JPS6049040A - Polypropylene resin expanded beads - Google Patents

Polypropylene resin expanded beads

Info

Publication number
JPS6049040A
JPS6049040A JP58157504A JP15750483A JPS6049040A JP S6049040 A JPS6049040 A JP S6049040A JP 58157504 A JP58157504 A JP 58157504A JP 15750483 A JP15750483 A JP 15750483A JP S6049040 A JPS6049040 A JP S6049040A
Authority
JP
Japan
Prior art keywords
peak
temperature
polypropylene resin
curve
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58157504A
Other languages
Japanese (ja)
Other versions
JPS6344779B2 (en
Inventor
Hideki Kuwabara
英樹 桑原
Atsushi Kitagawa
敦之 北川
Yoshimi Sudo
好美 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP58157504A priority Critical patent/JPS6049040A/en
Publication of JPS6049040A publication Critical patent/JPS6049040A/en
Publication of JPS6344779B2 publication Critical patent/JPS6344779B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To provide titled beads of good moldability, giving a peak higher in temperature than the specific peak for the polypropylene resin on the DSC-curve measured by the differential scanning calorimetry, said peak corresponding to specific energy of fusion. CONSTITUTION:The following components, namely, water, polypropylene resin particles, dispersant such as extremely fine aluminum oxide powder, and volatile expanding agent are blended in a closed vessel, being heated under agitation, followed by discharging the resultant dispersion into the atmosphere, while maintaining the pressure in the vessel higher than the external level, to effect expansion, thus obtaining the objective beads giving (a) peak b higher in temperature than the specific peak a for the polypropylene resin on the DSC-curve (obtained, using 1-3mg of the expanded beads, by raising temperature to 220 deg.C at a rate of 10 deg.C/min) measured by the differential scanning calorimetry, and also having such crystal structure that the energy of fusion for the peak b falls >=1.0cal/g.

Description

【発明の詳細な説明】 本発明は型内成型性が良好なポリプロピレン系樹脂発泡
粒子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to expanded polypropylene resin particles having good in-mold moldability.

予備発泡粒子を型内に充填し加熱し発泡させて得られる
、いわゆるビーズ発泡成型体(型内成型体)は緩衝性、
断熱性等に優れ、緩衝材、包装材、断熱材、建築資材等
広範囲に利用され、その需要は近年富みに増大している
The so-called bead foam molded product (in-mold molded product), which is obtained by filling pre-expanded particles into a mold and heating and foaming them, has cushioning properties,
It has excellent heat insulating properties and is widely used in cushioning materials, packaging materials, heat insulating materials, construction materials, etc., and the demand for it has increased greatly in recent years.

この種成型体として従来、ポリスチレン発泡粒子からな
る成型体が知られていたが、ポリスチレン発泡型内成型
体は、脆いという致命的な欠点がある上、耐薬品性にも
劣るという欠点を有し、早くからその改善が望まれてい
た。かかる欠点を解決するものとして架橋ポリエチレン
発泡粒子からなる成型体が提案された。しかし寿から架
橋ポリエチレン発泡粒子の場合は、型内成型によって低
密度(高発泡)の成型体を得ることが困難であシ、強い
て低密度の成型体を得ようとすると、収縮が著しく、し
かも吸水性が大きい、物性の劣った成型体しか得られず
、実用に供し得る成型体は到底得ることができなかった
。。
Conventionally, molded bodies made of polystyrene foam particles have been known as this type of molded body, but polystyrene foam molded bodies have the fatal disadvantage of being brittle and have the disadvantage of being inferior in chemical resistance. , improvements have been desired for a long time. A molded body made of crosslinked polyethylene foam particles has been proposed as a solution to these drawbacks. However, in the case of cross-linked polyethylene foam particles from Kotobuki, it is difficult to obtain a low-density (highly foamed) molded product by in-mold molding. Only molded products with high water absorption and poor physical properties were obtained, and no molded products that could be put to practical use could be obtained. .

そこで本発明者らはポリプロピレン系樹脂の有する優れ
た物性に着目し、従来の型内成型体の有する欠点を解決
すべくポリプロピレン系樹脂発泡粒子よシ々る型内成型
体の研究を行なって来た。
Therefore, the present inventors have focused on the excellent physical properties of polypropylene resins, and have been conducting research on in-mold moldings similar to foamed polypropylene resin particles in order to solve the drawbacks of conventional in-mold moldings. Ta.

しかしながらポリプロピレン系樹脂発泡粒子型内成型体
は、低密度(高発泡)で吸水率が小さく、しかも収縮率
の小さい寸法安定性に優れた成型体が得られる場合もあ
る反面、収縮率の大きい成型体しか得られない場合もi
b、必ずしも安定して良好な成型体が得難いという問題
点を有していた。
However, with polypropylene resin foam particles molded in a mold, although it may be possible to obtain a molded product with low density (high foaming), low water absorption, and excellent dimensional stability with a low shrinkage rate, on the other hand, a molded product with a high shrinkage rate can be obtained. Even if you only get the body
(b) There was a problem in that it was difficult to obtain a stable and good molded product.

本発明者ら祉この原因を究明すべく更に鋭意研究しfc
結果、型内成型に用いるポリプロピレン系樹脂発泡粒子
の示差走査熱量測定によって得られるDSCdh綜にポ
リプロピレン系樹脂固有の固有ピークよυ高温側の高温
ピークが現われ、かつ該高温ピークの融解エネルギーが
1.0m/、9以上である結晶構造を有するポリプロピ
レン系樹脂発泡粒子を用いた場合に良好な型内成型体が
得られることを見い出し本発明を完成するに至った。
The inventors have conducted further research to find out the cause of this fc
As a result, a high-temperature peak on the high-temperature side of the characteristic peak specific to the polypropylene-based resin appears in the DSCdh peak obtained by differential scanning calorimetry of polypropylene-based resin expanded particles used for in-mold molding, and the melting energy of the high-temperature peak is 1. The present invention was completed by discovering that a good in-mold molded product can be obtained when expanded polypropylene resin particles having a crystal structure of 0 m/, 9 or more are used.

即ち本発明はポリプロピレン系樹脂発泡粒子の示差走査
熱量測定によって得られるD8C@、1il(ただしポ
リプロピレン系樹脂発泡粒子1〜37R9を示差走査熱
量針によって10℃/騎の昇温速度で220°Cまで昇
温した時に得られるT)SC曲線)にポリプロピレン系
樹脂固有の固有ピークより高温側の高温ピークが現われ
、かつ該高温ピークの融解エネルギーが1.0m/p以
上である結晶構造を有することを特徴とするポリプロピ
レン系樹脂発泡粒子を要旨とする。
That is, the present invention deals with D8C@, 1il obtained by differential scanning calorimetry of foamed polypropylene resin particles (however, foamed polypropylene resin particles 1 to 37R9 are heated to 220°C with a differential scanning calorimetry needle at a heating rate of 10°C/kil). A high temperature peak on the higher temperature side than the characteristic peak specific to the polypropylene resin appears in the T) SC curve obtained when the temperature is raised, and the melting energy of the high temperature peak is 1.0 m/p or more. This article focuses on the characteristic foamed polypropylene resin particles.

本発明に用いられる予備発泡粒子の材質としては、ポリ
プロピレン系樹脂が用いられ、定義としてはJ Is−
に6758−1981に規定されているものが使用され
る。例えば、プロピレン単独重合体、エチレンープロピ
レンブロックコポリマー、エチレン−プロピレンランダ
ムコポリマー、及ヒこれらポリマーにエラストマーや1
−オレフィンポリマーをブレンドしたいわゆるポリマー
ブレンド品などが挙げられる。ブレンド用に使用される
エラストマーとしては例えば、ポリイノブチレン、エチ
レンプロピレンラバーなどがあシ、1−オレフィンポリ
マーとしては、ポリエチレンなどがある。ブレンド品の
例としては、プロピレンホモポリマー/ポリイソブチレ
ン、プロピレンコポリマー/ポリエチレンなどの2種ブ
レンド品やプロピレンホモポリマー/エチレンプロピレ
ンラバー/ポリエチレンなどの3種ブレンド品などが挙
げられる。これらは架橋したもので本然架橋のものでも
よいが、無架橋のものが好ましい。上記した重合体の中
では、エチレン−プロピレンランダム共重合体が好まし
く、特にエチレン成分05〜l。
As the material of the pre-expanded particles used in the present invention, polypropylene resin is used, and as defined by J Is-
6758-1981 is used. For example, propylene homopolymer, ethylene-propylene block copolymer, ethylene-propylene random copolymer, and elastomer or monomer are added to these polymers.
- Examples include so-called polymer blend products that are blended with olefin polymers. Examples of elastomers used for blending include polybutylene and ethylene propylene rubber, and examples of 1-olefin polymers include polyethylene. Examples of blend products include two-type blend products such as propylene homopolymer/polyisobutylene and propylene copolymer/polyethylene, and three-type blend products such as propylene homopolymer/ethylene propylene rubber/polyethylene. These may be crosslinked or inherently crosslinked, but non-crosslinked ones are preferred. Among the above polymers, ethylene-propylene random copolymers are preferred, particularly ethylene components 05-1.

wtチのものが好ましい。Preferably, it is wt.

本発明において、ポリプロピレン系樹脂発泡粒子の示差
走査熱量測定によって得られるDSC80曲線、ポリプ
ロピレン系樹脂発泡粒子1〜31n9を示差走査熱l計
によって10℃/分の昇温速度で220 ’Ctで昇温
したときに得られるDEC曲線である。
In the present invention, the DSC80 curve obtained by differential scanning calorimetry of foamed polypropylene resin particles, the temperature of foamed polypropylene resin particles 1 to 31n9 is heated to 220'Ct at a heating rate of 10°C/min using a differential scanning calorimeter. This is the DEC curve obtained when

本発明において高温ピークとは、080曲線においてポ
リプロピレン系樹脂固鳴の吸熱を示す固有ピークの現わ
れる温度より高温側に現われる吸熱ピークであり、次の
方法によシ区別される。まず試料を室温から220℃ま
で10℃/分の昇温速度で昇温した時に得られる080
曲線を第1回[DD8CIIIlliとし、次い一1’
220”cがら1゜℃/分の降温速度で40℃付近まで
降温し、再度10℃/分の昇温速度で220″Ctで昇
温した時に得られるD80曲線を第2回目のDEC曲線
とする。ポリプロピレン系樹脂に固有の固有ピークは一
般に第1回目のDaC曲MK4第2回目の080曲線に
も現われ、ピークの頂点の温度は第1回目と第2回目で
多少異なる場合があるが、その差は5℃未未満1常常2
℃未満であ゛る。
In the present invention, the high temperature peak is an endothermic peak that appears on the higher temperature side than the temperature at which the characteristic peak indicating the endotherm of solidification of polypropylene resin appears in the 080 curve, and is distinguished by the following method. First, the 080 obtained when the sample was heated from room temperature to 220°C at a heating rate of 10°C/min.
The curve is first [DD8CIIIlli, then -1'
The D80 curve obtained when the temperature was lowered to around 40°C at a cooling rate of 1°C/min from 220"C and then raised again to 220"Ct at a heating rate of 10°C/min is the second DEC curve. do. The characteristic peak specific to polypropylene resin generally appears in the first DaC curve MK4 and the second 080 curve, and the temperature at the top of the peak may be slightly different between the first and second runs, but the difference is is less than 5℃ 1 normal 2
It is less than ℃.

一方、本発明における高温ピークとは、第1回目のDa
C1tII線で上記固有ピークよシ高温側に現われる吸
熱ピークである。D8C[lIl線にこの高温ピークが
現われないポリプロピレン系樹脂発泡粒子は型内成型性
が悪く、良好な成型体を得ることはできない。また高温
ピークが現われるものでも該高温ピークの融解エネルギ
ーが1.0m/7未満の場合には成型時の収縮が大きい
ものとなる。
On the other hand, the high temperature peak in the present invention refers to the first Da
This is an endothermic peak that appears on the higher temperature side of the above characteristic peak in the C1tII line. Expanded polypropylene resin particles in which this high-temperature peak does not appear in the D8C[lIl line have poor in-mold moldability, and a good molded product cannot be obtained. Further, even if a high temperature peak appears, if the melting energy of the high temperature peak is less than 1.0 m/7, the shrinkage during molding will be large.

上記高温ピークは、上記固有ピークとして現われる構造
とは異なる結晶構造の存在によるものではないかと考え
られ、該高温ピークは第1回目の080曲線には現われ
るが、同一条件で昇温を行なった第2回目のD8C曲線
には現われない。従って高温ピークとして現われる構造
は本発明のボリプロピレン系樹脂発泡粒子自体が有して
いたものである。
The above-mentioned high-temperature peak is thought to be due to the existence of a crystal structure different from the structure that appears as the above-mentioned characteristic peak, and although the high-temperature peak appears in the first 080 curve, It does not appear in the second D8C curve. Therefore, the structure appearing as a high temperature peak was possessed by the foamed polypropylene resin particles of the present invention itself.

前記第2回目のD8C曲線に現われる固有ピークの温度
と第1回目のD8C曲線に現われる高温ピークの温度と
の差は大きいことが望ましく、第2回目のDSCdll
IIIの固有ピークの頂点の温度と高温ピークの頂点の
温度との差は5℃以上、好ましくは10℃以上である。
It is desirable that the difference between the temperature of the characteristic peak appearing in the second D8C curve and the temperature of the high temperature peak appearing in the first D8C curve is large;
The difference between the temperature at the top of the characteristic peak of III and the temperature at the top of the high temperature peak is 5°C or more, preferably 10°C or more.

高温ピークを有するポリプロピレン系樹脂発泡粒子は、
密閉容器内にポリプロピレン系樹脂粒子と、該樹脂粒子
100重量部に対して水100〜400重量部、揮発性
発泡剤(例えばジクロロジフロロメタン)5〜30重量
部、分散剤(例えば微粒状酸化アルミニウム)0.1〜
3重量部を配合し、融解終了温度Tm以上に昇温するこ
となく、Tm−25℃〜T m −5℃(Tmはポリプ
ロピレン系樹脂の融解終了温度で、本発明においては、
試料6〜8111i7を示差走査熱量計にて10℃/分
の昇温速度で220℃まで昇温し、次いで1037分の
降温速度で40℃付近まで降温した後、再度10℃/分
の昇温速度で220℃まで昇温し、第2回目の昇温によ
って得られたDEC曲線の吸熱ピークの裾が高温側でベ
ースラインの位置に戻った時の温度を融解終了温度とし
た。)まで昇温した後、容器の一端を開放して、上記樹
脂粒子と水とを容器内より低圧の雰囲気下に放出し、樹
脂粒子を発泡せしめて得ることができる。
Polypropylene resin foam particles with high temperature peaks are
A sealed container contains polypropylene resin particles, 100 to 400 parts by weight of water, 5 to 30 parts by weight of a volatile blowing agent (e.g. dichlorodifluoromethane), and a dispersant (e.g. fine particulate oxidation agent) per 100 parts by weight of the resin particles. aluminum) 0.1~
3 parts by weight, without raising the temperature above the melting end temperature Tm - Tm -25°C to Tm -5°C (Tm is the melting end temperature of the polypropylene resin, in the present invention,
Samples 6 to 8111i7 were heated to 220°C at a temperature increase rate of 10°C/min using a differential scanning calorimeter, then cooled to around 40°C at a cooling rate of 1037 minutes, and then heated again at 10°C/min. The temperature was raised to 220° C. at a rapid rate, and the temperature at which the tail of the endothermic peak of the DEC curve obtained by the second temperature increase returned to the baseline position on the high temperature side was defined as the melting end temperature. ), one end of the container is opened and the resin particles and water are released into a lower pressure atmosphere from inside the container to foam the resin particles.

上述の如く、発泡に際して発泡温度を融解終了温度Tm
以上に昇温することなく上記した一定の温度範囲に規定
することにより、DEC曲線に高温ピークが現われるポ
リプロピレン系樹脂発泡粒子が得られるが、発泡温度が
上記範囲から外れた場合、または上記範囲内であっても
一旦融解終了温度Tm以上に昇温した場合は、得られた
発泡粒子のDSC曲線には固不ピークのみが現われ高温
ピークは現われない。
As mentioned above, during foaming, the foaming temperature is set to the melting end temperature Tm.
By setting the temperature within the above-mentioned constant range without increasing the temperature above, it is possible to obtain foamed polypropylene resin particles in which a high-temperature peak appears on the DEC curve. Even so, once the temperature is raised to the melting end temperature Tm or higher, only solid peaks and no high temperature peaks appear in the DSC curve of the obtained expanded particles.

また上記高温ピークの融解エネルギーは、発泡に用いる
発泡剤の種類、量と発泡温度とにより決まシ、該融解エ
ネルギーが1°0m17i以上となるgIJ a ev
:y、$4−゛”−ぐ1′j″v孝〒8℃暫万。
Furthermore, the melting energy of the above-mentioned high temperature peak is determined by the type and amount of the blowing agent used for foaming, and the foaming temperature.
:y, $4-゛"-g1'j"v Takashi 〒8℃ temporary man.

ロロメタンを使用した場合、Tm−7℃より高温に昇温
することなく発泡温度をTm−7℃以下とし、発泡剤使
用量を樹脂100重量部に対して20重量部以下とする
条件が挙げられる。
When using lolomethane, conditions include keeping the foaming temperature below Tm-7°C without raising the temperature above Tm-7°C, and using the amount of blowing agent below 20 parts by weight per 100 parts by weight of resin. .

以下、実施例、比較例を挙げて本発明を更に詳細に説明
する。部はすべて重量部を表わす。
Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples. All parts represent parts by weight.

実施例1〜3および比較例1〜2 密閉容器に水300部、エチレン−プロピレンランダム
共重合体粒子(Tm=153℃)ioo部、極微粒状酸
化アルミニウム(分散剤)03部及び第1表に示す揮発
性発泡剤を配合し、攪拌下最高温度を同表に示す容器内
最高温度として加熱した。
Examples 1 to 3 and Comparative Examples 1 to 2 In a sealed container, 300 parts of water, 100 parts of ethylene-propylene random copolymer particles (Tm = 153°C), 03 parts of ultrafine aluminum oxide (dispersant), and Table 1 The volatile blowing agent shown in the table was mixed and heated under stirring with the maximum temperature in the container shown in the same table.

次いで81表に示す発泡mIfにて30分間保持した後
、容器内の圧力を、窒素ガスによシ30 Kf/、d(
G)に保持しながら容器の一端を開放し、樹脂粒子と水
とを同時に大気下へ放出し、樹脂粒子を発泡せしめて発
泡粒子を得た。得られた発泡粒子の見掛(嵩)発泡倍率
を第1表に示す。次に得られた各発泡粒子を示差走査熱
量計(島sl!作所製DT−30型)によって10’C
/分の昇温速度で220 ′Gまで昇温して第1回目の
測定を行なった後10℃/分の降温速度で40℃まで降
温し、再度10℃/分の昇温速度で220℃まで昇温し
て第2回目の測定を行なった。得られたD8C曲線に高
温ピークの現われた予備発泡粒子について該高温ピーク
の融解エネルギーを次式よ請求め第1表に示す。
Next, after maintaining the foaming mIf shown in Table 81 for 30 minutes, the pressure inside the container was reduced to 30 Kf/, d(
G), one end of the container was opened, and the resin particles and water were simultaneously discharged into the atmosphere to foam the resin particles to obtain foamed particles. Table 1 shows the apparent (bulk) expansion ratio of the obtained expanded particles. Next, each of the obtained foam particles was measured at 10'C using a differential scanning calorimeter (Shima SL! Model DT-30 manufactured by Seisakusho).
After the first measurement was performed by raising the temperature to 220'G at a heating rate of 10°C/min, the temperature was lowered to 40°C at a cooling rate of 10°C/min, and then again to 220°C at a heating rate of 10°C/min. A second measurement was performed after raising the temperature to . The melting energy of the high temperature peak of the pre-expanded particles in which the high temperature peak appeared on the obtained D8C curve is shown in Table 1 using the following formula.

融解エネルギー(14’II)=(高温ピークのチャー
ト上の面i (crI) ) X (チャート1 a4
当υの熱意(j/c++り)X O,239(m/D÷
(測定 サンプル重量(g)) ここで、高温ピークbのチャート上の面積は、例えば第
1図において、イ、口、ハの各点と第1回目のDSC曲
線(実線で示す。)とによって囲まれる部分の面積より
められ、嬉1図において斜線で示した部分のTm積であ
る。
Melting energy (14'II) = (surface i (crI) on the chart of high temperature peak) X (chart 1 a4
Our enthusiasm (j/c++ri)X O,239(m/D÷
(Measurement sample weight (g)) Here, the area of the high temperature peak b on the chart can be determined by, for example, the points A, C and C in FIG. 1 and the first DSC curve (indicated by a solid line). It is calculated from the area of the enclosed part, and is the Tm product of the shaded part in Figure 1.

但し、イは融解終了温度、口は、DSC曲線における完
全溶融部分C(170〜200℃位の部分)から低温側
に直接外挿した直線(イを通る)と第2回目のDSC曲
線(点線で示す。)における融解終了温度二を垂直に通
る直線との交点ノ・は第1回目のD8C曲線と口、二を
通る直線との交点を示す。
However, A is the melting end temperature, and the opening is the straight line (passing through A) directly extrapolated from the complete melting part C (about 170 to 200°C) on the DSC curve to the low temperature side, and the second DSC curve (the dotted line). The intersection with the straight line passing perpendicularly through the melting end temperature 2 at ) indicates the intersection between the first D8C curve and the straight line passing through the mouth and 2.

大施例1の発泡粒子のDSC1ll線を第1図に、比較
例2の発泡粒子のDEC曲線を第2図に示す。
FIG. 1 shows the DSC1ll line of the foamed particles of Large Example 1, and FIG. 2 shows the DEC curve of the foamed particles of Comparative Example 2.

尚第1図、第2図はチャートに記録されたDEC曲線を
もとに吸熱速度(mj/5ec)と温度との関係を示す
グラフとしたものでおシ、実際のチャート上の横軸は時
間であるがその時間に対応する温度に変換して表示した
ものである。尚、第1図、第2図においてaのピークは
固有ピークを示す。
Note that Figures 1 and 2 are graphs showing the relationship between endothermic rate (mj/5ec) and temperature based on the DEC curve recorded on the chart, and the horizontal axis on the actual chart is Although it is a time, it is converted into a temperature corresponding to that time and displayed. In addition, in FIGS. 1 and 2, the peak a indicates a unique peak.

次に実施例1〜3及び比較例1〜2の各発泡粒子を2 
Kp / cri (0)の突気で24時間加圧処理し
その後50mmX300朋X300mの内寸法を有する
成型用金型に充填し、3.2 KP/ cnl (G)
の蒸気で加熱し、発泡成型を行なった。得られた各成型
体を80℃のオープン内で24時間乾燥し常温まで徐冷
した後の発泡成型体の発泡倍率、収縮率及び吸水率を測
定し吸水率の大小よシ融着性の良否を判定した。結果を
第1表に丞す。
Next, 2 pieces of each foamed particles of Examples 1 to 3 and Comparative Examples 1 to 2 were added.
The mixture was pressurized for 24 hours with a sudden blow of Kp/cri (0), and then filled into a mold with internal dimensions of 50mm x 300mm x 300m to give 3.2 KP/cnl (G).
It was heated with steam and foam molded. Each molded product obtained was dried in an open room at 80°C for 24 hours, and after cooling slowly to room temperature, the expansion ratio, shrinkage rate, and water absorption rate of the foamed molded product were measured, and the size of the water absorption rate and the quality of the weldability were determined. was determined. The results are shown in Table 1.

(Ei) 以上説明したように本発明のポリプロピレン系樹脂発泡
粒子は、DEC曲線にポリプロピレン系樹脂固有の固有
ピークよシ高温側の高温ピークが現われ、かつ該高温ピ
ークの融解エネルギーが1゜(At/9以上である結晶
構造を有することによシ、高温ピークがD8C曲線に現
われないポリプロピレン系樹脂発泡粒子を用いた型内成
型体のように成型体が大きく収縮することがなく、発泡
粒子を型内成型する際の型内成型性に優れ、容易に低密
度(高発泡)の成型体が得られるとともに、得られた成
型体は収縮率、吸水率が小さい、優れた物性を有する。
(Ei) As explained above, the expanded polypropylene resin particles of the present invention have a high temperature peak on the higher temperature side than the characteristic peak inherent to the polypropylene resin in the DEC curve, and the melting energy of the high temperature peak is 1° (At By having a crystal structure of /9 or more, the high-temperature peak does not appear on the D8C curve. Unlike in-mold moldings using polypropylene resin foam particles, the molded product does not shrink significantly, and the foamed particles It has excellent in-mold moldability during in-mold molding, and a low-density (highly foamed) molded product can be easily obtained, and the obtained molded product has excellent physical properties such as low shrinkage and water absorption.

tiポリプロピレン系樹脂発泡粒子からなる型内成型体
はポリスチレン系樹脂発泡粒子からなる型内成型体のよ
うに脆いという欠点はなく、耐#*性、耐薬品性に優れ
た成型体を提供でき、しかも架橋ポリエチレン発泡粒子
からなる型内成型体に比べ低密度(高発泡)とした場合
でも収縮率、吸水率の小さい優れた成型体を提供できる
等の種々の効果を有する。
ti The in-mold molded body made of polypropylene resin foam particles does not have the disadvantage of being brittle like the in-mold molded body made of polystyrene resin foam particles, and can provide a molded body with excellent #* resistance and chemical resistance. In addition, it has various effects such as being able to provide an excellent molded product with low shrinkage and water absorption even when the density is lower (highly foamed) than in-mold molded products made of crosslinked polyethylene foam particles.

【図面の簡単な説明】[Brief explanation of drawings]

図面は示差走査熱蓋測定によって得られるDSCSC曲
水し、第1図は実施例10発泡粒子のDEC曲線、第2
図は比較例20発泡粒子のD8C曲線である。 特許出願人 日本スチレンペーパー株式会社代 理 人
 弁理士 細 井 勇・。
The drawings show the DSCSC curve obtained by differential scanning thermometry; Fig. 1 shows the DEC curve of expanded particles of Example 10;
The figure shows the D8C curve of Comparative Example 20 expanded particles. Patent applicant: Japan Styrene Paper Co., Ltd. Agent: Isamu Hosoi, patent attorney.

Claims (1)

【特許請求の範囲】[Claims] ポリプロピレン系樹脂発泡粒子の示差走査熱量測定によ
って得られるDSC曲線(ただしポリプロピレン系樹脂
発泡粒子1〜3■を示差走査熱量計によって10℃/冴
の昇温速度で220 ’Cまで昇温した時に得られるD
8C曲線)に、ポリプロピレン系樹脂固有の固有ピーク
より高温側の高温ピークが現われ、かつ該高温ピークの
融解エネルギーが1.、Om/J9以上でちる結晶構造
を有することを特徴とするポリプロピレン系樹脂発泡粒
子。
DSC curve obtained by differential scanning calorimetry of foamed polypropylene resin particles (However, the DSC curve obtained when foamed polypropylene resin particles 1 to 3 cm were heated to 220'C at a heating rate of 10°C/Sae using a differential scanning calorimeter) D
8C curve), a high-temperature peak appears on the higher temperature side than the characteristic peak specific to the polypropylene resin, and the melting energy of the high-temperature peak is 1. , polypropylene resin foam particles having a crystal structure of Om/J9 or more.
JP58157504A 1983-08-29 1983-08-29 Polypropylene resin expanded beads Granted JPS6049040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157504A JPS6049040A (en) 1983-08-29 1983-08-29 Polypropylene resin expanded beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157504A JPS6049040A (en) 1983-08-29 1983-08-29 Polypropylene resin expanded beads

Publications (2)

Publication Number Publication Date
JPS6049040A true JPS6049040A (en) 1985-03-18
JPS6344779B2 JPS6344779B2 (en) 1988-09-06

Family

ID=15651123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157504A Granted JPS6049040A (en) 1983-08-29 1983-08-29 Polypropylene resin expanded beads

Country Status (1)

Country Link
JP (1) JPS6049040A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128709A (en) * 1985-11-29 1987-06-11 Japan Styrene Paper Co Ltd Polypropylene resin pre-expanded bead
JPS63107516A (en) * 1986-05-27 1988-05-12 Kanegafuchi Chem Ind Co Ltd Prefoamed particle of propylene series resin
JPS63183832A (en) * 1986-09-16 1988-07-29 Kanegafuchi Chem Ind Co Ltd Manufacture of polypropylene resin in-mold foam molding
JPH01136726A (en) * 1987-11-25 1989-05-30 Kanegafuchi Chem Ind Co Ltd Expansion molding process of polypropylene resin in mold
EP0700954A1 (en) 1994-08-06 1996-03-13 Hanwha Chemical Corporation Pre-expanded articles of a polyolefin resin
WO1996031558A1 (en) * 1995-04-05 1996-10-10 Jsp Corporation Foamed particles of propylene homopolymer and moldings of said particles
JPH08300387A (en) * 1986-09-16 1996-11-19 Kanegafuchi Chem Ind Co Ltd Production of in-mold foamed molded object of polypropylene resin
JP2008297562A (en) * 2008-09-04 2008-12-11 Jsp Corp Foamed molding of polypropylene resin and automobile trim material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam
JPS6082333A (en) * 1983-10-12 1985-05-10 Japan Styrene Paper Co Ltd Non-crosslinked polypropylene based resin foam container and manufacture thereof
JPS6324617A (en) * 1986-07-17 1988-02-02 Yokogawa Electric Corp Method for double sided exposure of wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823834A (en) * 1981-08-05 1983-02-12 Japan Styrene Paper Co Ltd Expanded molded article of polypropylene resin
JPS5825334A (en) * 1981-08-05 1983-02-15 Japan Styrene Paper Co Ltd Production of polypropylene resin foam
JPS6082333A (en) * 1983-10-12 1985-05-10 Japan Styrene Paper Co Ltd Non-crosslinked polypropylene based resin foam container and manufacture thereof
JPS6324617A (en) * 1986-07-17 1988-02-02 Yokogawa Electric Corp Method for double sided exposure of wafer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128709A (en) * 1985-11-29 1987-06-11 Japan Styrene Paper Co Ltd Polypropylene resin pre-expanded bead
JPS63107516A (en) * 1986-05-27 1988-05-12 Kanegafuchi Chem Ind Co Ltd Prefoamed particle of propylene series resin
JPS63183832A (en) * 1986-09-16 1988-07-29 Kanegafuchi Chem Ind Co Ltd Manufacture of polypropylene resin in-mold foam molding
JPH08300387A (en) * 1986-09-16 1996-11-19 Kanegafuchi Chem Ind Co Ltd Production of in-mold foamed molded object of polypropylene resin
JPH01136726A (en) * 1987-11-25 1989-05-30 Kanegafuchi Chem Ind Co Ltd Expansion molding process of polypropylene resin in mold
EP0700954A1 (en) 1994-08-06 1996-03-13 Hanwha Chemical Corporation Pre-expanded articles of a polyolefin resin
US5599850A (en) * 1994-08-06 1997-02-04 Hanwha Chemical Corporation Pre-expanded articles of a polyolefin resin having microcell and process for preparing thereof
WO1996031558A1 (en) * 1995-04-05 1996-10-10 Jsp Corporation Foamed particles of propylene homopolymer and moldings of said particles
JP2008297562A (en) * 2008-09-04 2008-12-11 Jsp Corp Foamed molding of polypropylene resin and automobile trim material

Also Published As

Publication number Publication date
JPS6344779B2 (en) 1988-09-06

Similar Documents

Publication Publication Date Title
JPH0417978B2 (en)
JPS62128709A (en) Polypropylene resin pre-expanded bead
JPH0419258B2 (en)
JPS5943491B2 (en) Polypropylene resin foam molding
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JP4083807B2 (en) Automotive bumper core
JPS6049040A (en) Polypropylene resin expanded beads
JPH0559139B2 (en)
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP3582335B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPH0386737A (en) Production of foamed polyolefin resin particle
JPS6244778B2 (en)
JPS614738A (en) Preparation of foamed polypropylene resin particle
JPS59111823A (en) Manufacture of preliminarily expanded polymer particle
JPS6324617B2 (en)
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JPH032890B2 (en)
JPH0464335B2 (en)
JPS6324618B2 (en)
JPH01190736A (en) Production of expanded polyolefin resin particle
JPS6344778B2 (en)
JPS6332816B2 (en)
JPS60110430A (en) Foamed molding and manufacture thereof