発泡成型体より耐熱性に優れたポリプロピ
レン系樹脂発泡成型体を提供することが可能になった。
As described above, the present invention provides a copolymer obtained by copolymerizing propylene with one or more comonomers selected from the group consisting of ethylene and α-olefins having 4 or more carbon atoms. The obtained polypropylene-based random copolymer is used as a main component of the base resin, and a base resin having a melting point of 140 ° C. or higher determined from a DSC curve of the base resin is used as a raw material, and the base resin is further foamed. When the value obtained by subtracting the endothermic peak calorie in the second DSC curve from the endothermic peak calorie in the first DSC curve of the foamed molded article obtained by molding is 5 J / g or more, shock absorption and light weight In addition to excellent heat resistance, polypropylene resin foam molding that can be molded under almost the same molding conditions as conventional polypropylene resin and has better heat resistance than conventional foam molded products with the same melting point It became possible to provide a body.

【0060】本発明の発泡成型体は、1回目のDSC曲
線に、吸熱ピークとして高温ピークが現れる結晶構造を
有し、且つ該高温ピークの熱量が4J/g以上であるとい
う構成を採用することにより、機械的強度に優れた発泡
成型体とすることができる。
The foam molded article of the present invention has a crystal structure in which a high-temperature peak appears as an endothermic peak in the first DSC curve, and the heat quantity of the high-temperature peak is 4 J / g or more. Thereby, a foam molded article having excellent mechanical strength can be obtained.

【0061】本発明のポリプロピレン系樹脂発泡成型体
の表面に、表皮材を積層または接着した自動車内装材
は、衝撃吸収性、軽量性に優れていることに加え、耐熱
性にも優れており、高温下での荷重によるへこみやたわ
みが小さい。
An automobile interior material obtained by laminating or adhering a skin material on the surface of the foamed molded article of the polypropylene resin of the present invention is excellent not only in shock absorption and lightness but also in heat resistance. Small dents and deflections due to load at high temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、発泡成型体の2回目のDSC曲線の一
例を示す図面である。
FIG. 1 is a drawing showing an example of a second DSC curve of a foam molded article.

【図2】図2は、発泡成型体の1回目のDSC曲線の図
面である。
FIG. 2 is a drawing of a first DSC curve of a foam molded article.

【図3】図3(a)は、高温下でのたわみ量の測定方法
の正面図である。図3(b)は、高温下でのたわみ量の
測定方法の平面図である。
FIG. 3A is a front view of a method for measuring the amount of deflection under a high temperature. FIG. 3B is a plan view of a method for measuring the amount of deflection at a high temperature.

【符号の説明】[Explanation of symbols]

a 発泡成型体の1回目のDSC曲線に現れる低温
側の吸熱ピークである。 b 発泡成型体の1回目のDSC曲線に現れる高温
側の吸熱ピークである。 c 発泡成型体の2回目のDSC曲線に現れる吸熱
ピークである。
a It is an endothermic peak on the low temperature side that appears in the first DSC curve of the foam molded article. b It is an endothermic peak on the high temperature side that appears in the first DSC curve of the foam molded article. c It is an endothermic peak appearing in the second DSC curve of the foam molded article.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 31:58 C08L 23:14 (72)発明者 所 寿男 栃木県宇都宮市砥上町282−1 ブランシ ュール砥上103号室 Fターム(参考) 4F074 AA24A AA25A AB02 AB03 BA32 BA33 BA35 BA36 BA37 BA39 BA40 BA44 BA45 BA47 BA48 BA53 BA67 CA24 CE02 DA02 DA33 DA35 DA59 4F212 AA09 AA09C AA11C AC01 AG03 AG20 AH26 UA01 UB01 UC10 UF01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B29L 31:58 C08L 23:14 (72) Inventor Toshio 282-1 Togamicho, Utsunomiya-shi, Tochigi Pref. Room 103 F-term (reference) 4F074 AA24A AA25A AB02 AB03 BA32 BA33 BA35 BA36 BA37 BA39 BA40 BA44 BA45 BA47 BA48 BA53 BA67 CA24 CE02 DA02 DA33 DA35 DA59 4F212 AA09 AA09C AA11C AC01 AG03 AG20 AH26 UA01 UB01 UC01 UF01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プロピレンと、エチレン及び炭素数4以
上のα−オレフィンよりなる群から選ばれたコモノマー
の1種又は2種以上とを共重合して得られたポリプロピ
レン系ランダム共重合体を基材樹脂の主成分とし、且つ
融点が140℃以上である基材樹脂を原料として発泡せ
しめた発泡樹脂粒子を、加熱成型して得たポリプロピレ
ン系樹脂発泡成型体であって、該発泡成型体の1回目の
DSC曲線における吸熱ピーク(但し、試料量2〜4m
gの発泡成型体を示差走査熱量計によって、最初に10
℃/分の昇温速度で220℃まで昇温したときに得られ
るDSC曲線の吸熱ピーク)熱量から、2回目のDSC
曲線における吸熱ピーク(但し、上記220℃まで昇温
した試料量2〜4mgの発泡成型体を示差走査熱量計に
よって10℃/分の降温速度にて40℃まで降温した
後、再度10℃/分の昇温速度で220℃まで昇温した
ときに得られるDSC曲線の吸熱ピーク)熱量を差し引
いた値が5J/g以上であることを特徴とするポリプロピ
レン系樹脂発泡成型体。
1. A polypropylene-based random copolymer obtained by copolymerizing propylene with one or more comonomers selected from the group consisting of ethylene and α-olefins having 4 or more carbon atoms. A polypropylene resin foam molded article obtained by heating and molding foamed resin particles obtained by foaming a foamed resin particle which is a main component of a material resin and having a melting point of 140 ° C. or higher as a raw material, Endothermic peak in the first DSC curve (however, sample amount is 2 to 4 m
g of the foamed molded product was first measured with a differential scanning calorimeter.
Endothermic peak of the DSC curve obtained when the temperature was raised to 220 ° C. at a temperature rising rate of 200 ° C./min.
Endothermic peak in the curve (however, after the foamed molded article of 2 to 4 mg in sample amount heated to 220 ° C. was cooled to 40 ° C. by a differential scanning calorimeter at a cooling rate of 10 ° C./min, then again to 10 ° C./min. An endothermic peak of a DSC curve obtained when the temperature is raised to 220 ° C. at a heating rate of 5), wherein the value obtained by subtracting the calorific value is 5 J / g or more.
【請求項2】 基材樹脂の融点が145℃〜160℃で
あることを特徴とする請求項1記載のポリプロピレン系
樹脂発泡成型体。
2. The foamed polypropylene resin article according to claim 1, wherein the melting point of the base resin is 145 ° C. to 160 ° C.
【請求項3】 密度が0.02〜0.45g/cm3
ある請求項1又は2記載のポリプロピレン系樹脂発泡成
型体。
3. The foamed polypropylene resin article according to claim 1, wherein the density is 0.02 to 0.45 g / cm 3 .
【請求項4】 上記示差走査熱量測定によって得られる
1回目のDSC曲線において、2回目のDSC曲線の吸
熱ピークより高温側に、2回目のDSC曲線には現れな
い吸熱ピークが現れる結晶構造を有し、且つ該高温側の
吸熱ピークの熱量が4J/g以上である請求項1〜3のい
ずれかに記載のポリプロピレン系樹脂発泡成型体。
4. The first DSC curve obtained by the differential scanning calorimetry has a crystal structure in which an endothermic peak not appearing in the second DSC curve appears on a higher temperature side than the endothermic peak of the second DSC curve. The foamed polypropylene resin article according to any one of claims 1 to 3, wherein the heat quantity at the endothermic peak on the high temperature side is 4 J / g or more.
【請求項5】 請求項1ないし請求項4のいずれか記載
のポリプロピレン系樹脂発泡成型体の表面に、表皮材を
積層または接着したことを特徴とする自動車内装材。
5. An automobile interior material comprising a skin material laminated or adhered to the surface of the foamed polypropylene resin article according to any one of claims 1 to 4.
JP11025478A 1999-02-02 1999-02-02 Foamed polypropylene resin molding and automotive interior furnishing material Pending JP2000219766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11025478A JP2000219766A (en) 1999-02-02 1999-02-02 Foamed polypropylene resin molding and automotive interior furnishing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11025478A JP2000219766A (en) 1999-02-02 1999-02-02 Foamed polypropylene resin molding and automotive interior furnishing material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008226856A Division JP4891960B2 (en) 2008-09-04 2008-09-04 Polypropylene resin foam molding and automotive interior materials

Publications (1)

Publication Number Publication Date
JP2000219766A true JP2000219766A (en) 2000-08-08

Family

ID=12167167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11025478A Pending JP2000219766A (en) 1999-02-02 1999-02-02 Foamed polypropylene resin molding and automotive interior furnishing material

Country Status (1)

Country Link
JP (1) JP2000219766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096805A (en) * 2004-09-28 2006-04-13 Kaneka Corp Polypropylene base resin prefoamed particle and in-mold foamed product
JP2011137172A (en) * 2011-03-07 2011-07-14 Kaneka Corp Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof
US11603461B2 (en) 2020-03-23 2023-03-14 Ricoh Company, Ltd. Resin powder, resin powder for producing three-dimensional object, and three-dimensional object producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096805A (en) * 2004-09-28 2006-04-13 Kaneka Corp Polypropylene base resin prefoamed particle and in-mold foamed product
JP2011137172A (en) * 2011-03-07 2011-07-14 Kaneka Corp Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof
US11603461B2 (en) 2020-03-23 2023-03-14 Ricoh Company, Ltd. Resin powder, resin powder for producing three-dimensional object, and three-dimensional object producing method

Similar Documents

Publication Publication Date Title
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
US6545094B2 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
KR100490961B1 (en) Expanded polypropylene resin beads and a molded article
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
EP1870434B1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
WO1998006777A1 (en) Shock absorbing material
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JP7252859B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JPH11209502A (en) Polypropylene-based resin preexpanded particle and production of polypropylene-based resin in-mold expansion molded product using the same
JP2000219766A (en) Foamed polypropylene resin molding and automotive interior furnishing material
JP5253123B2 (en) Method for producing foamed molded article in polypropylene resin mold by compression filling method
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JP4347942B2 (en) Polypropylene resin foam particles for molding
US20160137805A1 (en) Polypropylene resin foamed particles and polypropylene resin in-mold foam molded article having excellent flame retardancy and electric conductivity
JP4891960B2 (en) Polypropylene resin foam molding and automotive interior materials
US20240124674A1 (en) Molded article of polypropylene-based resin expanded beads and method for producing same
JP2010173146A (en) Method for manufacturing polypropylene-based resin in-mold foam molded body
JP2023048463A (en) Multilayer foam particle
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JP2022167218A (en) Multilayer foamed particle
JPS6344780B2 (en)
JPS6344778B2 (en)
JPH11349724A (en) Foamable polyolefin-based resin particle, foamed particle therefrom and foamed molded material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080813