JPS6344779B2 - - Google Patents

Info

Publication number
JPS6344779B2
JPS6344779B2 JP58157504A JP15750483A JPS6344779B2 JP S6344779 B2 JPS6344779 B2 JP S6344779B2 JP 58157504 A JP58157504 A JP 58157504A JP 15750483 A JP15750483 A JP 15750483A JP S6344779 B2 JPS6344779 B2 JP S6344779B2
Authority
JP
Japan
Prior art keywords
temperature
peak
dsc curve
polypropylene resin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58157504A
Other languages
Japanese (ja)
Other versions
JPS6049040A (en
Inventor
Hideki Kuwabara
Atsushi Kitagawa
Yoshimi Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUCHIREN PEEPAA KK
Original Assignee
NIPPON SUCHIREN PEEPAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUCHIREN PEEPAA KK filed Critical NIPPON SUCHIREN PEEPAA KK
Priority to JP58157504A priority Critical patent/JPS6049040A/en
Publication of JPS6049040A publication Critical patent/JPS6049040A/en
Publication of JPS6344779B2 publication Critical patent/JPS6344779B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は型内成型性が良好なポリプロピレン系
樹脂発泡粒子に関する。 予備発泡粒子を型内に充填し加熱し発泡させて
得られる、いわゆるビーズ発泡成型体(型内成型
体)は緩衝性、断熱性等に優れ、緩衝材、包装
材、断熱材、建築資材等広範囲に利用され、その
需要は近年富みに増大している。 この種成型体として従来、ポリスチレン発泡粒
子からなる成型体が知られていたが、ポリスチレ
ン発泡型内成型体は、脆いという致命的な欠点が
ある上、耐薬品性にも劣るという欠点を有し、早
くからその改善が望まれていた。かかる欠点を解
決するものとして架橋ポリエチレン発泡粒子から
なる成型体が提案された。しかしながら架橋ポリ
エチレン発泡粒子の場合は、型内成型によつて低
密度(高発泡)の成型体を得ることが困難であ
り、強いて低密度の成型体を得ようとすると、収
縮が著しく、しかも吸水性が大きい、物性の劣つ
た成型体しか得られず、実用に供し得る成型体は
到底得ることができなかつた。 そこで本発明者らはポリプロピレン系樹脂の有
する優れた物性に着目し、従来の型内成型体の有
する欠点を解決すべくポリプロピレン系樹脂発泡
粒子よりなる型内成型体の研究を行なつて来た。
しかしながらポリプロピレン系樹脂発泡粒子型内
成型体は、低密度(高発泡)で吸水率が小さく、
しかも収縮率の小さい寸法安定性に優れた成型体
が得られる場合もある反面、収縮率の大きい成型
体しか得られない場合もあり、必ずしも安定して
良好な成型体が得難いという問題点を有してい
た。本発明者らはこの原因を究明すべく更に鋭意
研究した結果、型内成型に用いるポリプロピレン
系樹脂発泡粒子の示差走査熱量測定によつて得ら
れるDSC曲線にポリプロピレン系樹脂固有の固
有ピークより高温側の高温ピークが現われ、かつ
該高温ピークの融解エネルギーが1.0cal/g以上
である結晶構造を有するポリプロピレン系樹脂発
泡粒子を用いた場合に良好な型内成型体が得られ
ることを見い出し本発明を完成するに至つた。 即ち本発明はポリプロピレン系樹脂発泡粒子の
示差走査熱量測定によつて得られるDSC曲線
(ただしポリプロピレン系樹脂発泡粒子1〜3mg
を示差走査熱量計によつて10℃/分の昇温速度で
220℃まで昇温した時に得られるDSC曲線)にポ
リプロピレン系樹脂固有の固有ピークより高温側
の高温ピークが現われ、かつ該高温ピークの融解
エネルギーが1.0cal/g以上である結晶構造を有
することを特徴とするポリプロピレン系樹脂発泡
粒子を要旨とする。 本発明に用いられる予備発泡粒子の材質として
は、ポリプロピレン系樹脂が用いられ、定義とし
てはJIS―K6758―1981に規定されているものが
使用される。例えば、プロピレン単独重合体、エ
チレン―プロピレンブロツクコポリマー、エチレ
ン―プロピレンランダムコポリマー、及びこれら
ポリマーにエラストマーや1―オレフインポリマ
ーをブレンドしたいわゆるポリマーブレンド品な
どが挙げられる。ブレンド用に使用されるエラス
トマーとしては例えば、ポリイソブチレン、エチ
レンプロピレンラバーなどがあり、1―オレフイ
ンポリマーとしては、ポリエチレンなどがある。
ブレンド品の例としては、プロピレンホモポリマ
ー/ポリイソブチレン、プロピレンコポリマー/
ポリエチレンなどの2種ブレンド品やプロピレン
ホモポリマー/エチレンプロピレンラバー/ポリ
エチレンなどの3種ブレンド品などが挙げられ
る。これらは架橋したものでも無架橋のものでも
よいが、無架橋のものが好ましい。上記した重合
体の中では、エチレン―プロピレンランダム共重
合体が好ましく、特にエチレン成分0.5〜10wt%
のものが好ましい。 本発明において、ポリプロピレン系樹脂発泡粒
子の示差走査熱量測定によつて得られるDSC曲
線とは、ポリプロピレン系樹脂発泡粒子1〜3mg
を示差走査熱量計によつて10℃/分の昇温速度で
220℃まで昇温したときに得られるDSC曲線であ
る。 本発明において高温ピークとは、DSC曲線に
おいてプロピレン系樹脂固有の吸熱を示す固有ピ
ークの現われる温度より高温側に現われる吸熱ピ
ークであり、次の方法により区別される。まず試
料を室温から220℃まで10℃/分の昇温速度で昇
温した時に得られるDSC曲線を第1回目のDSC
曲線とし、次いで220℃から10℃/分の降温速度
で40℃付近まで昇温し、再度10℃/分の昇温速度
で220℃まで昇温した時に得られるDSC曲線を第
2回目のDSC曲線とする。ポリプロピレン系樹
脂に固有の固有ピークは一般に第1回目のDSC
曲線にも第2回目のDSC曲線にも現われ、ピー
クの頂点の温度は第1回目と第2回目で多少異な
る場合があるが、その差は5℃未満、通常は2℃
未満である。 一方、本発明における高温ピークとは、第1回
目のDSC曲線で上記固有ピークより高温側に現
われる吸熱ピークである。DSC曲線にこの高温
ピークが現われないポリプロピレン系樹脂発泡粒
子は型内成型性が悪く、良好な成型体を得ること
はできない。また高温ピークが現われるものでも
該高温ピークの融解エネルギーが1.0cal/g未満
の場合には成型時の収縮が大きいものとなる。 上記高温ピークは、上記固有ピークとして現わ
れる構造とは異なる結晶構造の存在によるもので
はないかと考えられ、該高温ピークは第1回目の
DSC曲線には現われるが、同一条件で昇温を行
なつた第2回目のDSC曲線には現われない。従
つて高温ピークとして現われる構造は本発発明の
ポリプロピレン系樹脂発泡粒子自体が有していた
ものである。 前記第2回目のDSC曲線に現われる固有ピー
クの温度と第1回目のDSC曲線に現われる高温
ピークの温度との差は大きいことが望ましく、第
2回目のDSC曲線の固有ピークの頂点の温度と
高温ピークの頂点の温度との差は5℃以上、好ま
しくは10℃以上である。 高温ピークを有するポリプロピレン系樹脂発泡
粒子は、密閉容器内にポリプロピレン系樹脂粒子
と、該樹脂粒子100重量部に対して水100〜400重
量部、揮発性発泡剤(例えばジクロロジフロロメ
タン)5〜30重量部、分散剤(例えば微粒状酸化
アルミニウム)0.1〜3重量部を配合し、融解終
了温度Tm以上に昇温することなく、Tm−25℃
〜Tm−5℃(Tmはポリプロピレン系樹脂の融
解終了温度で、本発明においては、試料6〜8mg
を示差走査熱量計にて10℃/分の昇温速度で220
℃まで昇温し、次いで10℃/分の降温速度で40℃
付近まで降温した後、再度10℃/分の昇温速度で
220℃まで昇温し、第2回目の昇温によつて得ら
れたDSC曲線の吸熱ピークの裾が高温側でベー
スラインの位置に戻つた時の温度を融解終了温度
とした。)まで昇温した後、容器の一端を開放し
て、上記樹脂粒子と水とを容器内より低圧の雰囲
気下に放出し、樹脂粒子を発泡せしめて得ること
ができる。 上述の如く、発泡に際して発泡温度を融解終了
温度Tm以上に昇温することなく上記した一定の
温度範囲に規定することにより、DSC曲線に高
温ピークが現われるポリプロピレン系樹脂発泡粒
子が得られるが、発泡温度が上記範囲から外れた
場合、または上記範囲内であつても一旦融解終了
温度Tm以上に昇温した場合は、得られた発泡粒
子のDSC曲線には固有ピークのみが現われ高温
ピークは現われない。 また上記高温ピークの融解エネルギーは、発泡
に用いる発泡剤の種類、量と発泡温度とにより決
まり、該融解エネルギーが1.0cal/g以上となる
条件としては、例えばポリプロピレン系樹脂がエ
チレレン―プロピレンランダム共重合体であつ
て、発泡剤としてジクロロジフロロメタンを使用
した場合、Tm―7℃より高温に昇温することな
く発泡温度をTm―7℃以下とし、発泡剤使用量
を樹脂100重量部に対して20重量部以下とする条
件が挙げられる。 以下、実施例、比較例を挙げて本発明を更に詳
細に説明する。部はすべて重量部を表わす。 実施例1〜3および比較例1〜2 密閉容器に水300部、エチレン―プロピレンラ
ンダム共重合体粒子(Tm=153℃)100部、極微
粒状酸化アルミニウム(分散剤)0.3部及び第1
表に示す揮発性発泡剤を配合し、撹拌下最高温度
を同表に示す容器内最高温度として加熱した。次
いで第1表に示す発泡温度にて30分間保持した
後、容器内の圧力を、窒素ガスにより30Kg/cm2(G)
に保持しながら容器の一端を開放し、樹脂粒子と
水とを同時に大気下へ放出し、樹脂粒子を発泡せ
しめて発泡粒子を得た。得られた発泡粒子の見掛
(嵩)発泡倍率を第1表に示す。次に得られた各
発泡粒子を示差走査熱量計(島津製作所製DT―
30型)によつて10℃/分の昇温速度で220℃まで
昇温して第1回目の測定を行なつた後10℃/分の
降温速度で40℃まで降温し、再度10℃/分の昇温
速度で220℃まで昇温して第2回目の測定を行な
つた。得られたDSC曲線に高温ピークの現われ
た予備発泡粒子について該高温ピークの融解エネ
ルギーを次式より求め第1表に示す。 融解エネルギー(cal/g)(高温ピークのチヤ
ート上の面積(cm2)×チヤート1cm2当りの
熱量(j/cm2))×0.239(cal/j)÷(測定
サンプル重量(g)) ここで、高温ピークbのチヤート上の面積は、
例えば第1図において、イ,ロ,ハの各点と第1
回目のDSC曲線(実線で示す。)とによつて囲ま
れる部分の面積より求められ、第1図において斜
線で示した部分の面積である。 但し、イは融解終了温度、ロは、DSC曲線に
おける完全溶融部分c(170〜200℃位の部分)か
ら低温側に直接外挿した直線(イを通る)と第2
回目のDSC曲線(点線で示す。)における融解終
了温度ニを垂直に通る直線との交点ハは第1回目
のDSC曲線とロ,ニを通る直線との交点を示す。 実施例1の発泡粒子のDSC曲線を第1図に、
比較例2の発泡粒子のDSC曲線を第2図に示す。
尚第1図,第2図はチヤートに記録されたDSC
曲線をもとに吸熱速度(mj/sec)と温度との関
係を示すグラフとしたものであり、実際のチヤー
ト上の横軸は時間であるがその時間に対応する温
度に変換して表示したものである。尚、第1図,
第2図においてaのピークは固有ピークを示す。 次に実施例1〜3及び比較例1〜2の各発泡粒
子を2Kg/cm2(G)の空気で24時間加圧処理しその後
50mm×300mm×300mmの内寸法を有する成型用金型
に充填し、3.2Kg/cm2(G)の蒸気で加熱し、発泡成
型を行なつた。得られた各成型体を80℃のオーブ
ン内で24時間乾燥し常温まで徐冷した後の発泡成
型体の発泡倍率、収縮率及び吸水率を測定し吸水
率の大小より融着性の良否を判定した。結果を第
1表に示す。
The present invention relates to foamed polypropylene resin particles having good in-mold moldability. The so-called bead foam molded product (in-mold molded product), which is obtained by filling pre-expanded particles into a mold and heating and foaming them, has excellent cushioning properties, heat insulation properties, etc., and can be used as cushioning materials, packaging materials, heat insulation materials, construction materials, etc. It is widely used and the demand for it has increased tremendously in recent years. Conventionally, molded bodies made of polystyrene foam particles have been known as this type of molded body, but polystyrene foam molded bodies have the fatal disadvantage of being brittle and have the disadvantage of being inferior in chemical resistance. , improvements have been desired for a long time. A molded body made of crosslinked polyethylene foam particles has been proposed as a solution to these drawbacks. However, in the case of cross-linked polyethylene foam particles, it is difficult to obtain a molded product with low density (high foaming) by in-mold molding. Only molded bodies with high physical properties and poor physical properties were obtained, and it was impossible to obtain any molded bodies that could be put to practical use. Therefore, the present inventors have focused on the excellent physical properties of polypropylene resin, and have conducted research on in-mold molded bodies made of expanded polypropylene resin particles in order to solve the drawbacks of conventional in-mold molded bodies. .
However, polypropylene resin foam particles molded in a mold have a low density (high foaming) and a low water absorption rate.
Moreover, while there are cases in which a molded product with a small shrinkage rate and excellent dimensional stability can be obtained, there are also cases in which only a molded product with a large shrinkage rate can be obtained, which poses the problem that it is not always possible to obtain a stable and good molded product. Was. As a result of further intensive research by the present inventors to investigate the cause of this problem, we found that the DSC curve obtained by differential scanning calorimetry of expanded polypropylene resin particles used for in-mold molding shows a temperature side higher than the characteristic peak unique to polypropylene resin. It was discovered that a good in-mold molded product can be obtained when foamed polypropylene resin particles having a crystal structure in which a high-temperature peak appears and the melting energy of the high-temperature peak is 1.0 cal/g or more, and the present invention has been achieved. It was completed. That is, the present invention provides a DSC curve obtained by differential scanning calorimetry of foamed polypropylene resin particles (with the exception of 1 to 3 mg of foamed polypropylene resin particles).
using a differential scanning calorimeter at a heating rate of 10°C/min.
A high-temperature peak on the higher temperature side than the characteristic peak unique to polypropylene resin appears in the DSC curve obtained when the temperature is raised to 220 ° C., and the melting energy of the high-temperature peak is 1.0 cal / g or more. This article focuses on the characteristic foamed polypropylene resin particles. As the material of the pre-expanded particles used in the present invention, polypropylene resin is used, and the definition thereof is as defined in JIS-K6758-1981. Examples include propylene homopolymers, ethylene-propylene block copolymers, ethylene-propylene random copolymers, and so-called polymer blend products in which these polymers are blended with elastomers and 1-olefin polymers. Examples of elastomers used for blending include polyisobutylene and ethylene propylene rubber, and examples of 1-olefin polymers include polyethylene.
Examples of blend products include propylene homopolymer/polyisobutylene, propylene copolymer/
Examples include two-type blend products such as polyethylene and three-type blend products such as propylene homopolymer/ethylene propylene rubber/polyethylene. These may be crosslinked or non-crosslinked, but non-crosslinked ones are preferred. Among the above-mentioned polymers, ethylene-propylene random copolymers are preferred, especially ethylene content of 0.5 to 10 wt%
Preferably. In the present invention, the DSC curve obtained by differential scanning calorimetry of foamed polypropylene resin particles is defined as 1 to 3 mg of foamed polypropylene resin particles.
using a differential scanning calorimeter at a heating rate of 10°C/min.
This is a DSC curve obtained when the temperature is raised to 220°C. In the present invention, the high-temperature peak is an endothermic peak that appears on the higher temperature side than the temperature at which the characteristic peak indicating the endotherm inherent to the propylene resin appears in the DSC curve, and is distinguished by the following method. First, the DSC curve obtained when the sample was heated from room temperature to 220℃ at a heating rate of 10℃/min was used for the first DSC.
The second DSC curve is the DSC curve obtained when the temperature is raised from 220°C to around 40°C at a cooling rate of 10°C/min, and then raised again to 220°C at a heating rate of 10°C/min. Make it a curve. The characteristic peaks specific to polypropylene resins are generally found in the first DSC.
It appears in both the curve and the second DSC curve, and the temperature at the top of the peak may be slightly different between the first and second runs, but the difference is less than 5 °C, usually 2 °C.
less than On the other hand, the high temperature peak in the present invention is an endothermic peak that appears on the higher temperature side than the above-mentioned characteristic peak in the first DSC curve. Expanded polypropylene resin particles in which this high-temperature peak does not appear in the DSC curve have poor in-mold moldability, making it impossible to obtain a good molded product. Even if a high-temperature peak appears, if the melting energy of the high-temperature peak is less than 1.0 cal/g, the shrinkage during molding will be large. It is thought that the above-mentioned high-temperature peak is due to the existence of a crystal structure different from the structure that appears as the above-mentioned characteristic peak, and the high-temperature peak is caused by the first
Although it appears in the DSC curve, it does not appear in the second DSC curve obtained by raising the temperature under the same conditions. Therefore, the structure appearing as a high temperature peak was possessed by the expanded polypropylene resin particles of the present invention itself. It is desirable that the difference between the temperature of the characteristic peak appearing in the second DSC curve and the temperature of the high temperature peak appearing in the first DSC curve is large, and the temperature at the peak of the characteristic peak of the second DSC curve and the high temperature are preferably large. The difference from the peak temperature is 5°C or more, preferably 10°C or more. Expanded polypropylene resin particles having a high temperature peak are prepared by storing polypropylene resin particles in a closed container, 100 to 400 parts by weight of water per 100 parts by weight of the resin particles, and 5 to 5 parts by weight of a volatile blowing agent (for example, dichlorodifluoromethane). 30 parts by weight and 0.1 to 3 parts by weight of a dispersant (for example, finely divided aluminum oxide), and the melting temperature is Tm - 25°C without increasing the temperature above the melting end temperature Tm.
~Tm-5℃ (Tm is the melting end temperature of polypropylene resin, and in the present invention, 6 to 8 mg of sample
220 at a heating rate of 10℃/min using a differential scanning calorimeter.
℃ and then 40℃ at a cooling rate of 10℃/min.
After the temperature has cooled down to around
The temperature was raised to 220°C, and the temperature at which the tail of the endothermic peak of the DSC curve obtained by the second temperature rise returned to the baseline position on the high temperature side was defined as the melting end temperature. ), one end of the container is opened and the resin particles and water are released into a lower pressure atmosphere from inside the container to foam the resin particles. As mentioned above, by setting the foaming temperature within the above-mentioned constant temperature range during foaming without increasing the temperature above the melting end temperature Tm, foamed polypropylene resin particles that exhibit a high temperature peak on the DSC curve can be obtained. If the temperature is outside the above range, or even if it is within the above range, once the temperature is raised above the melting end temperature Tm, only the characteristic peak will appear in the DSC curve of the obtained expanded particles, and the high temperature peak will not appear. . Furthermore, the melting energy of the above-mentioned high temperature peak is determined by the type and amount of the blowing agent used for foaming and the foaming temperature, and the conditions for the melting energy to be 1.0 cal/g or more include, for example, when polypropylene resin is ethylene-propylene random compound. If the polymer is a foaming agent and dichlorodifluoromethane is used as a blowing agent, the foaming temperature should be kept below Tm-7℃ without raising the temperature above Tm-7℃, and the amount of blowing agent used should be 100 parts by weight of the resin. For example, the content may be 20 parts by weight or less. Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples. All parts represent parts by weight. Examples 1 to 3 and Comparative Examples 1 to 2 In a sealed container, 300 parts of water, 100 parts of ethylene-propylene random copolymer particles (Tm = 153°C), 0.3 parts of ultrafine aluminum oxide (dispersant), and 1st
The volatile blowing agent shown in the table was blended, and the mixture was heated under stirring with the maximum temperature set to the maximum temperature in the container shown in the table. After holding the foaming temperature shown in Table 1 for 30 minutes, the pressure inside the container was reduced to 30Kg/cm 2 (G) using nitrogen gas.
One end of the container was opened while the container was held in place, and the resin particles and water were released into the atmosphere at the same time, and the resin particles were foamed to obtain foamed particles. Table 1 shows the apparent (bulk) expansion ratio of the obtained expanded particles. Next, each foamed particle obtained was measured using a differential scanning calorimeter (DT made by Shimadzu Corporation).
30 type) at a heating rate of 10°C/min to 220°C, then lowered the temperature to 40°C at a cooling rate of 10°C/min, and then again at 10°C/min. A second measurement was performed by raising the temperature to 220°C at a heating rate of 1 minute. The melting energy of the high-temperature peak of the pre-expanded particles in which the high-temperature peak appeared in the obtained DSC curve was determined from the following formula and is shown in Table 1. Melting energy (cal/g) (area of high temperature peak on the chart (cm 2 ) x amount of heat per 1 cm 2 of chart (j/cm 2 )) x 0.239 (cal/j) ÷ (measured sample weight (g)) Here So, the area of high temperature peak b on the chart is
For example, in Figure 1, each point A, B, C and the first
It is determined from the area of the part surrounded by the second DSC curve (indicated by a solid line), and is the area of the part shown by diagonal lines in FIG. However, A is the melting end temperature, B is the straight line (passing through A) directly extrapolated from the complete melting part c (the part of about 170 to 200°C) on the DSC curve to the low temperature side, and the second line.
The intersection of the first DSC curve (indicated by a dotted line) with the straight line passing perpendicularly through the melting end temperature D indicates the intersection of the first DSC curve with the straight line passing through B and D. The DSC curve of the expanded particles of Example 1 is shown in Figure 1.
The DSC curve of the expanded particles of Comparative Example 2 is shown in FIG.
Figures 1 and 2 are DSC recorded on the chart.
This is a graph showing the relationship between heat absorption rate (mj/sec) and temperature based on the curve, and the horizontal axis on the actual chart is time, but it is converted to the temperature corresponding to that time and displayed. It is something. Furthermore, Figure 1,
In FIG. 2, the peak a indicates a unique peak. Next, each expanded particle of Examples 1 to 3 and Comparative Examples 1 to 2 was pressurized with 2 kg/cm 2 (G) of air for 24 hours, and then
The mixture was filled into a mold having internal dimensions of 50 mm x 300 mm x 300 mm, and heated with steam at 3.2 Kg/cm 2 (G) to perform foam molding. Each molded product obtained was dried in an oven at 80°C for 24 hours, and after cooling slowly to room temperature, the expansion ratio, shrinkage rate, and water absorption rate of the foamed molded product were measured, and the quality of the fusion was evaluated based on the water absorption rate. I judged it. The results are shown in Table 1.

【表】 以上説明したように本発明のポリプロピレン系
樹脂発泡粒子は、DSC曲線にポリプロピレン系
樹脂固有の固有ピークより高温側の高温ピークが
現われ、かつ該高温ピークの融解エネルギーが
1.0cal/g以上である結晶構造を有することによ
り、高温ピークがDSC曲線に現われないポリプ
ロピレン系樹脂発泡粒子を用いた型内成型体のよ
うに成型体が大きく収縮することがなく、発泡粒
子を型内成型する際の型内成型性に優れ、容易に
低密度(高発泡)の成型体が得られるとともに、
得られた成型体は収縮率、吸水率が小さい、優れ
た物性を有する。また、ポリプロピレン糸樹脂発
泡粒子からなる型内成型体はポリスチレン系樹脂
発泡粒子からなる型内成型体のように脆いという
欠点はなく、耐衝撃性、耐薬品性に優れた成型体
を提供でき、しかも架橋ポリエチレン発泡粒子か
らなる型内成型体に比べ低密度(高発泡)とした
場合でも収縮率、吸水率の小さい優れた成型体を
提供できる等の種々の効果を有する。
[Table] As explained above, the expanded polypropylene resin particles of the present invention have a high temperature peak on the higher temperature side than the characteristic peak inherent to the polypropylene resin in the DSC curve, and the melting energy of the high temperature peak is
By having a crystal structure of 1.0 cal/g or more, the high-temperature peak does not appear on the DSC curve. Unlike in-mold molding using polypropylene resin foam particles, the molded product does not shrink significantly, making it possible to It has excellent in-mold moldability and can easily produce a low-density (highly foamed) molded product.
The obtained molded product has excellent physical properties with low shrinkage and water absorption. In addition, the in-mold molded product made of polypropylene thread resin foam particles does not have the disadvantage of being brittle like the in-mold molded product made of polystyrene resin foam particles, and can provide a molded product with excellent impact resistance and chemical resistance. In addition, it has various effects such as being able to provide an excellent molded product with low shrinkage and water absorption even when the density is lower (highly foamed) than in-mold molded products made of crosslinked polyethylene foam particles.

【図面の簡単な説明】[Brief explanation of drawings]

図面は示差走査熱量測定によつて得られる
DSC曲線を示し、第1図は実施例1の発泡粒子
のDSC曲線、第2図は比較例2の発泡粒子の
DSC曲線である。
The drawing is obtained by differential scanning calorimetry
Figure 1 shows the DSC curve of the expanded particles of Example 1, and Figure 2 shows the DSC curve of the expanded particles of Comparative Example 2.
It is a DSC curve.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリプロピレン系樹脂発泡粒子の示差走査熱
量測定によつて得られるDSC曲線(ただしポリ
プロピレン系樹脂発泡粒子1〜3mgを示差走査熱
量計によつて10℃/分の昇温速度で220℃まで昇
温した時に得られるDSC曲線)に、ポリプロピ
レン系樹脂固有の固有ピークより高温側の高温ピ
ークが現われ、かつ該高温ピークの融解エネルギ
ーが1.0cal/g以上である結晶構造を有すること
を特徴とするポリプロピレン系樹脂発泡粒子。
1 DSC curve obtained by differential scanning calorimetry of foamed polypropylene resin particles (1 to 3 mg of foamed polypropylene resin particles were heated to 220°C at a heating rate of 10°C/min using a differential scanning calorimeter) A polypropylene characterized by having a crystal structure in which a high-temperature peak on the higher temperature side than the characteristic peak specific to the polypropylene resin appears in the DSC curve obtained when the polypropylene resin is foamed resin particles.
JP58157504A 1983-08-29 1983-08-29 Polypropylene resin expanded beads Granted JPS6049040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157504A JPS6049040A (en) 1983-08-29 1983-08-29 Polypropylene resin expanded beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157504A JPS6049040A (en) 1983-08-29 1983-08-29 Polypropylene resin expanded beads

Publications (2)

Publication Number Publication Date
JPS6049040A JPS6049040A (en) 1985-03-18
JPS6344779B2 true JPS6344779B2 (en) 1988-09-06

Family

ID=15651123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157504A Granted JPS6049040A (en) 1983-08-29 1983-08-29 Polypropylene resin expanded beads

Country Status (1)

Country Link
JP (1) JPS6049040A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649795B2 (en) * 1985-11-29 1994-06-29 日本スチレンペ−パ−株式会社 Method for producing pre-expanded polypropylene resin molded product
CA1280549C (en) * 1986-05-27 1991-02-19 Kyoichi Nakamura Pre-expanded particles of propylene resin
JPH0659694B2 (en) * 1986-09-16 1994-08-10 鐘淵化学工業株式会社 Method for manufacturing polypropylene resin in-mold foam molding
JP2790791B2 (en) * 1986-09-16 1998-08-27 鐘淵化学工業株式会社 Method for producing foamed molded article in polypropylene resin mold
JPH0657435B2 (en) * 1987-11-25 1994-08-03 鐘淵化学工業株式会社 In-mold foam molding of polypropylene resin
KR0159801B1 (en) * 1994-08-06 1999-01-15 박원배 Microcellular pre-expanded polyolefin particles and process for preparing thereof
JPH08277340A (en) * 1995-04-05 1996-10-22 Jsp Corp Foam grain of polypropylene homopolymer and molded product using the same
JP4891960B2 (en) * 2008-09-04 2012-03-07 株式会社ジェイエスピー Polypropylene resin foam molding and automotive interior materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam
JPS6082333A (en) * 1983-10-12 1985-05-10 Japan Styrene Paper Co Ltd Non-crosslinked polypropylene based resin foam container and manufacture thereof
JPS6324617A (en) * 1986-07-17 1988-02-02 Yokogawa Electric Corp Method for double sided exposure of wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam
JPS6082333A (en) * 1983-10-12 1985-05-10 Japan Styrene Paper Co Ltd Non-crosslinked polypropylene based resin foam container and manufacture thereof
JPS6324617A (en) * 1986-07-17 1988-02-02 Yokogawa Electric Corp Method for double sided exposure of wafer

Also Published As

Publication number Publication date
JPS6049040A (en) 1985-03-18

Similar Documents

Publication Publication Date Title
US4840973A (en) Polypropylene resin prefoamed particles
EP0224265B1 (en) Production method of expansion-molded article of polypropylene resin
JPH0417978B2 (en)
JPH0419258B2 (en)
JPS5943491B2 (en) Polypropylene resin foam molding
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JPH011741A (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JPH0559139B2 (en)
JPS6344779B2 (en)
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP3582335B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
JPS614738A (en) Preparation of foamed polypropylene resin particle
JPS6324617B2 (en)
JPS6324618B2 (en)
JPH0386737A (en) Production of foamed polyolefin resin particle
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JPS6244778B2 (en)
US4772636A (en) Reexpandable shrunken foam bodies of styrene-acrylonitrile type resin, method for manufacture thereof, and method for filling therewith
JPS6344778B2 (en)
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JPS641499B2 (en)
JPH0510374B2 (en)
JPS63258939A (en) Polypropylene resin prefoamed beads
JPS6344780B2 (en)