JPS6042434A - Production of polypropylene resin foam molding - Google Patents

Production of polypropylene resin foam molding

Info

Publication number
JPS6042434A
JPS6042434A JP58149300A JP14930083A JPS6042434A JP S6042434 A JPS6042434 A JP S6042434A JP 58149300 A JP58149300 A JP 58149300A JP 14930083 A JP14930083 A JP 14930083A JP S6042434 A JPS6042434 A JP S6042434A
Authority
JP
Japan
Prior art keywords
particles
expanded particles
molding
expanded
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58149300A
Other languages
Japanese (ja)
Other versions
JPS6344778B2 (en
Inventor
Hideki Kuwabara
英樹 桑原
Atsushi Kitagawa
敦之 北川
Yoshimi Sudo
好美 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP58149300A priority Critical patent/JPS6042434A/en
Publication of JPS6042434A publication Critical patent/JPS6042434A/en
Publication of JPS6344778B2 publication Critical patent/JPS6344778B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molding having a good surface appearance and excellent dimensional accuracy, shrinkage, compressive hardness, etc., by imparting expandability to pre-expanded PP resin particles having a specified crystal structure and a specified decreasing rate of an internal pressure, filling a molding die with the particles, and expansion-molding them. CONSTITUTION:Expandability is imparted to pre-expanded particles which have such a crystal structure that a DSC curve obtained when 1-3mg of the pre- expanded PP particles are heated to 220 deg.C at a temperature rise rate of 10 deg.C/ min on a differential scanning calorimeter has a high-temperature peak on the high temperature side in relation to the temperature of the intrinsic peak inherent in the PP resin, and show an internal pressure drop rate at 25 deg.C and 1atm, k, in the range: k<=0.30. These particles are placed in a molding frame and heat-expanded to produce a molding of the shape of the mold. According to this process, it is possible to obtain a molding having a good surface appearance, excellent dimensional accuracy, and excellent properties such as shrinkage, compressive hardness, compression set, and fusion of particles.

Description

【発明の詳細な説明】 本発明はポリプロピレン系樹脂発泡成型体の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polypropylene resin foam molded article.

本出願人は、従来よυポリプロピレン系樹脂予備発泡粒
子を用いて型内成型するいわゆるビーズ成型法により発
泡成型体を製造する方法の研究を行なって来た。通常、
上記ビーズ成型法においては予備発泡粒子は、無機ガス
または無機ガスと揮発性発泡剤との混合ガスを内部に導
入され内圧を付与された後成型されるのであるが、従来
、同−余件下で加圧熟成を行なった予備発泡粒子を頴次
成型して得られる発泡成型体の外観および成型体の柔軟
性、収縮率、圧縮硬さ、圧縮永久歪率、粒子の融着性等
の諸物性にバラツキを生ずることが多々あシ、またとき
には品質不良となることもあシ、特に高発泡の予備発泡
粒子においてその傾向が顕著であった。
The present applicant has conventionally conducted research on a method for manufacturing a foam molded article by a so-called bead molding method in which pre-expanded particles of a polypropylene resin are molded in a mold. usually,
In the above bead molding method, the pre-expanded particles are molded after an inorganic gas or a mixed gas of an inorganic gas and a volatile blowing agent is introduced inside and an internal pressure is applied. The appearance of the foamed molded product obtained by molding the pre-expanded particles that have been pressure-ripened at Variations in physical properties often occur, and sometimes they result in poor quality, and this tendency is particularly noticeable in highly expanded pre-expanded particles.

本発明者らは上記の欠点を解決するため鋭意研究した結
果、上記成型体の収縮率、圧縮硬さ、圧縮永久歪率、粒
子の融着性等の諸物性にバラツキを生じさせる要因が、
成型に用いる予備発泡粒子の結晶構造上の違い及び内圧
にあることを見い出し本発明を完成するに至った。
As a result of intensive research to solve the above-mentioned drawbacks, the present inventors found that the factors that cause variations in physical properties such as shrinkage rate, compression hardness, compression set rate, and particle fusion properties of the molded product are as follows.
The present invention was completed by discovering that the difference lies in the crystal structure and internal pressure of the pre-expanded particles used for molding.

即ち本発明はボリプiピレン系樹脂予備発泡粒子の示差
走査熱量測定によって得られる080曲線(ただし予備
発泡粒子1〜3■を示差走査熱量針によって10C/分
の昇温速度で220Cまで昇温したときに得られるDS
C曲a)にポリプロピレン系樹脂固有の固有ピークよシ
高温側に高温ピークが現われる結晶構造を有し、かつ2
5C,latmにおける内圧減少速度係数kかに≦0.
30である予備発泡粒子に発泡能を付与し、しかる後成
壓用型内に該粒子を充填し、加熱発泡せしめて型通シの
成型体を得ることを特徴とするポリプロピレン系樹脂発
泡成型体の製造方法を要旨とする。
That is, the present invention is based on the 080 curve obtained by differential scanning calorimetry of polypyrene resin pre-expanded particles (however, the pre-expanded particles 1 to 3 were heated to 220 C at a heating rate of 10 C/min using a differential scanning calorimetry needle). DS sometimes obtained
C curve a) has a crystal structure in which a high temperature peak appears on the higher temperature side than the characteristic peak unique to polypropylene resin, and 2
The internal pressure decreasing rate coefficient k at 5C, latm is ≦0.
A polypropylene resin foam molded product characterized by imparting foaming ability to the pre-expanded particles of No. 30, then filling the particles into a forming mold, and heating and foaming them to obtain a molded product that passes through the mold. The gist is the manufacturing method.

本発明に用いられる予備!!ii!!泡粒子の2!I!
:利樹脂として唸、ポリプロピレン系樹脂が用いられ、
定義としてはJIS−に675B−1981に規定され
ているものが使用される。例えば、プ四ピレン単独重合
体、エチレン−プルピレンブロックコポリマー、エチレ
ン−プロピレンランダムコポリマー、及ヒこれらポリマ
ーにエラストマーや1−オレフィンポリマーをブレンド
したいわゆるポリマーブレンド、品などが華けられる。
Preliminaries used in the present invention! ! ii! ! Foam particles 2! I!
: Polypropylene resin is used as the resin,
As the definition, the one specified in JIS-675B-1981 is used. Examples include tetrapyrene homopolymer, ethylene-propylene block copolymer, ethylene-propylene random copolymer, and so-called polymer blends and products in which these polymers are blended with elastomers and 1-olefin polymers.

ブレンド月に使用されるエラストマーとしては例えば、
ポリイソブチレン、エチレンプロピレンラバーなどがあ
シ、1−オレフィンポリマーとしては、ポリエチレンな
どがある。ブレンド品の例としては、グロピレンホモポ
リマー/ポリイソブチレン、プロピレンコポリマー/ポ
リエチレンなどの2種ブレンド品やプロピレンホモポリ
マー/エチレンプロピレン2バー/ポリエチレンなどの
3種ブレンド品などが署けられる。これらは、架橋した
ものでも無架橋のものでもよいが、無架橋のものが好オ
しい。上記した重合体の中では、エチレン−プロピレン
ランダム共重合体が好ましく、特にエチレン成分0.5
〜10vtチのものが好ましい。
Examples of elastomers used for blending include:
Examples of 1-olefin polymers include polyisobutylene, ethylene propylene rubber, and polyethylene. Examples of blended products include two-type blends such as glopylene homopolymer/polyisobutylene and propylene copolymer/polyethylene, and three-type blends such as propylene homopolymer/ethylene propylene 2 bar/polyethylene. These may be crosslinked or non-crosslinked, but non-crosslinked ones are preferred. Among the above-mentioned polymers, ethylene-propylene random copolymers are preferred, especially ethylene component 0.5
~10vt is preferred.

本発明に用いられる予備発泡粒子は該粒子の示差走査熱
量測定によって得られる080曲線にボリプiピレン系
樹脂固有の固有ピークよυ高温側に高温ピークが現われ
る結晶構造を有する。上記DSCIlllilとは、ボ
リプVピレン系樹脂発泡粒子1〜3■を示差走査熱量針
によって10C/分の昇温速度で220Cまで昇温した
ときに得られる080曲線であシ、例えば試料を室温か
ら220Cまで10’C−/Bの昇温速度で昇温し死時
に□得られる080曲線を第1回目のDSCIIII線
とし、次いで220CからIO’C,Aの降温速度で4
0C付近まで降温し、゛ 再度/Qゞt−/分の昇温速
度で220 C1で昇温し死時に得られるDSCa線を
第2回目の080曲線とし、これらの080曲線から固
有ピークと、高温ピークとを区別することができる。
The pre-expanded particles used in the present invention have a crystal structure in which a high-temperature peak appears on the high-temperature side of the characteristic peak inherent to the polypyrene resin in the 080 curve obtained by differential scanning calorimetry of the particles. The above DSCIllil is the 080 curve obtained when Volip V pyrene resin foam particles 1 to 3 cm are heated to 220C at a heating rate of 10C/min using a differential scanning calorimetry needle. The 080 curve obtained at the time of death by heating up to 220C at a heating rate of 10'C-/B is the first DSCIII line, and then from 220C at a cooling rate of IO'C,A to 4
The temperature was lowered to around 0C, and the temperature was raised again to 220 C1 at a heating rate of /Qt-/min. The DSCa line obtained at the time of death was taken as the second 080 curve, and from these 080 curves, the characteristic peaks and High temperature peaks can be distinguished.

即ち本発明における固有ピークとは、ポリプロピレン系
樹脂固有の吸熱ピークであシ、該ポリプロピレン系樹脂
の、いわゆる結晶の融解時の吸熱によるものであると考
えられる。通常該固有ピークは第1回目の080曲線に
も第2回目の080曲線にも現われ、ピークの頂点の温
度は第1回目と第2回目で多少異なる場合があるが、そ
の差は5C未満、通常は2C未満である。
That is, the unique peak in the present invention is an endothermic peak unique to the polypropylene resin, and is thought to be due to endotherm during melting of so-called crystals of the polypropylene resin. Usually, the characteristic peak appears in both the first 080 curve and the second 080 curve, and the temperature at the top of the peak may be slightly different between the first and second times, but the difference is less than 5C. Usually less than 2C.

一方、本発明における高温ピークと杜、第1回目のDS
Ca綜で上記固有ピークよシ高温側に現われる吸熱ピー
クであシ、080曲線にこの高温ピークが現われないポ
リプロピレン系樹脂型内発泡成型体は、収縮率、圧縮硬
さ、圧縮永久歪率、粒子の融着性等の諸瞼性に劣シ、か
つこれらの物性のバラツキが大きくなる。上記高温ピー
クは、上記固有ピークとして現われる構造とは具なる結
晶構造の存在によるものと考えられ、該高温ピークは第
1回目の080曲線に紘現われるが、同一条件で昇温を
行った第2回目の080曲線には現われない。従って高
温ピークは本発明において用いられる予備発泡粒子が、
ポリプロピレン系樹脂固有の固有ピークを示す結晶構造
とは異なる結晶構造をも有することによυ現われ名もの
で6J)、特定の発泡条件によってポリプロピレン系樹
脂を発泡せしめることによって080曲線に高温ピーク
が現われる結晶構造を有する予備発泡粒子を得ることが
できる。
On the other hand, the high temperature peak and forest in the present invention, the first DS
This is an endothermic peak that appears on the high temperature side of the above-mentioned characteristic peak in the Ca curve, and polypropylene resin in-mold foam molded products in which this high temperature peak does not appear on the 080 curve have a high shrinkage rate, compression hardness, compression set rate, and particle size. It is inferior in various eyelid properties such as fusion adhesion, and the dispersion of these physical properties becomes large. The above-mentioned high-temperature peak is thought to be due to the existence of a specific crystal structure that differs from the structure that appears as the above-mentioned characteristic peak, and the high-temperature peak appears clearly in the 080 curve of the first time, but the second time when the temperature was raised under the same conditions. It does not appear on the second 080 curve. Therefore, the high temperature peak is due to the pre-expanded particles used in the present invention.
It appears because it has a crystal structure different from the crystal structure that shows the characteristic peak inherent to polypropylene resin (6J), and when polypropylene resin is foamed under specific foaming conditions, a high temperature peak appears on the 080 curve. Pre-expanded particles with a crystalline structure can be obtained.

前記第2回目の080曲線に現われる固有ピークの温度
と第1回目の080曲線に現われる高温ピークの温度と
の差は大きいことが望ましく、第2回目のDSCIil
I線の固有ピークの頂点の温度と高温ピークの頂点の温
度との差は5C以上、好ましくは10C以上である・。
It is desirable that the difference between the temperature of the characteristic peak appearing in the second 080 curve and the temperature of the high temperature peak appearing in the first 080 curve is large;
The difference between the temperature at the top of the characteristic peak of the I line and the temperature at the top of the high temperature peak is 5C or more, preferably 10C or more.

また高温ピークが、上記測定条件において得られた第1
回目のDEC曲線に現われ、第2回目のDSC曲i1j
!ICは現われないことから、予備発泡粒子の基材樹脂
が混合物の場合等、DSC曲線に複数の固有ピークが現
われる可能性がある場合にも第1回目とt42回目のD
SC曲線を比較することによシ、固有ピークと高温ピー
クとが区別でき、高温ピークの有無を確認することがで
きる。
Moreover, the high temperature peak is the first peak obtained under the above measurement conditions.
It appears on the second DEC curve, and the second DSC song i1j
! Since IC does not appear, D at the 1st and t42nd times also applies when multiple characteristic peaks may appear in the DSC curve, such as when the base resin of the pre-expanded particles is a mixture.
By comparing the SC curves, a unique peak and a high temperature peak can be distinguished, and the presence or absence of a high temperature peak can be confirmed.

本発明に用いられる予備発泡粒子は、上記DSC曲線に
高温ピークが現われる結晶構造を有するとともに、25
C,latm Kおける内圧減少速度係数kかに≦0.
30である予備発泡粒子でなければならない。k)O1
30の場合には、収縮率が小さく、寸法精度に優れた成
型体を得ることができない。上記内圧減少速度係数にと
は、予備発泡粒子内から気体が逃散する速度の速度係数
であυ、次の方法によ請求められるものである。
The pre-expanded particles used in the present invention have a crystal structure in which a high temperature peak appears in the above DSC curve, and
C, latm Internal pressure decreasing rate coefficient k at K≦0.
The pre-expanded particles should be 30. k) O1
In the case of 30, the shrinkage rate is small and a molded article with excellent dimensional accuracy cannot be obtained. The internal pressure reduction rate coefficient is a rate coefficient of the rate at which gas escapes from within the pre-expanded particles, and is determined by the following method.

まず多数の針穴を穿設した例えば70朋×100朋程度
のポリエチレン袋中に、発泡倍率および重量既知の予備
発泡粒子を充填し、25CK保持しながら空気によシ加
圧して予備発泡粒子に内圧を付与した後予備発泡粒子の
重量を測定する。次いで該予備発泡粒子を25C,la
tmに保持し10分経過後の予備発泡粒子の重量を測定
する。内圧を付与した直後の予備発泡粒子の内圧P。(
にν薗・G)と、25tl’、 latmで10分間保
持した後の予備発泡粒子の内圧P+ (KP/c!l・
G)を以下の式よ請求める。
First, pre-expanded particles of known expansion ratio and weight are filled into a polyethylene bag measuring, for example, 70 mm x 100 mm, with a large number of needle holes, and pressurized with air while holding 25 CK to form pre-expanded particles. After applying internal pressure, the weight of the pre-expanded particles is measured. The pre-expanded particles were then heated to 25C, la
The weight of the pre-expanded particles is measured after 10 minutes of holding at tm. Internal pressure P of pre-expanded particles immediately after applying internal pressure. (
νzono・G) and the internal pressure P+ (KP/c!l・
G) can be requested using the following formula.

(ただし、増加空気量は内圧測定時の粒子重量と加圧処
理する前の粒子重量の差、Tは雰囲気温度、粒子内の空
気体積は、予備発泡粒子の発泡倍率よ請求めた値である
。) 次に上式よ請求めたPO+Plよシリ下の式にょシ内圧
減少速度係数kをめる。
(However, the increased air volume is the difference between the particle weight at the time of internal pressure measurement and the particle weight before pressure treatment, T is the ambient temperature, and the air volume inside the particle is the value calculated from the expansion ratio of the pre-expanded particles. ) Next, calculate the internal pressure reduction rate coefficient k in the equation below from PO+Pl obtained from the above equation.

Log−!□=−kt O (ただしtは時間で上記の場合1o分である。)上記内
圧減少速度係数には発泡粒子の気泡数が少ない場合、独
立気泡率が高い場合等に≦0.30となるが、独立気泡
率が高い場合で屯結晶核剤を含有する樹脂を用いた場合
にはに≦0.30とならない場合があシ、好ましくない
Log-! □=-kt O (However, t is time and is 10 minutes in the above case.) The above internal pressure reduction rate coefficient will be ≦0.30 when the number of cells in the expanded particles is small or when the closed cell ratio is high. However, when the closed cell ratio is high and a resin containing a nucleating agent is used, ≦0.30 may not be achieved, which is not preferable.

本発明に用いられる上記、DSC曲線に高温ピークが現
われる結晶構造を有し、かつ251r、1atm Kお
ける内圧減少速度係数kかに≦0.30であ° る予備
発泡粒子は次のようKして製造することができる。
The pre-expanded particles used in the present invention, which have a crystal structure in which a high-temperature peak appears in the DSC curve and have an internal pressure decrease rate coefficient k≦0.30 at 251r and 1 atm K, have a K as follows. It can be manufactured using

まず原料のポリプロピレン系樹脂粒子として、結晶核剤
や、気泡径を細かくする要因となるシリカやリン系の安
定剤等を含有しない樹脂粒子を選定する。次いで該ポリ
プロピレン系樹脂粒子に揮発性発泡剤を含有させる工程
、容器内で上記樹脂粒子を分散媒に分散させる工程、お
よび前記揮発性発泡剤含有樹脂粒子と前記分散媒の温度
T (tl’)を前記樹脂粒子の融解終了温度Tm(U
)以上に昇温することなく次式: Tm−Tm−20(
T(T (式中、融解終了温度TmはDEC法によシ約
6〜8mgのサンプルを昇温速度to’c−にで昇温し
たとき得られる吸熱曲線の終了温度をいう。)によシ表
わされる温度範囲に保持しながら容器の一端を開放し、
上記樹脂粒子と分散媒とを同時に容器内よシも低圧の雰
囲気に放出する工程よシなる予備発泡方法によって製造
することができる。
First, as the raw material polypropylene resin particles, resin particles that do not contain crystal nucleating agents, silica, phosphorus stabilizers, etc. that cause the size of bubbles to become fine are selected. Next, a step of incorporating a volatile blowing agent into the polypropylene resin particles, a step of dispersing the resin particles in a dispersion medium in a container, and a temperature T (tl') of the volatile blowing agent-containing resin particles and the dispersion medium. is the melting end temperature Tm (U
) without raising the temperature above the following formula: Tm-Tm-20(
T (T (where, the melting end temperature Tm is the end temperature of the endothermic curve obtained when a sample of about 6 to 8 mg is heated at a heating rate of to'c- by the DEC method.) Open one end of the container while maintaining the temperature within the indicated range,
It can be produced by a pre-foaming method that includes a step of simultaneously releasing the resin particles and dispersion medium into a low-pressure atmosphere inside a container.

上記揮発性発泡剤としては例えば、プ四パン、ブタン、
ペンタン、ヘキサン、ヘプタン等で例示される脂肪族炭
化水素類、シクロブタン、シクロペンタン等で例示され
る環式脂肪族炭化水素類およびトリクロロフロ四メタン
、ジクロレジフロロメタン、ジクμロチドラフロロエタ
ン、メチルク胃ライド、エチルクロ2イド、メチレンク
ロライド等で例示される/%Qゲン化炭化水素類等が挙
げられ、これらの発泡剤は混合して用いることができる
。上記発泡剤の使用量はポリプロピレン系樹脂粒子10
0重量部に対し、0.04〜0.20モル程度用いられ
る。
Examples of the above-mentioned volatile blowing agents include butane, butane,
Aliphatic hydrocarbons exemplified by pentane, hexane, heptane, etc., cyclic aliphatic hydrocarbons exemplified by cyclobutane, cyclopentane, etc., and trichlorofurotetramethane, dichlorodifluoromethane, dichlorotidrafluoroethane, Examples include /%Q-genated hydrocarbons such as methyl chloride, ethyl chloride, methylene chloride, etc., and these blowing agents can be used in combination. The amount of the above blowing agent used is 10 polypropylene resin particles.
It is used in an amount of about 0.04 to 0.20 mol per 0 part by weight.

この方法では、重合体粒子と揮発性発泡剤を開側に或い
は揮発性発泡剤を重合体粒子に含有させた後、分散媒に
分散させるが、このとき要すれば分散剤、例えば微粒状
の酸化アルミニウムおよび酸化チタン、塩基性炭酸マグ
ネシウム、塩基性炭酸亜鉛、炭酸カルシウム等を用いる
ことがでなる。
In this method, the polymer particles and a volatile blowing agent are added to the open side or the volatile blowing agent is contained in the polymer particles and then dispersed in a dispersion medium. Aluminum oxide, titanium oxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, etc. can be used.

この分散剤の添加量は通常重合体粒子100重量部に対
し、0.01〜10軍量部である。また分散媒は重合体
粒子を溶解させない溶媒であればよく、例えば水、エチ
レングリコール、グリセリン、メタノール、エタノール
尋のうちの1種又は′それらの2種以上の混合物が例示
されるが通常は水が好ましい。
The amount of the dispersant added is usually 0.01 to 10 parts by weight per 100 parts by weight of the polymer particles. The dispersion medium may be any solvent that does not dissolve the polymer particles, such as one of water, ethylene glycol, glycerin, methanol, and ethanol, or a mixture of two or more thereof, but water is usually used. is preferred.

以上のようKしてDSC1tll線に高温ピークが現わ
れる結晶構造を有し、かつ25r、latmにおける内
圧減少速度係数kかに≦0.30となる予備発泡粒子が
得られ、この予備発泡粒子は通常5〜60倍の見掛は発
泡倍率を有する。
As described above, pre-expanded particles are obtained which have a crystal structure in which a high-temperature peak appears on the DSC 1tll line and have an internal pressure decrease rate coefficient k≦0.30 at 25r, latm. It has an apparent foaming ratio of 5 to 60 times.

又、これらの方法で得られた予備発泡粒子に空気、窒素
、炭酸ガス等の無機ガス、及びこれらと揮発性発泡剤と
の混合ガスにて加圧して発泡粒子に高められた内圧を付
与し加熱する事によって見掛は発泡倍率150倍程変寸
での粒子を得る事もできる。
Furthermore, the pre-expanded particles obtained by these methods are pressurized with air, inorganic gas such as nitrogen, carbon dioxide, or a mixed gas of these and a volatile blowing agent to impart increased internal pressure to the expanded particles. By heating, it is also possible to obtain particles with varying sizes with an apparent expansion ratio of about 150 times.

本発明において上記のようにして得られた予備発泡粒子
に発泡能を付与する。予備発泡粒子への発泡能の付与は
、無機ガス、例えば、空気、窒素ガス、炭酸ガス等又は
前記予備発泡粒子の発泡に用いたブタン、ジクロロジフ
ロロメタン、ジク四費テトラ70四エタン等の揮発性発
泡剤等あるいはこれらの混合ガス等により加圧すること
によシ行なわれるが通常は空気忙よシ加圧し予備発泡粒
子に大気圧以上、3に?/cflIIG以下の内圧を付
与する。
In the present invention, foaming ability is imparted to the pre-expanded particles obtained as described above. The foaming ability can be imparted to the pre-expanded particles by using an inorganic gas such as air, nitrogen gas, carbon dioxide, or the like, butane, dichlorodifluoromethane, dichlorotetra-70-ethane, etc. used for foaming the pre-expanded particles. This is done by pressurizing with a volatile blowing agent or a mixed gas of these, but usually air is pressurized and the pre-expanded particles are brought to a pressure above atmospheric pressure, up to 3? /cflIIG or less internal pressure is applied.

上記発泡能を付与した(大気圧以上の内圧を付与した)
予備発泡粒子を成型用型に充填し、加熱して予備発泡粒
子を発泡せしめ、粒子相互を融着せしめることによシ型
通シの発泡成型体が得られる。上記成型のだめの加熱手
段としては、通常2゜Ky/ctl・G〜5 Ky/c
rl・Gの水蒸気が用いられる。
Added the above foaming ability (provided with internal pressure higher than atmospheric pressure)
The pre-expanded particles are filled into a mold, heated to foam the pre-expanded particles, and fuse the particles to each other, thereby obtaining a foam molded article with a through-hole shape. The heating means for the above-mentioned molding pot is usually 2°Ky/ctl・G to 5Ky/c.
Water vapor of rl·G is used.

上記のポリプルピレン系樹脂発泡成型体は、表面平滑で
、寸法精度、粒子の融着強度に優れ、また、圧縮硬さ、
圧縮永久歪率、収縮率等の諸物性に優れておシ、該成型
体は例えば包装材、緩衝材、保温材、断熱材、建築資材
、車輌部材、浮揚材、食品用器等に用いることができる
The above polypropylene resin foam molded product has a smooth surface, excellent dimensional accuracy, and particle fusion strength, and also has high compression hardness and
It has excellent physical properties such as compression set rate and shrinkage rate, and the molded product can be used for example in packaging materials, cushioning materials, heat insulating materials, insulation materials, construction materials, vehicle parts, flotation materials, food containers, etc. I can do it.

以下実施例、比較例を挙げて本発明を更に詳細に説明す
る。
The present invention will be explained in more detail below by giving Examples and Comparative Examples.

実施例1〜5 基材樹脂100重景重景対しB )I T (酸化防止
剤)0.1重量部、イルガノックスtoto <酸化防
止剤)0.03重量部、ステアリン酸カルシウム0.0
5重量部を含有するエチレン−プルピレンランダム共重
合部、極微粒状酸化アルミニウム0.3重量部、および
第1表に示す量のジクロロジフロロメタンを5tのオー
トクレーブに入れ、攪拌下、加熱昇温し、同表に示す発
泡温度で30分間保持した後、窒素ガスによシ容器内圧
を3oKp/c/l・Gに保持しながら容器の一端を開
放し樹脂粒子と水とを大気圧下に放出し樹脂粒子を発泡
せしめて予備発泡粒子を得た。得られた予備発泡粒子の
発泡倍率を第1表に示す。尚実施例5においては実施例
2で発泡して得た予備発泡粒子を更に空気で加圧した後
、加熱すゐ操作を2回〈シ返して行ない65倍の発泡′
倍率としたものである。得られた予備発泡粒子の内圧減
少速度係数および示差走査熱量測定を行なった結果を第
1表に示す、また実施例3の予備発泡粒子のDSC曲線
を第1図に示す(第1図においてa1色1は固有ピーク
を、bは高温ピークを示し、実線は第1回目のDSC曲
線、点線は第2凹目のDSC1!lI綜である。)。
Examples 1 to 5 Base resin 100 layers B) IT (antioxidant) 0.1 part by weight, Irganox toto <oxidant) 0.03 parts by weight, calcium stearate 0.0
5 parts by weight of an ethylene-propylene random copolymer, 0.3 parts by weight of ultrafine aluminum oxide, and dichlorodifluoromethane in the amount shown in Table 1 were placed in a 5-ton autoclave, and the mixture was heated and heated while stirring. After maintaining the foaming temperature shown in the same table for 30 minutes, one end of the container was opened while maintaining the internal pressure of the container at 3oKp/c/l・G using nitrogen gas, and the resin particles and water were brought under atmospheric pressure. The resin particles were discharged and foamed to obtain pre-expanded particles. Table 1 shows the expansion ratio of the obtained pre-expanded particles. In Example 5, the pre-expanded particles obtained by foaming in Example 2 were further pressurized with air, and then heated twice (returning was performed to expand the particles 65 times).
It is a magnification. Table 1 shows the results of internal pressure reduction rate coefficient and differential scanning calorimetry of the obtained pre-expanded particles, and the DSC curve of the pre-expanded particles of Example 3 is shown in Fig. 1 (in Fig. 1, a1 Color 1 indicates the characteristic peak, b indicates the high temperature peak, the solid line is the first DSC curve, and the dotted line is the second concave DSC1!lI heave.)

次にこれらの予備発泡粒子を空気にて加圧し、該粒子に
第2表に示す内圧を付与した後、300間×300間×
50關(型内径)の金型に充填し、28〜3.5KP/
cn!・Gの蒸気で加熱して該予備発泡粒子を発泡せし
め、発泡成型体を得た。得られた成型体を55Uのオー
プン中に24時間放置後、成型体の密度、圧縮硬さ、圧
縮永久歪率、収縮率、表面状態および成凰体中の予備発
泡粒子の融着性の測定を行なった。結果を第2表にあわ
せて示す。
Next, these pre-expanded particles were pressurized with air to give the particles the internal pressure shown in Table 2, and then heated for 300 hours x 300 hours x
Fill a mold with a diameter of 50 mm (mold inner diameter) and produce 28 to 3.5 KP/
cn! - The pre-expanded particles were foamed by heating with G steam to obtain a foamed molded product. After leaving the obtained molded body in a 55U open environment for 24 hours, the density, compression hardness, compression set rate, shrinkage rate, surface condition, and fusion properties of the pre-expanded particles in the molded body were measured. I did this. The results are also shown in Table 2.

比較例1 実施例と同一のエチレンープ四ピレンランダム共重合体
粒子100重量部、水300重量部、極微粒状酸化アル
ミニウム0.3重量部および第1表に示す量のジクロロ
シフ0ロメタンを5tのオートクレーブに入れ、同表に
示す容器内最高温度まで昇温した後、140Cに降温し
て15分間保持し、その後窒素ガスによシ容器内圧を3
0に2/crl−Gに保持しながら容器の一飽を開放し
、樹脂粒子と水とを大気圧下に放出し、樹脂粒子を発泡
せしめて予備発泡粒子を得た。得られた予備発泡粒子の
発泡倍率、内圧減少速度係数、および示差走査熱量測定
を行なった。結果を第1表に示す。また該予備発泡粒子
のDSC[lll線を第2図に示す(図中実線は第1回
目のDSC曲線、点線は第2回目のDSC曲紳を示し、
a、a’は固有ピークを示す。)。
Comparative Example 1 100 parts by weight of the same ethylene-tetrapyrene random copolymer particles as in Example, 300 parts by weight of water, 0.3 parts by weight of ultrafine aluminum oxide, and the amount of dichlorosiflomethane shown in Table 1 were placed in a 5-ton autoclave. After heating up the container to the maximum temperature shown in the same table, the temperature was lowered to 140C and held for 15 minutes, and then nitrogen gas was introduced to reduce the container internal pressure to 3.
The container was opened while maintaining the pressure at 0.2/crl-G, and the resin particles and water were released under atmospheric pressure to foam the resin particles to obtain pre-expanded particles. The expansion ratio, internal pressure reduction rate coefficient, and differential scanning calorimetry of the obtained pre-expanded particles were measured. The results are shown in Table 1. Further, the DSC line of the pre-expanded particles is shown in FIG. 2 (in the figure, the solid line shows the first DSC curve, the dotted line shows the second DSC curve,
a and a' indicate unique peaks. ).

次いで該予備発泡粒子に第2表に示す内圧を付与した後
、実施例と同様にして成型し、成型体を得た。得られた
成型体の諸物性を第2表に示す。
Next, after applying the internal pressure shown in Table 2 to the pre-expanded particles, they were molded in the same manner as in the examples to obtain molded bodies. Table 2 shows the physical properties of the molded product obtained.

比較例2〜3 基材樹脂100重量部に対し、比較例2はジベンジリデ
ンソルビトール(結晶核剤)0.2重量部、比較例3は
、シリカ(ブロッキング防止剤)0.2重量部を配合し
てなるエチレンープ四ピレンランダム共重合体粒子(実
施例と同一のエチレン成分、メルトインデックス、Tm
を有する。)100重景重景水300重量部、極微粒状
酸化アルミニウム0.3重量部および第1表に示す量の
ジクロロシフ0ロメタンを5tのオートクレーブに入れ
、攪拌下、同表に示す容器内最高温度以上釦昇温するこ
となく137Cで30分間保持した後、実施例と同様に
して樹脂粒子と水とを大気圧下に放出し、予備発泡粒子
を得た。得られた予備発泡粒子の発泡倍率、内圧減少速
度係数測定、および示差走査熱[1114定を行なった
結果を第ズ表に示す。
Comparative Examples 2 to 3 0.2 parts by weight of dibenzylidene sorbitol (crystal nucleating agent) was added in Comparative Example 2, and 0.2 parts by weight of silica (antiblocking agent) was added in Comparative Example 3 to 100 parts by weight of the base resin. Ethylene-tetrapyrene random copolymer particles (same ethylene component, melt index, Tm as in Example)
has. ) 300 parts by weight of 100 Chokei Chokeisui, 0.3 parts by weight of ultrafine aluminum oxide, and the amount of dichlorosifuromethane shown in Table 1 were placed in a 5 ton autoclave, and while stirring, the temperature in the container was higher than the maximum temperature shown in the same table. After holding at 137C for 30 minutes without raising the temperature of the button, the resin particles and water were discharged to atmospheric pressure in the same manner as in Examples to obtain pre-expanded particles. The results of the expansion ratio, internal pressure reduction rate coefficient measurement, and differential scanning calorimetry [1114 measurement] of the obtained pre-expanded particles are shown in Table 1.

次に上記予備発泡粒子を用いて実施例と同様にして発泡
成型体を得た。該成型体の物性を第2表にあわせて示す
Next, a foamed molded article was obtained in the same manner as in the example using the pre-expanded particles. The physical properties of the molded product are also shown in Table 2.

※1 ΔTは高温ピークの温度と固有ピークの温度との
温度差である。
*1 ΔT is the temperature difference between the high temperature peak temperature and the characteristic peak temperature.

※2 JIS−に6767 法に準じて測定し、圧縮硬
さ÷密度の値が 25以上・・・・・・・・・O 25未満・・・・・・・・・× として判定した。
*2 Measured according to JIS-6767 method, and determined that the value of compressive hardness/density is 25 or more...O Less than 25...×

※a JIs−ic6r6v 汰に準じて測定し、圧縮
永久歪率が 15q6未満・・・・・・・・・0 15チ以上、30チ未満・・・・・・Δ30チ以上・・
・・・・・・・× として判定した。
*a Measured according to JIs-ic6r6vtai, compression set rate is less than 15q6...0 15 inches or more, less than 30 inches...Δ30 inches or more...
It was determined as ・・・・・・×.

子粁4 成型体の金型に対する面方向の収縮率(2))
を測定し、 3%未満・・・・・・・・・0 3俤以上、5%未満・・・・・・・・・Δ5チ以上・・
・・・・・・・× として判定した。
4 Shrinkage rate of the molded body in the plane direction with respect to the mold (2))
Measured, less than 3%...0 3t or more, less than 5%...Δ5t or more...
It was determined as ・・・・・・×.

※5 成型体表面の状態を観察し、 表面に収縮なし・・・・・・・・・・・・・・・OI 
収縮ややあシ・・・・・・Δ 〃 激しい収縮わシ・・・× として判定した。
*5 Observe the condition of the surface of the molded product and find that there is no shrinkage on the surface......OI
Shrinkage/footing...Δ 〃 Severe shrinkage...Judged as ×.

※6 JIS−に6?67A法の引張強さ試験を行なっ
た時 成型体の材質破壊のみがおこる・・・・・・・・・・・
・・・・○l の材質破壊と粒子間破壊がおこる・・・
Δl の粒子間破壊のみがおこる・・・・・・・・・・
・・×として判定した。
*6 Only material failure of the molded body occurs when the tensile strength test is conducted using the JIS-6?67A method.
...○l material failure and interparticle failure occur...
Only interparticle destruction of Δl occurs...
...It was determined as ×.

以上説明したように本発明は示差走査熱量測定によって
得られるDSC曲線に高温ピークが現われる結晶構造を
有し、かつ25C,latmにおける内圧減少速度係数
kかに≦0.30であるポリプロピレン系樹脂予備発泡
粒子に発泡能を付与した後、該粒子を成型用型内に充填
して発泡成型し、成型体を得る方法を採用したことKよ
シ、表面状態良好で、寸法精度に優れ、しかも収縮率、
′圧縮硬さ、圧縮永久歪率、粒子の融着性等の諸物性に
優れた成型体を得ることができる等の狸々の効果を有す
、る。
As explained above, the present invention provides a polypropylene resin reserve which has a crystal structure in which a high temperature peak appears in a DSC curve obtained by differential scanning calorimetry, and has an internal pressure reduction rate coefficient k≦0.30 at 25C, latm. After imparting foaming ability to foamed particles, the particles are filled into a mold and foam-molded to obtain a molded product. rate,
'It has tremendous effects such as being able to obtain molded bodies with excellent physical properties such as compression hardness, compression set rate, and particle fusion properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はgIl施例3の′予備発泡粒子の080曲線を
示すグラブ、第2図は比較例1の予備発泡粒子の080
曲線を示すグラフである。 @ 、 a+・・四固有ピーク b・・・・由由・・高温ピーク
FIG. 1 is a graph showing the 080 curve of pre-expanded particles of gIl Example 3, and FIG. 2 is a graph showing the 080 curve of pre-expanded particles of Comparative Example 1.
It is a graph showing a curve. @, a+...Four unique peaks b...Yuyu...High temperature peak

Claims (1)

【特許請求の範囲】[Claims] ポリプロピレン系樹脂予備発泡粒子の示差走査熱量測定
によって得られるDEC曲線(ただし予備発泡粒子1〜
3ff1gを示差走査熱量計によりて10C/分の昇温
速度で2200tで昇温したときに得られるDSC曲M
)Kポリプロピレン系樹脂固有の固有ピークよシ高温側
に高温ピークが現われる結晶構造を有し、かつ25U、
latm におけゐ内圧減少速度係数kかに≦0.30
である予備発泡粒子に発泡能を付与し、しかる後成型用
型内に該粒子を充填し、加熱発泡せしめて型通シの成型
体を得ることを特徴とするポリプロピレン系樹脂発泡成
型体の製造方法。
DEC curve obtained by differential scanning calorimetry of polypropylene resin pre-expanded particles (pre-expanded particles 1 to
DSC song M obtained when 1g of 3ff is heated at 2200t at a heating rate of 10C/min using a differential scanning calorimeter.
25U,
At latm, the internal pressure decrease rate coefficient k≦0.30
Production of a polypropylene resin foam molded product, which is characterized by imparting foaming ability to pre-expanded particles, then filling the particles into a mold, and heating and foaming them to obtain a molded product that can pass through the mold. Method.
JP58149300A 1983-08-16 1983-08-16 Production of polypropylene resin foam molding Granted JPS6042434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149300A JPS6042434A (en) 1983-08-16 1983-08-16 Production of polypropylene resin foam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149300A JPS6042434A (en) 1983-08-16 1983-08-16 Production of polypropylene resin foam molding

Publications (2)

Publication Number Publication Date
JPS6042434A true JPS6042434A (en) 1985-03-06
JPS6344778B2 JPS6344778B2 (en) 1988-09-06

Family

ID=15472142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149300A Granted JPS6042434A (en) 1983-08-16 1983-08-16 Production of polypropylene resin foam molding

Country Status (1)

Country Link
JP (1) JPS6042434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466405A (en) * 1992-12-18 1995-11-14 Gerb. Happich Gmbh Method for the manufacture of a sun visor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274175U (en) * 1988-11-24 1990-06-06

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466405A (en) * 1992-12-18 1995-11-14 Gerb. Happich Gmbh Method for the manufacture of a sun visor

Also Published As

Publication number Publication date
JPS6344778B2 (en) 1988-09-06

Similar Documents

Publication Publication Date Title
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
US4695593A (en) Prefoamed propylene polymer-base particles, expansion-molded article produced from said particles and production process of said article
JPS63183832A (en) Manufacture of polypropylene resin in-mold foam molding
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JPH0629334B2 (en) Method for producing linear low-density polyethylene resin in-mold foam molding
WO1998006777A1 (en) Shock absorbing material
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JPS60235849A (en) Prefoamed particle of polypropylene resin
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
US6593382B2 (en) Polyolefin resin pre-expanded particles and process for preparing the same
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPH0365259B2 (en)
JPS6042434A (en) Production of polypropylene resin foam molding
JPS6344779B2 (en)
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JP3461583B2 (en) Method for producing foamed molded article in polypropylene resin mold
JPH0386737A (en) Production of foamed polyolefin resin particle
JP4347942B2 (en) Polypropylene resin foam particles for molding
JPS6244778B2 (en)
JPS6090228A (en) Production of preliminarily expanded particle of polypropylene based resin
JPS641499B2 (en)
JPH01242638A (en) Expanded propylene resin particle and expanded molding
JP2000219766A (en) Foamed polypropylene resin molding and automotive interior furnishing material
JPH11156879A (en) Polypropylene resin in-mold foamed molded product and its production
JP2790791B2 (en) Method for producing foamed molded article in polypropylene resin mold