JPS6344778B2 - - Google Patents

Info

Publication number
JPS6344778B2
JPS6344778B2 JP58149300A JP14930083A JPS6344778B2 JP S6344778 B2 JPS6344778 B2 JP S6344778B2 JP 58149300 A JP58149300 A JP 58149300A JP 14930083 A JP14930083 A JP 14930083A JP S6344778 B2 JPS6344778 B2 JP S6344778B2
Authority
JP
Japan
Prior art keywords
expanded particles
particles
temperature
dsc curve
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58149300A
Other languages
Japanese (ja)
Other versions
JPS6042434A (en
Inventor
Hideki Kuwabara
Atsushi Kitagawa
Yoshimi Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUCHIREN PEEPAA KK
Original Assignee
NIPPON SUCHIREN PEEPAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUCHIREN PEEPAA KK filed Critical NIPPON SUCHIREN PEEPAA KK
Priority to JP58149300A priority Critical patent/JPS6042434A/en
Publication of JPS6042434A publication Critical patent/JPS6042434A/en
Publication of JPS6344778B2 publication Critical patent/JPS6344778B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリプロピレン系樹脂発泡成型体の製
造方法に関する。 本出願人は、従来よりポリプロピレン系樹脂予
備発泡粒子を用いて型内成型するいわゆるビーズ
成型法により発泡成型体を製造する方法の研究を
行なつて来た。通常、上記ビーズ成型法において
は予備発泡粒子は、無機ガスまたは無機ガスと揮
発性発泡剤との混合ガスを内部に導入され内圧を
付与された後成型されるのであるが、従来、同一
条件下で加圧熟成を行なつた予備発泡粒子を順次
成型して得られる発泡成型体の外観および成型体
の柔軟性、収縮率、圧縮硬さ、圧縮永久歪率、粒
子の融着性等の諸物性にバラツキを生ずることが
多々あり、またときには品質不良となることもあ
り、特に高発泡の予備発泡粒子においてその傾向
が顕著であつた。 本発明者らは上記の欠点を解決するため鋭意研
究した結果、上記成型体の収縮率、圧縮硬さ、圧
縮永久歪率、粒子の融着性等の諸物性にバラツキ
を生じさせる要因が、成型に用いる予備発泡粒子
の結晶構造上の違い及び内圧にあることを見い出
し本発明を完成するに至つた。 即ち本発明はポリプロピレン系樹脂予備発泡粒
子の示差走査熱量測定によつて得られるDSC曲
線(ただし予備発泡粒子1〜3mgを示差走査熱量
計によつて10℃/分の昇温速度で220℃まで昇温
したときに得られるDSC曲線)にポリプロピレ
ン系樹脂固有の固有ピークより高温側に高温ピー
クが現われる結晶構造を有し、かつ25℃、1atm
における内圧減少速度係数kがk≦0.30である予
備発泡粒子に発泡能を付与し、しかる後成型用型
内に該粒子を充填し、加熱発泡せしめて型通りの
成型体を得ることを特徴とするポリプロピレン系
樹脂発泡成型体の製造方法を要旨とする。 本発明に用いられる予備発泡粒子の基材樹脂と
しては、ポリプロピレン系樹脂が用いられ、定義
としてはJIS―K6758―1981に規定されているも
のが使用される。例えば、プロピレン単独重合
体、エチレン―プロピレンブロツクコポリマー、
エチレン―プロピレンランダムコポリマー、及び
これらポリマーにエラストマーや1―オレフイン
ポリマーをブレンドしたいわゆるポリマーブレン
ド品などが挙げられる。ブレンド用に使用される
エラストマーとしては例えば、ポリイソブチレ
ン、エチレンプロピレンラバーなどがあり、1―
オレフインポリマーとしては、ポリエチレンなど
がある。ブレンド品の例としては、プロピレンホ
モポリマー/ポリイソブチレン、プロピレンコポ
リマー/ポリエチレンなどの2種ブレンド品やプ
ロピレンホモポリマー/エチレンプロピレンラバ
ー/ポリエチレンなどの3種ブレンド品などが挙
げられれる。これらは、架橋したものでも無架橋
のものでもよいが、無架橋のものが好ましい。上
記した重合体の中では、エチレン―プロピレンラ
ンダム共重合体が好ましく、特にエチレン成分
0.5〜10wt%のものが好ましい。 本発明に用いられる予備発泡粒子は該粒子の示
差走査熱量測定によつて得られるDSC曲線にポ
リプロピレン系樹脂固有の固有ピークより高温側
に高温ピークが現われる結晶構造を有する。上記
DSC曲線とは、ポリプロピレン系樹脂発泡粒子
1〜3mgを示差走査熱量計によつて10℃/分の昇
温速度で220℃まで昇温したときに得られるDSC
曲線であり、例えば試料を室温から220℃まで10
℃/分の昇温速度で昇温した時に得られるDSC
曲線を第1回目のDSC曲線とし、次いで220℃か
ら10℃/分の降温速度で40℃付近まで降温し、再
度10℃/分の昇温速度で220℃まで昇温した時に
得られるDSC曲線を第2回目のDSC曲線とし、
これらのDSC曲線から固有ピークと、高温ピー
クとを区別することができる。 即ち本発明における固有ピークとは、ポリプロ
ピレン系樹脂固有の吸熱ピークであり、該ポリプ
ロピレン系樹脂の、いわゆる結晶の融解時の吸熱
によるものであると考えられる。通常該固有ピー
クは第1回目のDSC曲線にも第2回目のDSC曲
線にも現われ、ピークの頂点の温度は第1回目と
第2回目で多少異なる場合があるが、その差は5
℃未満、通常は2℃未満である。 一方、本発明における高温ピークとは、第1回
目のDSC曲線で上記固有ピークより高温側に現
われる吸熱ピークであり、DSC曲線にこの高温
ピークが現われないポリプロピレン系樹脂型内発
泡成型体は、収縮率、圧縮硬さ、圧縮永久歪率、
粒子の融着性等の諸物性に劣り、かつこれらの物
性のバラツキが大きくなる。上記高温ピークは、
上記固有ピークとして現われる構造とは異なる結
晶構造の存在によるものと考えられ、該高温ピー
クは第1回目のDSC曲線には現われるが、同一
条件で昇温を行つた第2回目のDSC曲線には現
われない。従つて高温ピークは本発明において用
いられる予備発泡粒子が、ポリプロピレン系樹脂
固有の固有ピークを示す結晶構造とは異なる結晶
構造をも有することにより現われるものであり、
特定の発泡条件によつてポリプロピレン系樹脂を
発泡せしめることによつてDSC曲線に高温ピー
クが現われる結晶構造を有する予備発泡粒子を得
ることができる。 前記第2回目のDSC曲線に現われる固有ピー
クの温度と第1回目のDSC曲線に現われる高温
ピークの温度との差は大きいことが望ましく、第
2回目のDSC曲線の固有ピークの頂点の温度と
高温ピークの頂点の温度との差は5℃以上、好ま
しくは10℃以上である。また高温ピークが、上記
測定条件において得られた第1回目のDSC曲線
に現われ、第2回目のDSC曲線には現われない
ことから、予備発泡粒子の基材樹脂が混合物の場
合等、DSC曲線に複数の固有ピークが現われる
可能性がある場合にも第1回目と第2回目の
DSC曲線を比較することにより、固有ピークと
高温ピークとが区別でき、高温ピークの有無を確
認することができる。 本発明に用いられる予備発泡粒子は、上記
DSC曲線に高温ピークが現われる結晶構造を有
するとともに、25℃、1atmにおける内圧減少速
度係数kがk≦0.30である予備発泡粒子でなけれ
ばならない。k>0.30の場合には、収縮率が小さ
く、寸法精度に優れた成型体を得ることができな
い。上記内圧減少速度係数kとは、予備発泡粒子
内から気体が逃散する速度の速度係数であり、次
の方法により求められるものである。 まず多数の針穴を穿設した例えば70mm×100mm
程度のポリエチレン袋中に、発泡倍率および重量
既知の予備発泡粒子を充填し、25℃に保持しなが
ら空気により加圧して予備発泡粒子に内圧を付与
した後予備発泡粒子の重量を測定する。次いで該
予備発泡粒子を25℃、1atmに保持し10分経過後
の予備発泡粒子の重量を測定する。内圧を付与し
た直後の予備発泡粒子の内圧P0(Kg/cm2・G)
と、25℃、1atmで10分間保持した後の予備発泡
粒子の内圧P1(Kg/cm2・G)を以下の式より求め
る。 予備発泡粒子の内圧(Kg/cm2・G) =増加空気量(g)×0.082×T(K)×1.0332/空気
分子量×粒子内の空気気体積() (ただし、増加空気量は内圧測定時の粒子重量
と加圧処理する前の粒子重量の差、Tは雰囲気温
度、粒子内の空気体積は、予備発泡粒子の発泡倍
率より求めた値である。) 次に上式により求めたP0,P1より以下の式に
より内圧減少速度係数kを求める。 logP1/P0=−kt (ただしtは時間で上記の場合10分である。) 上記内圧減少速度係数kは発泡粒子の気泡数が
少ない場合、独立気泡率が高い場合等k≦0.30と
なるが、独立気泡率が高い場合でも結晶核剤を含
有する樹脂を用いた場合にはk≦0.30とならない
場合があり、好ましくない。 本発明に用いられる上記、DSC曲線に高温ピ
ークが現われる結晶構造を有し、かつ25℃、
1atmにおける内圧減少速度係数kがk≦0.30で
ある予備発泡粒子は次のようにして製造すること
ができる。 まず原料のポリプロピレン系樹脂粒子として、
結晶核剤や、気泡径を細かくする要因となるシリ
カやリン系の安定剤等を含有しない樹脂粒子を選
定する。次いで該ポリプロピレン系樹脂粒子に揮
発性発泡剤を含有させる工程、容器内で上記樹脂
粒子を分散媒に分散させる工程、および前記揮発
性発泡剤含有樹脂粒子と前記分散媒の温度T(℃)
を前記樹脂粒子の融解終了温度Tm(℃)以上に
昇温することなく次式:Tm−20<T<Tm−5
(式中、融解終了温度TmはDSC法により約6〜
8mgのサンプルを昇温速度10℃/分で昇温したと
き得られる吸熱曲線の終了温度をいう。)により
表わされる温度範囲に保持しながら容器の一端を
開放し、上記樹脂粒子と分散媒とを同時に容器内
よりも低圧の雰囲気に放出する工程よりなる予備
発泡方法によつて製造することができる。 上記揮発性発泡剤としては例えば、プロパン、
ブタン、ペンタン、ヘキサン、ヘプタン等で例示
される脂肪族炭化水素類、シクロブタン、シクロ
ペンタン等で例示される環式脂肪族炭化水素類お
よびトリクロロフロロメタン、ジクロロジフロロ
メタン、ジクロロテトラフロロエタン、メチルク
ロライド、エチルクロライド、メチレンクロライ
ド等で例示されるハロゲン化炭化水素類等が挙げ
られ、これらの発泡剤は混合して用いることがで
きる。上記発泡剤の使用量はポリプロピレン系樹
脂粒子100重量部に対し、0.04〜0.20モル程度用
いられる。 この方法では、重合体粒子と揮発性発泡剤を別
別に或いは揮発性発泡剤を重合体粒子に含有させ
た後、分散媒に分散させるが、このとき要すれば
分散媒、例えば微粒状の酸化アルミニウムおよび
酸化チタン、塩基性炭酸マグネシウム、塩基性炭
酸亜鉛、炭酸カルシウム等を用いることができ
る。この分散剤の添加量は通常重合体粒子100重
量部に対し、0.01〜10重量部である。また分散媒
は重合体粒子を溶解させない溶媒であればよく、
例えば水、エチレングリコール、グリセリン、メ
タノール、エタノール等のうちの1種又はそれら
の2種以上の混合物が例示されるが通常は水が好
ましい。 以上のようにしてDSC曲線に高温ピークが現
われる結晶構造を有し、かつ25℃、1atmにおけ
る内圧減少速度係数kがk≦0.30となる予備発泡
粒子が得られ、この予備発泡粒子は通常5〜60倍
の見掛け発泡倍率を有する。 又、これらの方法で得られた予備発泡粒子に空
気、窒素、炭酸ガス等の無機ガス、及びこれらと
揮発性発泡剤との混合ガスにて加圧して発泡粒子
に高められた内圧を付与し加熱する事によつて見
掛け発泡倍率150倍程度までの粒子を得る事もで
きる。 本発明において上記のようにして得られた予備
発泡粒子に発泡能を付与する。予備発泡粒子への
発泡能の付与は、無機ガス、例えば、空気、窒素
ガス、炭酸ガス等又は前記予備発泡粒子の発泡に
用いたブタン、ジクロロジフロロメタン、ジクロ
ロテトラフロロエタン等の揮発性発泡剤等あるい
はこれらの混合ガス等により加圧することにより
行なわれるが通常は空気により加圧し予備発泡粒
子に大気圧以上、3Kg/cm2・G以下の内圧を付与
する。 上記発泡能を付与した(大気圧以上の内圧を付
与した)予備発泡粒子を成型用型に充填し、加熱
して予備発泡粒子を発泡せしめ、粒子相互を融着
せしめることにより型通りの発泡成型体が得られ
る。上記成型のための加熱手段としては、通常2
Kg/cm2・G〜5Kg/cm2・Gの水蒸気が用いられ
る。 上記のポリプロピレン系樹脂発泡成型体は、表
面平滑で、寸法精度、粒子の融着強度に優れ、ま
た、圧縮硬さ、圧縮永久歪率、収縮率等の諸物性
に優れており、該成型体は例えば包装材、緩衝
材、保温材、断熱材、建築資材、車輌部材、浮揚
材、食品用器等に用いることができる。 以下実施例、比較例を挙げて本発明を更に詳細
に説明する。 実施例 1〜5 基材樹脂100重量部に対しBHT(酸化防止剤)
0.1重量部、イルガノツクス1010(酸化防止剤)
0.03重量部、ステアリン酸カルシウム0.05重量部
を含有するエチレン―プロピレンランダム共重合
体粒子(エチレン成分3.5重量%、メルトインデ
ツクス8g/10分、Tm=150℃)100重量部を水
300重量部、極微粒状酸化アルミニウム0.3重量
部、および第1表に示す量のジクロロジフロロメ
タンを5のオートクレーブに入れ、撹拌下、加
熱昇温し、同表に示す発泡温度で30分間保持した
後、窒素ガスにより容器内圧を30Kg/cm2・Gに保
持しながら容器の一端を開放し樹脂粒子と水とを
大気圧下に放出し樹脂粒子を発泡せしめて予備発
泡粒子を得た。得られた予備発泡粒子の発泡倍率
を第2表に示す。尚実施例5においては実施例2
で発泡して得た予備発泡粒子を更に空気で加圧し
た後、加熱する操作を2回くり返して行ない65倍
の発泡倍率としたものである。得られた予備発泡
粒子の内圧減少速度係数および示差走査熱量測定
を行なつた結果を第2表に示す。また実施例3の
予備発泡粒子のDSC曲線を第1図に示す(第1
図においてa,a′は固有ピークを、bは高温ピー
クを示し、実線は第1回目のDSC曲線、点線は
第2回目のDSC曲線である。) 次にこれらの予備発泡粒子を空気にて加圧し、
該粒子に第2表に示す内圧を付与した後、300mm
×300mm×50mm(型内径)の金型に充填し、2.8〜
3.5Kg/cm2・Gの蒸気で加熱して該予備発泡粒子
を発泡せしめ、発泡成型体を得た。得られた成型
体を55℃のオープン中に24時間放置後、成型体の
密度、圧縮硬さ、圧縮永久歪率、収縮率、表面状
態および成型体中の予備発泡粒子の融着性の測定
を行なつた。結果を第2表にあわせて示す。 比較例 1 実施例と同一のエチレン―プロピレンランダム
共重合体粒子100重量部、水300重量部、極微粒状
酸化アルミニウム0.3重量部および第1表に示す
量のジクロロジフロロメタンを5のオートクレ
ーブに入れ、同表に示す容器内最高温度まで昇温
した後、140℃に降温して15分間保持し、その後
窒素ガスにより容器内圧を30Kg/cm2・Gに保持し
ながら容器の一端を開放し、樹脂粒子と水とを大
気圧下に放出し、樹脂粒子を発泡せしめて予備発
泡粒子を得た。得られた予備発泡粒子の発泡倍
率、内圧減少速度係数、および示差走査熱量測定
を行なつた。結果を第2表に示す。また該予備発
泡粒子のDSC曲線を第2図に示す(図中実線は
第1回目のDSC曲線、点線は第2回目のDSC曲
線を示し、a,a′は固有ピークを示す。) 次いで該予備発泡粒子に第2表に示す内圧を付
与した後、実施例と同様にして成型し、成型体を
得た。得られた成型体の諸物性を第2表に示す。 比較例 2〜3 基材樹脂100重量部に対し、比較例2はジベン
ジリデンソルビトール(結晶核剤)0.2重量部、
比較例3は、シリカ(ブロツキング防止剤)0.2
重量部を配合してなるエチレン―プロピレンラン
ダム共重合体粒子(実施例と同一のエチレン成
分、メルトインデツクス、Tmを有する。)100重
量部、水300重量部、極微粒状酸化アルミニウム
0.3重量部および第1表に示す量のジクロロジフ
ロロメタンを5のオートクレーブに入れ、撹拌
下、同表に示す容器内最高温度以上に昇温するこ
となく137℃で30分間保持した後、実施例と同様
にして樹脂粒子と水とを大気圧下に放出し、予備
発泡粒子を得た。得られた予備発泡粒子の発泡倍
率、内圧減少速度係数測定、および示差走査熱量
測定を行なつた結果を第2表に示す。 次に上記予備発泡粒子を用いて実施例と同様に
して発泡成型体を得た。該成型体の物性を第2表
にあわせて示す。
The present invention relates to a method for producing a polypropylene resin foam molding. The present applicant has been conducting research on a method for manufacturing a foam molded article by a so-called bead molding method in which pre-expanded polypropylene resin particles are molded in a mold. Normally, in the above bead molding method, pre-expanded particles are molded after an inorganic gas or a mixed gas of an inorganic gas and a volatile blowing agent is introduced inside and an internal pressure is applied. The appearance of the foamed molded product obtained by sequentially molding the pre-expanded particles that have been aged under pressure at This often results in variations in physical properties, and sometimes results in poor quality, and this tendency is particularly noticeable in highly expanded pre-expanded particles. As a result of intensive research to solve the above-mentioned drawbacks, the present inventors found that the factors that cause variations in physical properties such as shrinkage rate, compression hardness, compression set rate, and particle fusion properties of the molded product are as follows. The present invention was completed by discovering that the difference lies in the crystal structure and internal pressure of the pre-expanded particles used for molding. That is, the present invention provides a DSC curve obtained by differential scanning calorimetry of pre-expanded particles of polypropylene resin (however, 1 to 3 mg of pre-expanded particles are measured by a differential scanning calorimeter at a heating rate of 10°C/min up to 220°C). It has a crystal structure in which a high-temperature peak appears on the higher temperature side than the characteristic peak unique to polypropylene resin in the DSC curve obtained when the temperature is increased, and the temperature is 25℃ and 1atm.
It is characterized by imparting foaming ability to pre-expanded particles whose internal pressure reduction rate coefficient k is k≦0.30, and then filling the particles into a mold and heating and foaming them to obtain a molded product according to the mold. The gist of this invention is a method for producing a polypropylene resin foam molded product. As the base resin of the pre-expanded particles used in the present invention, a polypropylene resin is used, and the definition is defined in JIS-K6758-1981. For example, propylene homopolymer, ethylene-propylene block copolymer,
Examples include ethylene-propylene random copolymers, and so-called polymer blend products in which these polymers are blended with elastomers and 1-olefin polymers. Examples of elastomers used for blending include polyisobutylene and ethylene propylene rubber.
Examples of olefin polymers include polyethylene. Examples of blended products include two-type blends such as propylene homopolymer/polyisobutylene, propylene copolymer/polyethylene, and three-type blends such as propylene homopolymer/ethylene propylene rubber/polyethylene. These may be crosslinked or non-crosslinked, but non-crosslinked ones are preferred. Among the above-mentioned polymers, ethylene-propylene random copolymers are preferred, especially the ethylene component.
0.5 to 10 wt% is preferable. The pre-expanded particles used in the present invention have a crystal structure in which a high-temperature peak appears on the higher temperature side than the characteristic peak inherent to the polypropylene resin in a DSC curve obtained by differential scanning calorimetry of the particles. the above
The DSC curve is the DSC obtained when 1 to 3 mg of expanded polypropylene resin particles are heated to 220°C at a heating rate of 10°C/min using a differential scanning calorimeter.
For example, the sample is heated from room temperature to 220℃ for 10
DSC obtained when heating at a heating rate of °C/min
The curve is the first DSC curve, then the DSC curve obtained when the temperature is lowered from 220°C to around 40°C at a cooling rate of 10°C/min, and then raised again to 220°C at a heating rate of 10°C/min. Let be the second DSC curve,
From these DSC curves, unique peaks and high temperature peaks can be distinguished. That is, the unique peak in the present invention is an endothermic peak unique to the polypropylene resin, and is thought to be due to endotherm at the time of melting of so-called crystals of the polypropylene resin. Usually, the characteristic peak appears in both the first DSC curve and the second DSC curve, and the temperature at the top of the peak may be slightly different between the first and second times, but the difference is 5
℃, usually less than 2℃. On the other hand, the high-temperature peak in the present invention is an endothermic peak that appears on the higher temperature side than the above-mentioned characteristic peak in the first DSC curve, and the polypropylene resin in-mold foam molded product in which this high-temperature peak does not appear in the DSC curve shrinks. compression hardness, compression set rate,
Various physical properties such as particle fusion properties are inferior, and variations in these physical properties become large. The above high temperature peak is
It is thought that this is due to the existence of a crystal structure different from the structure that appears as the above-mentioned characteristic peak, and the high-temperature peak appears in the first DSC curve, but it does not appear in the second DSC curve when the temperature is raised under the same conditions. Doesn't appear. Therefore, the high-temperature peak appears because the pre-expanded particles used in the present invention also have a crystal structure different from the crystal structure exhibiting the characteristic peak inherent to the polypropylene resin.
By foaming a polypropylene resin under specific foaming conditions, it is possible to obtain pre-expanded particles having a crystal structure in which a high temperature peak appears on the DSC curve. It is desirable that the difference between the temperature of the characteristic peak appearing in the second DSC curve and the temperature of the high temperature peak appearing in the first DSC curve is large, and the temperature at the peak of the characteristic peak of the second DSC curve and the high temperature are preferably large. The difference from the peak temperature is 5°C or more, preferably 10°C or more. In addition, the high temperature peak appears in the first DSC curve obtained under the above measurement conditions but does not appear in the second DSC curve, so when the base resin of the pre-expanded particles is a mixture, etc. Even if multiple characteristic peaks may appear, the first and second
By comparing the DSC curves, a unique peak and a high temperature peak can be distinguished, and the presence or absence of a high temperature peak can be confirmed. The pre-expanded particles used in the present invention are as described above.
The pre-expanded particles must have a crystal structure in which a high-temperature peak appears on the DSC curve, and have an internal pressure decrease rate coefficient k of k≦0.30 at 25° C. and 1 atm. When k>0.30, the shrinkage rate is small and a molded product with excellent dimensional accuracy cannot be obtained. The internal pressure reduction rate coefficient k is a rate coefficient of the rate at which gas escapes from within the pre-expanded particles, and is determined by the following method. First, a large number of needle holes are drilled, e.g. 70mm x 100mm.
Pre-expanded particles of known expansion ratio and weight are filled into a polyethylene bag of approximately 100 mL, and the pre-expanded particles are pressurized with air while being maintained at 25°C to apply internal pressure to the pre-expanded particles, and then the weight of the pre-expanded particles is measured. Next, the pre-expanded particles are maintained at 25° C. and 1 atm, and the weight of the pre-expanded particles is measured after 10 minutes. Internal pressure P 0 of pre-expanded particles immediately after applying internal pressure (Kg/cm 2・G)
Then, the internal pressure P 1 (Kg/cm 2 ·G) of the pre-expanded particles after being maintained at 25° C. and 1 atm for 10 minutes is determined from the following formula. Internal pressure of pre-expanded particles (Kg/cm 2・G) = Increased amount of air (g) x 0.082 x T(K) x 1.0332 / Air molecular weight x Volume of air inside particles () (However, the increased amount of air is determined by internal pressure measurement. The difference between the particle weight at the time and the particle weight before pressure treatment, T is the ambient temperature, and the air volume inside the particle is the value calculated from the expansion ratio of the pre-expanded particles.) Next, P is calculated from the above formula. 0 and P 1 , find the internal pressure reduction rate coefficient k using the following formula. logP 1 /P 0 = -kt (However, t is time and is 10 minutes in the above case.) The above internal pressure reduction rate coefficient k is k≦0.30 when the number of cells in the foamed particles is small, when the closed cell ratio is high, etc. However, even if the closed cell ratio is high, if a resin containing a crystal nucleating agent is used, k≦0.30 may not be satisfied, which is not preferable. The above used in the present invention has a crystal structure in which a high temperature peak appears in the DSC curve, and has a temperature of 25°C.
Pre-expanded particles having an internal pressure reduction rate coefficient k of 1 atm of k≦0.30 can be produced as follows. First, as raw material polypropylene resin particles,
Select resin particles that do not contain crystal nucleating agents or silica or phosphorus-based stabilizers that can reduce the size of bubbles. Next, a step of incorporating a volatile blowing agent into the polypropylene resin particles, a step of dispersing the resin particles in a dispersion medium in a container, and a temperature T (° C.) of the volatile blowing agent-containing resin particles and the dispersion medium.
without raising the temperature above the melting end temperature Tm (°C) of the resin particles according to the following formula: Tm-20<T<Tm-5
(In the formula, the melting end temperature Tm is approximately 6 to
This is the end temperature of the endothermic curve obtained when 8 mg of a sample is heated at a heating rate of 10°C/min. ) can be produced by a pre-foaming method comprising the step of opening one end of the container while maintaining the temperature within the range represented by () and simultaneously releasing the resin particles and dispersion medium into an atmosphere at a lower pressure than the inside of the container. . Examples of the volatile blowing agent include propane,
Aliphatic hydrocarbons such as butane, pentane, hexane, heptane, etc., cycloaliphatic hydrocarbons such as cyclobutane, cyclopentane, trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, methyl Examples include halogenated hydrocarbons such as chloride, ethyl chloride, methylene chloride, etc., and these blowing agents can be used in combination. The amount of the blowing agent used is about 0.04 to 0.20 mol per 100 parts by weight of the polypropylene resin particles. In this method, the polymer particles and the volatile blowing agent are separated or the volatile blowing agent is added to the polymer particles and then dispersed in a dispersion medium. Aluminum and titanium oxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, etc. can be used. The amount of this dispersant added is usually 0.01 to 10 parts by weight per 100 parts by weight of the polymer particles. Further, the dispersion medium may be any solvent that does not dissolve the polymer particles.
Examples include water, ethylene glycol, glycerin, methanol, ethanol, etc., or a mixture of two or more thereof, but water is usually preferred. As described above, pre-expanded particles are obtained which have a crystal structure in which a high-temperature peak appears on the DSC curve and have an internal pressure decrease rate coefficient k of k≦0.30 at 25°C and 1 atm. It has an apparent foaming ratio of 60 times. Furthermore, the pre-expanded particles obtained by these methods are pressurized with air, inorganic gas such as nitrogen, carbon dioxide, or a mixed gas of these and a volatile blowing agent to impart increased internal pressure to the expanded particles. By heating, it is also possible to obtain particles with an apparent expansion ratio of up to about 150 times. In the present invention, foaming ability is imparted to the pre-expanded particles obtained as described above. The foaming ability is imparted to the pre-expanded particles using an inorganic gas such as air, nitrogen gas, carbon dioxide, etc. or volatile foaming of butane, dichlorodifluoromethane, dichlorotetrafluoroethane, etc. used for foaming the pre-expanded particles. This is carried out by pressurizing with an agent or a mixed gas thereof, but usually air is used to apply an internal pressure of at least atmospheric pressure to 3 kg/cm 2 ·G to the pre-expanded particles. The pre-expanded particles with the above-mentioned foaming ability (applied with an internal pressure higher than atmospheric pressure) are filled into a mold, heated to foam the pre-expanded particles, and fuse the particles together to form foam molding according to the mold. You get a body. The heating means for the above molding is usually 2
Water vapor of kg/cm 2 ·G to 5 kg/cm 2 ·G is used. The above-mentioned polypropylene resin foam molded product has a smooth surface, excellent dimensional accuracy, and particle fusion strength, and also has excellent physical properties such as compression hardness, compression set rate, and shrinkage rate. It can be used, for example, in packaging materials, cushioning materials, heat retaining materials, insulation materials, construction materials, vehicle parts, flotation materials, food containers, etc. The present invention will be explained in more detail below by giving Examples and Comparative Examples. Examples 1 to 5 BHT (antioxidant) per 100 parts by weight of base resin
0.1 part by weight, Irganox 1010 (antioxidant)
100 parts by weight of ethylene-propylene random copolymer particles (ethylene component 3.5% by weight, melt index 8 g/10 min, Tm = 150°C) containing 0.03 parts by weight and 0.05 parts by weight of calcium stearate were added to water.
300 parts by weight, 0.3 parts by weight of ultrafine aluminum oxide, and the amount of dichlorodifluoromethane shown in Table 1 were placed in the autoclave No. 5, heated to raise the temperature while stirring, and held for 30 minutes at the foaming temperature shown in the same table. Thereafter, while maintaining the internal pressure of the container at 30 kg/cm 2 ·G with nitrogen gas, one end of the container was opened to release the resin particles and water under atmospheric pressure to foam the resin particles to obtain pre-expanded particles. Table 2 shows the expansion ratio of the obtained pre-expanded particles. In addition, in Example 5, Example 2
The pre-expanded particles obtained by foaming were further pressurized with air and then heated, which was repeated twice to obtain a foaming ratio of 65 times. Table 2 shows the internal pressure reduction rate coefficient and differential scanning calorimetry of the pre-expanded particles obtained. Further, the DSC curve of the pre-expanded particles of Example 3 is shown in FIG.
In the figure, a and a' indicate the characteristic peaks, b indicates the high temperature peak, the solid line is the first DSC curve, and the dotted line is the second DSC curve. ) Next, these pre-expanded particles are pressurized with air,
After applying the internal pressure shown in Table 2 to the particles, 300 mm
Fill a mold with ×300mm ×50mm (mold inner diameter), and
The pre-expanded particles were foamed by heating with steam of 3.5 kg/cm 2 ·G to obtain a foamed molded product. After leaving the obtained molded body in an open environment at 55°C for 24 hours, the density, compression hardness, compression set rate, shrinkage rate, surface condition, and fusion properties of the pre-expanded particles in the molded body were measured. I did this. The results are also shown in Table 2. Comparative Example 1 100 parts by weight of the same ethylene-propylene random copolymer particles as in Example, 300 parts by weight of water, 0.3 parts by weight of ultrafine aluminum oxide, and dichlorodifluoromethane in the amount shown in Table 1 were placed in an autoclave in Step 5. After raising the temperature to the maximum temperature in the container shown in the same table, the temperature was lowered to 140°C and held for 15 minutes, and then one end of the container was opened while maintaining the container internal pressure at 30 kg/cm 2 G with nitrogen gas. The resin particles and water were released under atmospheric pressure to foam the resin particles to obtain pre-expanded particles. The expansion ratio, internal pressure reduction rate coefficient, and differential scanning calorimetry of the obtained pre-expanded particles were measured. The results are shown in Table 2. Further, the DSC curve of the pre-expanded particles is shown in FIG. 2 (in the figure, the solid line shows the first DSC curve, the dotted line shows the second DSC curve, and a and a' indicate the characteristic peaks). After applying the internal pressure shown in Table 2 to the pre-expanded particles, they were molded in the same manner as in Examples to obtain molded bodies. Table 2 shows the physical properties of the molded product obtained. Comparative Examples 2 to 3 For 100 parts by weight of the base resin, Comparative Example 2 contains 0.2 parts by weight of dibenzylidene sorbitol (crystal nucleating agent),
Comparative Example 3 uses silica (antiblocking agent) 0.2
100 parts by weight of ethylene-propylene random copolymer particles (having the same ethylene component, melt index, and Tm as in the example), 300 parts by weight of water, and ultrafine aluminum oxide particles.
0.3 parts by weight and the amount of dichlorodifluoromethane shown in Table 1 were placed in the autoclave in Step 5, and the temperature was maintained at 137°C for 30 minutes without raising the temperature above the maximum temperature in the container shown in the same table. In the same manner as in the example, the resin particles and water were released under atmospheric pressure to obtain pre-expanded particles. Table 2 shows the results of the expansion ratio, internal pressure reduction rate coefficient measurement, and differential scanning calorimetry measurement of the obtained pre-expanded particles. Next, a foamed molded article was obtained in the same manner as in the example using the pre-expanded particles. The physical properties of the molded product are also shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】 以上説明したように本発明は示差走査熱量測定
によつて得られるDSC曲線に高温ピークが現わ
れる結晶構造を有し、かつ25℃、1atmにおける
内圧減少速度係数kがk≦0.30であるポリプロピ
レン系樹脂予備発泡粒子に発泡能を付与した後、
該粒子を成型用型内に充填して発泡成型し、成型
体を得る方法を採用したことにより、表面状態良
好で、寸法精度に優れ、しかも収縮率、圧縮硬
さ、圧縮永久歪率、粒子の融着性等の諸物性に優
れた成型体を得ることができる等の種々の効果を
有する。
[Table] As explained above, the present invention has a crystal structure in which a high temperature peak appears in the DSC curve obtained by differential scanning calorimetry, and the internal pressure decrease rate coefficient k at 25°C and 1 atm is k≦0.30. After imparting foaming ability to the pre-expanded polypropylene resin particles,
By filling the particles into a mold and foaming them to obtain a molded product, the surface condition is good, the dimensional accuracy is excellent, and the shrinkage rate, compression hardness, compression set rate, and particle size are good. It has various effects such as being able to obtain a molded product with excellent physical properties such as fusion bondability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例3の予備発泡粒子のDSC曲線
を示すグラフ、第2図は比較例1の予備発泡粒子
のDSC曲線を示すグラフである。 a,a′…固有ピーク、b…高温ピーク。
FIG. 1 is a graph showing the DSC curve of the pre-expanded particles of Example 3, and FIG. 2 is a graph showing the DSC curve of the pre-expanded particles of Comparative Example 1. a, a'...specific peak, b...high temperature peak.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリプロピレン系樹脂予備発泡粒子の示差走
査熱量測定によつて得られるDSC曲線(ただし
予備発泡粒子1〜3mgを示差走査熱量計によつて
10℃/分の昇温速度で220℃まで昇温したときに
得られるDSC曲線)にポリプロピレン系樹脂固
有の固有ピークより高温側に高温ピークが現われ
る結晶構造を有し、かつ25℃、1atmにおける内
圧減少速度係数kがk≦0.30である予備発泡粒子
に発泡能を付与し、しかる後成型用型内に該粒子
を充填し、加熱発泡せしめて型通りの成型体を得
ることを特徴とするポリプロピレン系樹脂発泡成
型体の製造方法。
1 DSC curve obtained by differential scanning calorimetry of pre-expanded particles of polypropylene resin (however, 1 to 3 mg of pre-expanded particles were measured by differential scanning calorimetry)
It has a crystal structure in which a high-temperature peak appears on the higher temperature side than the characteristic peak inherent to polypropylene resin in the DSC curve obtained when the temperature is raised to 220 °C at a temperature increase rate of 10 °C/min, and at 25 °C and 1 atm. It is characterized by imparting foaming ability to pre-expanded particles whose internal pressure reduction rate coefficient k is k≦0.30, and then filling the particles into a mold and heating and foaming them to obtain a molded product according to the mold. A method for producing a polypropylene resin foam molded product.
JP58149300A 1983-08-16 1983-08-16 Production of polypropylene resin foam molding Granted JPS6042434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149300A JPS6042434A (en) 1983-08-16 1983-08-16 Production of polypropylene resin foam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149300A JPS6042434A (en) 1983-08-16 1983-08-16 Production of polypropylene resin foam molding

Publications (2)

Publication Number Publication Date
JPS6042434A JPS6042434A (en) 1985-03-06
JPS6344778B2 true JPS6344778B2 (en) 1988-09-06

Family

ID=15472142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149300A Granted JPS6042434A (en) 1983-08-16 1983-08-16 Production of polypropylene resin foam molding

Country Status (1)

Country Link
JP (1) JPS6042434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274175U (en) * 1988-11-24 1990-06-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4242939A1 (en) * 1992-12-18 1994-06-23 Happich Gmbh Gebr Sun visor for vehicles and method and device for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274175U (en) * 1988-11-24 1990-06-06

Also Published As

Publication number Publication date
JPS6042434A (en) 1985-03-06

Similar Documents

Publication Publication Date Title
US4695593A (en) Prefoamed propylene polymer-base particles, expansion-molded article produced from said particles and production process of said article
JPS5943491B2 (en) Polypropylene resin foam molding
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JPH0559139B2 (en)
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JPS6324615B2 (en)
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPS6344779B2 (en)
JPS6344778B2 (en)
JPS6344780B2 (en)
JPS6244778B2 (en)
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JPS59111823A (en) Manufacture of preliminarily expanded polymer particle
JP3461583B2 (en) Method for producing foamed molded article in polypropylene resin mold
JP4347942B2 (en) Polypropylene resin foam particles for molding
JPS641499B2 (en)
JPH11156879A (en) Polypropylene resin in-mold foamed molded product and its production
JPH0510374B2 (en)
JP2000219766A (en) Foamed polypropylene resin molding and automotive interior furnishing material
JPH0218225B2 (en)
JPS63258939A (en) Polypropylene resin prefoamed beads
JPS6324618B2 (en)