JP2010173146A - Method for manufacturing polypropylene-based resin in-mold foam molded body - Google Patents

Method for manufacturing polypropylene-based resin in-mold foam molded body Download PDF

Info

Publication number
JP2010173146A
JP2010173146A JP2009016890A JP2009016890A JP2010173146A JP 2010173146 A JP2010173146 A JP 2010173146A JP 2009016890 A JP2009016890 A JP 2009016890A JP 2009016890 A JP2009016890 A JP 2009016890A JP 2010173146 A JP2010173146 A JP 2010173146A
Authority
JP
Japan
Prior art keywords
mold
polypropylene resin
particles
foam
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009016890A
Other languages
Japanese (ja)
Inventor
Yutaka Matsumiya
豊 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009016890A priority Critical patent/JP2010173146A/en
Publication of JP2010173146A publication Critical patent/JP2010173146A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a polypropylene-based resin in-mold foam molded body having no failure in fusion bonding near a loading machine attaching portion in a molding mold by using foam particles produced by using carbon hydride such as butane as a foaming agent. <P>SOLUTION: In the method for manufacturing the polypropylene-based resin in-mold foam molded body, after polypropylene-based resin particles are dispersed to a disperse medium in a pressure-resistant container, and a foam agent containing carbon hydride is added, the polypropylene-based resin particles are heated to the temperature not lower than the temperature wherein they are softened, and after the foaming agent containing the carbon hydride is impregnated in the polypropylene-based resin particles, in-mold foam molding is performed by using the polypropylene-based resin foam particles obtained by opening one end of the pressure-resistant container and discharging the polypropylene-based resin particles in the atmosphere lower pressure than the inside of the pressure-resistant container. Multi-stage foam particles further foaming the polypropylene-based resin foam particles are in-mold foam molded. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポリプロピレン系樹脂型内発泡成形体の製造方法に関する。   The present invention relates to a method for producing a polypropylene resin in-mold foam molded article.

ポリプロピレン系樹脂発泡体は緩衝性、断熱性等の物性に優れることから、包装材、緩衝材、断熱材、建築部材など様々な用途に使用されている。特に、ポリプロピレン系樹脂発泡粒子を金型に充填し、水蒸気などで加熱して発泡粒子同士を融着せしめて所定形状の発泡体を得るビーズ法型内発泡成形法は、複雑な形状の製品を比較的容易に得ることができるため、多くの用途に用いられている。   Polypropylene-based resin foams are excellent in physical properties such as buffering properties and heat insulating properties, and are therefore used in various applications such as packaging materials, buffer materials, heat insulating materials, and building materials. In particular, the bead method in-mold foam molding method, in which a polypropylene resin foam particle is filled in a mold and heated with water vapor or the like to fuse the foam particles together to obtain a foam with a predetermined shape, is a product with a complicated shape. Since it can be obtained relatively easily, it is used in many applications.

ビーズ法型内発泡成形法に使用するポリプロピレン系樹脂発泡粒子は、耐圧容器内にポリプロピレン系樹脂粒子を水系分散媒に分散剤を用いて分散させ、炭化水素や無機ガス等の発泡剤を添加し、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱し発泡剤をポリプロピレン系樹脂粒子に含浸させた後、耐圧容器の内圧よりも低い圧力域に放出することにより製造することができる。ブタン等の炭化水素を発泡剤として使用した場合、二酸化炭素等の無機ガスを使用する場合に比較し、発泡剤を含浸させるための加熱温度を低くでき、また、生成する発泡粒子の発泡倍率を大きくできるという利点がある。   Polypropylene resin foam particles used in the bead method in-mold foam molding method are obtained by dispersing polypropylene resin particles in a pressure-resistant container using a dispersant in an aqueous dispersion medium and adding a foaming agent such as hydrocarbon or inorganic gas. It can be manufactured by heating to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, impregnating the polypropylene resin particles with a foaming agent, and then releasing it into a pressure range lower than the internal pressure of the pressure vessel. When hydrocarbons such as butane are used as the foaming agent, the heating temperature for impregnating the foaming agent can be lowered compared to the case where an inorganic gas such as carbon dioxide is used, and the expansion ratio of the generated foamed particles can be reduced. There is an advantage that it can be enlarged.

ビーズ法型内発泡成形法においては、金型に取り付けられている充填機を使用して発泡粒子を金型の型窩内に充填する。図1に示すように、通常用いられる充填機16では、空気の流れに発泡粒子を同伴させて型窩7内に発泡粒子を送り込む機構が採用される。金型は発泡粒子を通さないが空気や蒸気を通すことができる通気口8を有する。発泡粒子が金型内に送り込まれると空気は通気口8を通って型窩7外に排出され、発泡粒子は型窩7内に残留する。発泡粒子が型窩7内に十分充填されると空気が型窩7内に侵入せず発泡粒子貯槽1に逆流する。このとき充填機16内に存在する発泡粒子は押し戻され充填機16は空になる。この工程は自然ブローバックと呼ばれている。充填機16内の発泡粒子が除去された後、ピストンプラグ19により、金型の発泡粒子充填口18が閉塞され、蒸気加熱により型内発泡成形がなされる。   In the bead method in-mold foam molding method, foam particles are filled into the mold cavity of the mold by using a filling machine attached to the mold. As shown in FIG. 1, the normally used filling machine 16 employs a mechanism for sending foam particles into the mold cavity 7 with the foam particles accompanying the air flow. The mold has a vent 8 that does not allow foam particles to pass but allows air or steam to pass. When the expanded particles are fed into the mold, the air is discharged out of the mold cavity 7 through the vent hole 8, and the expanded particles remain in the mold cavity 7. When the foam particles are sufficiently filled in the mold cavity 7, air does not enter the mold cavity 7 and flows back into the foam particle reservoir 1. At this time, the expanded particles present in the filling machine 16 are pushed back, and the filling machine 16 becomes empty. This process is called natural blow back. After the expanded particles in the filling machine 16 are removed, the expanded particle filling port 18 of the mold is closed by the piston plug 19, and in-mold expansion molding is performed by steam heating.

しかしながら、金型の発泡粒子充填口18付近において型内発泡成形体の融着不良が生じやすいことが知られている。特に後記する圧縮充填法と呼ばれる発泡粒子の型窩内への充填法を用いた型内発泡成形法においてこのような融着不良が顕著である。この様な欠陥の存在は、型内発泡成形体の商品価値を著しく損なうもので、好ましくない。特許文献1によれば金型の発泡粒子充填口18付近において型内発泡成形体の融着不良が生じやすい理由について次のように説明されている。発泡粒子の金型への充填工程における自然ブローバック(吹き戻し)によって充填機16内の発泡粒子が完全に除去されず一部が残存する。残存した発泡粒子はピストンプラグ19により型窩7内に押し込まれるが、これにより型窩7の発泡粒子充填口18付近に発泡粒子が過剰に充填される。この現象は過充填と呼ばれており、過充填が生じると当該部位に加熱用水蒸気が通過しにくくなり、当該部位に部分的に融着不良を有する型内発泡成形体となる。過充填が生じない場合であっても金型の発泡粒子充填口18付近は空気や水蒸気の通気口が少ない場合があり、加熱用水蒸気が流通しにくくなって融着不良を生じる場合もある。   However, it is known that in-mold foam moldings are likely to have poor fusion in the vicinity of the foamed particle filling port 18 of the mold. In particular, such a poor fusion is remarkable in an in-mold foam molding method using a filling method of foam particles into a mold cavity called a compression filling method described later. The presence of such defects is not preferable because it significantly impairs the commercial value of the in-mold foam molded article. According to Patent Document 1, the reason why the in-mold foam molding tends to occur near the foamed particle filling port 18 of the mold is explained as follows. The foam particles in the filling machine 16 are not completely removed by the natural blow back (blow back) in the filling process of the foam particles into the mold, and a part of the foam particles remains. The remaining expanded particles are pushed into the mold cavity 7 by the piston plug 19, whereby the expanded particles are excessively filled in the vicinity of the expanded particle filling port 18 of the mold cavity 7. This phenomenon is referred to as overfilling. When overfilling occurs, it becomes difficult for the steam for heating to pass through the part, resulting in an in-mold foam molded article partially having poor fusion at the part. Even when overfilling does not occur, there are cases where there are few air or water vapor vents in the vicinity of the foamed particle filling port 18 of the mold, and it may be difficult for the steam for heating to flow, resulting in poor fusion.

特許文献1には、ブローバック時に金型内圧力を充填機内の圧力より高くなるように調整することにより、発泡粒子充填口付近の融着不良を防止できることが開示されている。また、特許文献2には発泡粒子充填口を閉塞するのにピストンプラグでなく充填口に設けたシャッターを用いて、充填機内に発泡粒子が残存しても、残存発泡粒子が金型内に押し込まれないようにして過充填を防止する方法が開示されている。特許文献1や特許文献2に開示された方法は成形装置において発泡粒子充填口付近の融着不良を防止する方法である。しかし、発泡粒子の特性の観点から過充填を防止する方法は知られていない。   Patent Document 1 discloses that by adjusting the pressure in the mold so as to be higher than the pressure in the filling machine at the time of blowback, it is possible to prevent poor fusion near the foamed particle filling port. Further, Patent Document 2 uses a shutter provided at the filling port instead of the piston plug to close the foaming particle filling port, and even if the foaming particles remain in the filling machine, the remaining foaming particles are pushed into the mold. A method for preventing overfilling is disclosed. The methods disclosed in Patent Literature 1 and Patent Literature 2 are methods for preventing poor fusion in the vicinity of the foamed particle filling port in the molding apparatus. However, there is no known method for preventing overfilling from the viewpoint of the characteristics of the expanded particles.

特開2000−15707号公報JP 2000-15707 A 特開平11−188732号公報Japanese Patent Laid-Open No. 11-188732

本発明者は、発泡粒子充填口付近の融着不良を防止するために鋭意検討した結果、特に、発泡剤としてブタン等の炭化水素を用いて得られたポリプロピレン系樹脂発泡粒子を使用して型内発泡成形したポリプロピレン系樹脂型内発泡成形体において発泡粒子充填口付近の融着不良が多く発生することを見出した。即ち、本発明の課題は、炭化水素を発泡剤として使用して得られた発泡粒子を使用するビーズ法型内発泡成形法において、金型の充填機取り付け部位付近の融着不良が発生しないポリプロピレン系樹脂型内発泡成形体の製造方法を提供することにある。   As a result of intensive studies to prevent poor fusion near the foamed particle filling port, the present inventor, in particular, using a polypropylene resin foamed particle obtained by using a hydrocarbon such as butane as a foaming agent. It has been found that many poor fusion occurs in the vicinity of the foamed particle filling port in the internal foam-molded polypropylene resin mold. That is, an object of the present invention is a polypropylene which does not cause poor fusion in the vicinity of a mold filling machine mounting site in a bead method in-mold foam molding method using foamed particles obtained using a hydrocarbon as a foaming agent. An object of the present invention is to provide a method for producing an in-mold resin mold.

本発明者は、炭化水素を発泡剤として使用して得られた発泡粒子を使用するビーズ法型内発泡成形法において、金型の充填機取り付け部位付近の融着不良を発生させない方法について検討した結果、発泡剤として炭化水素を含む発泡剤を使用して得られた発泡粒子をさらに発泡させた多段発泡粒子を用いることで、充填機付近の融着不良の発生を防止できることを見出し、本発明の完成に至った。   The present inventor examined a method that does not cause poor fusion in the vicinity of a mold filling machine attachment site in a bead method in-mold foam molding method using foamed particles obtained using a hydrocarbon as a foaming agent. As a result, it was found that by using multistage foamed particles obtained by further foaming foamed particles obtained using a foaming agent containing hydrocarbon as a foaming agent, it is possible to prevent occurrence of poor fusion near the filling machine. It was completed.

すなわち本発明は、ポリプロピレン系樹脂粒子を耐圧容器内で分散媒に分散させ、炭化水素を含む発泡剤を添加した後、ポリプロピレン系樹脂粒子が軟化する温度以上の温度に加熱し、前記発泡剤を含浸させたのち、耐圧容器の一端を開放してポリプロピレン系樹脂粒子を耐圧容器内よりも低圧の雰囲気中に放出することにより得られたポリプロピレン系樹脂発泡粒子を用いて型内発泡成形するポリプロピレン系樹脂型内発泡成形体の製造方法において、前記ポリプロピレン系樹脂発泡粒子をさらに発泡させたポリプロピレン系樹脂多段発泡粒子を型内発泡成形することを特徴とするポリプロピレン系樹脂型内発泡成形体の製造方法に関する。   That is, the present invention disperses polypropylene resin particles in a dispersion medium in a pressure-resistant container, adds a foaming agent containing hydrocarbons, and then heats the foaming agent to a temperature equal to or higher than the temperature at which the polypropylene resin particles soften. After impregnation, a polypropylene system in which one end of the pressure vessel is opened and the polypropylene resin particles obtained by releasing the polypropylene resin particles into an atmosphere at a lower pressure than in the pressure vessel is subjected to in-mold foam molding. In the method for producing an in-mold foam molded article, a method for producing an in-mold foam molded article in a polypropylene resin, wherein the polypropylene resin multi-stage foamed particles obtained by further foaming the polypropylene resin foam particles are subjected to in-mold foam molding. About.

好ましい態様としては、
(1)ポリプロピレン系樹脂多段発泡粒子を、圧縮充填法によって金型内に充填し型内発泡成形を行うこと、
(2)内圧を付与したポリプロピレン系樹脂多段発泡粒子を型内発泡成形すること、
(3)ポリプロピレン系樹脂が、エチレンに起因する単量体単位を含んでなるポリプロピレン系ランダム共重合体であること、
を特徴とする前記記載のポリプロピレン樹脂型内発泡成形体の製造方法に関する。
As a preferred embodiment,
(1) Filling a mold with polypropylene resin multistage expanded particles in a mold by compression filling, and performing in-mold foam molding;
(2) In-mold foam molding of the polypropylene resin multistage expanded particles to which an internal pressure is applied;
(3) The polypropylene resin is a polypropylene random copolymer comprising monomer units derived from ethylene,
The above-mentioned method for producing an in-mold foam molded product of a polypropylene resin.

本発明のポリプロピレン系樹脂型内発泡成形体の製造方法によれば、一般的に使用されている成形装置を用いても、金型の充填機取り付け部位付近の融着不良が発生しにくいポリプロピレン系樹脂型内発泡成形体を得ることができる。   According to the method for producing a foam-molded body in a polypropylene resin mold according to the present invention, a polypropylene-based resin is less prone to fusing defects near a portion where a mold filling machine is attached even with a generally used molding apparatus. An in-mold foam molded article can be obtained.

本発明の製造方法に用いる装置の一例を示す図である。It is a figure which shows an example of the apparatus used for the manufacturing method of this invention.

本発明に用いるポリプロピレン系樹脂としては、単量体成分として、プロピレンを含んでいれば特に限定はなく、たとえば、プロピレンホモポリマー、α−オレフィン−プロピレンランダム共重合体、α−オレフィン−プロピレンブロック共重合体などが挙げられる。これらは、単独で用いてもよく、2種以上併用してもよい。特に、α−オレフィンがエチレンである、エチレンを共重合単量体成分として含有するポリプロピレン系樹脂が好ましい。好ましいエチレン含量は1重量%以上10重量%以下、さらには1重量%以上7重量%以下、さらには2重量%以上7重量%以下、さらには3重量%以上7重量%以下、さらには3.5重量%以上6重量%以下、特には3.5重量%以上5重量%以下である。なお、ポリプロピレン系樹脂中のエチレン成分の含有量は13C−NMRを用いて測定することができる。 The polypropylene resin used in the present invention is not particularly limited as long as it contains propylene as a monomer component. For example, a propylene homopolymer, an α-olefin-propylene random copolymer, and an α-olefin-propylene block copolymer are used. A polymer etc. are mentioned. These may be used alone or in combination of two or more. Particularly preferred is a polypropylene resin containing ethylene as a comonomer component, wherein the α-olefin is ethylene. The ethylene content is preferably 1 to 10% by weight, more preferably 1 to 7% by weight, further 2 to 7% by weight, further 3 to 7% by weight, and 5% by weight or more and 6% by weight or less, particularly 3.5% by weight or more and 5% by weight or less. In addition, content of the ethylene component in a polypropylene resin can be measured using 13 C-NMR.

本発明に用いるポリプロピレン系樹脂はエチレン以外の単量体を共重合成分として含んでいてもよい。また、エチレンを共重合単量体成分として含有するポリプロピレン系樹脂がエチレン以外の単量体を共重合単量体成分として含んでいてもよい。エチレン以外の共重合単量体成分としては、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数4〜12のα−オレフィン;シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン;5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン;塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられ、これらを一種または二種以上使用することが出来る。   The polypropylene resin used in the present invention may contain a monomer other than ethylene as a copolymerization component. Moreover, the polypropylene resin containing ethylene as a comonomer component may contain a monomer other than ethylene as a comonomer component. As comonomer components other than ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1- Α-olefins having 4 to 12 carbon atoms such as butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene; cyclopentene, norbornene, tetracyclo [6,2,11,8,13,6 ] Cyclic olefins such as 4-dodecene; 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, etc. Diene: vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, acrylic Butyl, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, vinyl monomers such as divinylbenzene and the like, may be used these one or two or more.

本発明に用いるポリプロピレン系樹脂は、ランダム共重合体、ブロック共重合体のどちらでも用いることができる。特に汎用性の高い、エチレン−プロピレンランダムコポリマーあるいはエチレン−プロピレン−ブテンランダムターポリマーを用いることが好ましい。エチレン含量が1重量%以上7重量%以下、さらには、3重量%以上7重量%以下、さらには3.5重量%以上6重量%以下、特には3.5重量%以上5重量%以下であるエチレン−プロピレンランダムコポリマー、あるいは、エチレン−プロピレン−ブテンランダムターポリマーが好ましい。   As the polypropylene resin used in the present invention, either a random copolymer or a block copolymer can be used. In particular, it is preferable to use an ethylene-propylene random copolymer or an ethylene-propylene-butene random terpolymer having high versatility. The ethylene content is 1% to 7% by weight, 3% to 7% by weight, more preferably 3.5% to 6% by weight, particularly 3.5% to 5% by weight. Some ethylene-propylene random copolymers or ethylene-propylene-butene random terpolymers are preferred.

また、ポリプロピレン系樹脂以外に、他の熱可塑性樹脂、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリスチレン、ポリブテン、アイオノマー等をポリプロピレン系樹脂の特性が失われない範囲で混合使用しても良い。   In addition to polypropylene resins, other thermoplastic resins such as low density polyethylene, linear low density polyethylene, polystyrene, polybutene, ionomer, etc. may be mixed and used as long as the properties of the polypropylene resin are not lost. good.

ポリプロピレン系樹脂の重量平均分子量(以下、Mwと表記する場合がある)と数平均分子量(以下、Mnと表記する場合がある)の比(Mw/Mn)は2.0以上6.0以下が好ましい。Mw/Mnは3以上がより好ましく、3.5以上がさらに特に好ましい。Mw/Mnが6.0を越える場合、ポリプロピレン系樹脂型内発泡成形体の表面性や収縮性が悪化する傾向にある。   The ratio (Mw / Mn) of the weight average molecular weight (hereinafter sometimes referred to as Mw) and the number average molecular weight (hereinafter sometimes referred to as Mn) of the polypropylene-based resin is 2.0 or more and 6.0 or less. preferable. Mw / Mn is more preferably 3 or more, and particularly preferably 3.5 or more. When Mw / Mn exceeds 6.0, the surface property and shrinkage of the polypropylene resin-in-mold foam-molded product tend to deteriorate.

Mn及びMwは以下の条件において測定される。
測定機器 :Waters社製Alliance GPC 2000型 ゲルパーミエーションクロマトグラフィー(GPC)
カラム :TSKgel GMH6−HT 2本、
TSKgel GMH6−HTL 2本(それぞれ、内径7.5mm×長さ300mm、東ソー社製)
移動相 :o−ジクロロベンゼン(0.025%BHT含有)
カラム温度:140℃
流速 :1.0mL/min
試料濃度 :0.15%(W/V)−o−ジクロロベンゼン
注入量 :500μL
分子量較正:ポリスチレン換算(標準ポリスチレンによる較正)
Mn and Mw are measured under the following conditions.
Measuring instrument: Alliance GPC 2000 type gel permeation chromatography (GPC) manufactured by Waters
Column: 2 TSKgel GMH6-HT,
Two TSKgel GMH6-HTL (each inner diameter 7.5mm x length 300mm, manufactured by Tosoh Corporation)
Mobile phase: o-dichlorobenzene (containing 0.025% BHT)
Column temperature: 140 ° C
Flow rate: 1.0 mL / min
Sample concentration: 0.15% (W / V) -o-dichlorobenzene injection amount: 500 μL
Molecular weight calibration: Polystyrene conversion (calibration with standard polystyrene)

本発明で使用するポリプロピレン系樹脂は、チーグラー触媒、メタロセン触媒、ポストメタロセン触媒等の触媒を用いて得ることができる。チーグラー触媒を使用するとMw/Mnが大きい重合体が得られる傾向にある。また、これらの触媒を使用して得られた重合体を有機過酸化物で酸化分解すると分子量やメルトインデックス等の特性を調整することができる。   The polypropylene resin used in the present invention can be obtained using a catalyst such as a Ziegler catalyst, a metallocene catalyst, or a post metallocene catalyst. When a Ziegler catalyst is used, a polymer having a large Mw / Mn tends to be obtained. Moreover, when the polymer obtained using these catalysts is oxidized and decomposed with an organic peroxide, characteristics such as molecular weight and melt index can be adjusted.

使用しうる有機過酸化物としては、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシラウレート、2,5−ジメチル2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、t−ブチルパーオキシイソプロピルモノカーボネート等が挙げられる。   Examples of the organic peroxide that can be used include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butylperoxylaurate, 2,5-dimethyl2,5-di ( Benzoylperoxy) hexane, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, t-butylperoxyisopropyl monocarbonate and the like.

有機過酸化物の使用量は、ポリプロピレン系樹脂100重量部に対して、0.001重量部以上0.1重量部以下であることが好ましい。ポリプロピレン樹脂を酸化分解するには、例えば、有機過酸化物を添加したポリプロピレン系樹脂を押出機内で加熱溶融により行うことができる。   The amount of the organic peroxide used is preferably 0.001 part by weight or more and 0.1 part by weight or less with respect to 100 parts by weight of the polypropylene resin. In order to oxidatively decompose the polypropylene resin, for example, a polypropylene resin added with an organic peroxide can be heated and melted in an extruder.

本発明で使用するポリプロピレン系樹脂は無架橋の状態が好ましいが、有機過酸化物や放射線等で処理することにより架橋を行っても良い。また、2以上のポリプロピレン系樹脂を混合しても良い。   The polypropylene resin used in the present invention is preferably in an uncrosslinked state, but may be crosslinked by treatment with an organic peroxide or radiation. Two or more polypropylene resins may be mixed.

本発明で用いるポリプロピレン系樹脂の融点は、130℃以上165℃以下であることが好ましく、更には135℃以上155℃以下のものが好ましい。融点が130℃未満の場合、耐熱性、機械的強度が十分でない傾向がある。また、融点が165℃を超える場合、型内発泡成形時の融着を確保することが難しくなる傾向がある。ここで、前記融点とは、示差走査熱量計によってポリプロピレン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   The melting point of the polypropylene resin used in the present invention is preferably 130 ° C. or higher and 165 ° C. or lower, and more preferably 135 ° C. or higher and 155 ° C. or lower. When the melting point is less than 130 ° C., heat resistance and mechanical strength tend to be insufficient. Moreover, when melting | fusing point exceeds 165 degreeC, there exists a tendency for it to become difficult to ensure the melt | fusion at the time of in-mold foam molding. Here, the melting point is a temperature of 10 to 10 ° C./min from 40 ° C. to 220 ° C., and then cooled to 40 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter. The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is increased again to 220 ° C. at a rate of 10 ° C./min.

本発明で用いることが出来るポリプロピレン系樹脂粒子のメルトインデックス(以下、MI値)は、0.5g/10分以上30g/10分以下であることが好ましく、更には2g/10分以上20g/10分以下のものが好ましい。MI値が0.5g/10分未満の場合、高発泡倍率のポリプロピレン系樹脂発泡粒子が得られにくい場合があり、30g/10分を超える場合、ポリプロピレン系樹脂発泡粒子の気泡が破泡し易く、ポリプロピレン系樹脂発泡粒子の連泡率が高くなる傾向にある。なお、MI値はJIS K7210に準拠し、温度230℃、荷重2.16kgで測定する。   The melt index (hereinafter referred to as MI value) of the polypropylene resin particles that can be used in the present invention is preferably 0.5 g / 10 min to 30 g / 10 min, and more preferably 2 g / 10 min to 20 g / 10. Minutes or less are preferred. If the MI value is less than 0.5 g / 10 minutes, it may be difficult to obtain polypropylene-based resin expanded particles with a high expansion ratio. If it exceeds 30 g / 10 minutes, the bubbles of the polypropylene-based resin expanded particles are likely to break. The open cell ratio of the polypropylene resin expanded particles tends to increase. The MI value is measured according to JIS K7210 at a temperature of 230 ° C. and a load of 2.16 kg.

ポリプロピレン系樹脂は通常、発泡粒子を製造するために、押出機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、円柱状、楕円状、球状、立方体状、直方体状等の樹脂粒子形状に加工する。必要に応じて添加される他の樹脂や添加剤もこの工程で添加することができる。ポリプロピレン系樹脂粒子の大きさは、一粒の重量が0.1mg以上30mg以下であることが好ましく、0.3mg以上10mg以下がより好ましい。ポリプロピレン系樹脂粒子の一粒の重量は、ポリプロピレン系樹脂粒子をランダム選んだ100粒から得られる平均樹脂粒子重量であり、以下、mg/粒で表示する。   Polypropylene resins are usually melted using extruders, kneaders, Banbury mixers, rolls, etc. to produce expanded particles, and processed into resin particle shapes such as cylindrical, elliptical, spherical, cubic, and rectangular parallelepiped shapes. To do. Other resins and additives that are added as necessary can also be added in this step. As for the size of the polypropylene resin particles, the weight of one particle is preferably 0.1 mg or more and 30 mg or less, and more preferably 0.3 mg or more and 10 mg or less. The weight of one polypropylene resin particle is the average resin particle weight obtained from 100 randomly selected polypropylene resin particles, and is hereinafter expressed in mg / grain.

ポリプロピレン系樹脂粒子の製造の際、必要により発泡核剤、親水性物質、着色剤、帯電防止剤、酸化防止剤、リン系加工安定剤、ラクトン系加工安定剤、金属不活性剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系光安定剤、ヒンダードアミン系光安定剤、難燃剤、難燃助剤、酸中和剤、結晶核剤、アミド系添加剤等の添加剤を、ポリプロピレン系樹脂の特性を損なわない範囲内で添加することができる。樹脂に発泡核剤、親水性物質或いは他の添加剤を加える場合、上記ポリプロピレン系樹脂粒子の製造前にブレンダー等を用いポリプロピレン系樹脂と混合することが好ましい。また、溶融したポリプロピレン系樹脂中に添加剤を添加してもよい。   When producing polypropylene resin particles, if necessary, foam nucleating agent, hydrophilic substance, colorant, antistatic agent, antioxidant, phosphorus processing stabilizer, lactone processing stabilizer, metal deactivator, benzotriazole Additives such as ultraviolet absorbers, benzoate light stabilizers, hindered amine light stabilizers, flame retardants, flame retardant aids, acid neutralizers, crystal nucleating agents, amide additives, and other properties of polypropylene resins are impaired. It can be added within the range. When adding a foam nucleating agent, a hydrophilic substance, or other additives to the resin, it is preferable to mix with the polypropylene resin using a blender or the like before the production of the polypropylene resin particles. Moreover, you may add an additive in the molten polypropylene resin.

発泡核剤(セル造核剤)は、発泡の時に気泡核の形成を促す物質である。発泡核剤の例としては、タルク、炭酸カルシウム、シリカ、カオリン、硫酸バリウム、水酸化カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン等の無機物質が挙げられる。これらの中でも、タルク、炭酸カルシウムがポリプロピレン系樹脂中への分散性が良好で均一な気泡を有する発泡粒子を得易くなるため好ましい。発泡核剤は、単独で用いてもよく、2種以上を併用しても良い。   A foam nucleating agent (cell nucleating agent) is a substance that promotes the formation of cell nuclei during foaming. Examples of the foam nucleating agent include inorganic substances such as talc, calcium carbonate, silica, kaolin, barium sulfate, calcium hydroxide, aluminum hydroxide, aluminum oxide, and titanium oxide. Among these, talc and calcium carbonate are preferable because they are easy to obtain foamed particles having good dispersibility in a polypropylene resin and having uniform cells. A foam nucleating agent may be used independently and may use 2 or more types together.

発泡核剤の添加量は使用する発泡核剤によって異なり、一概には決めることが出来ないが、ポリプロピレン系樹脂100重量部に対して、0.005重量部以上2重量部以下であることが好ましく、0.01重量部以上1重量部以下であることがより好ましい。発泡核剤の添加量が0.005重量部より少ない場合は、ポリプロピレン系樹脂発泡粒子の発泡倍率を大きくすることができなかったり、気泡の均一性が低下してしまう場合がある。発泡核剤の添加量が2重量部より多い場合はポリプロピレン系樹脂発泡粒子の平均気泡径が小さくなり過ぎ、型内発泡成形性が不良となる傾向にある。   The addition amount of the foam nucleating agent varies depending on the foam nucleating agent to be used and cannot be generally determined, but is preferably 0.005 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the polypropylene resin. More preferably, the content is 0.01 parts by weight or more and 1 part by weight or less. When the addition amount of the foam nucleating agent is less than 0.005 parts by weight, the expansion ratio of the polypropylene resin foamed particles may not be increased or the uniformity of the bubbles may be deteriorated. When the addition amount of the foam nucleating agent is more than 2 parts by weight, the average cell diameter of the polypropylene resin foamed particles becomes too small, and the in-mold foam moldability tends to be poor.

また、たとえば発泡核剤としてタルクを使用する場合、添加量はポリプロピレン系樹脂100重量部に対して、0.005重量部以上1重量部以下であることが好ましく、さらに好ましくは0.01重量部以上0.5重量部以下、より好ましくは0.02重量部以上0.2重量部以下である。   For example, when talc is used as the foam nucleating agent, the addition amount is preferably 0.005 parts by weight or more and 1 part by weight or less, more preferably 0.01 parts by weight, with respect to 100 parts by weight of the polypropylene resin. The amount is 0.5 part by weight or less and more preferably 0.02 part by weight or more and 0.2 part by weight or less.

前記ポリプロピレン系樹脂粒子から除圧発泡法と呼ばれる方法を用いてポリプロピレン系樹脂発泡粒子を得ることができる。具体的には、前記ポリプロピレン系樹脂粒子を耐圧容器内で分散媒に分散させ、ブタン等の炭化水素を含む発泡剤を添加した後、ポリプロピレン系樹脂粒子が軟化する温度以上の温度に加熱し、前記発泡剤を含浸させた後、耐圧容器の一端を開放してポリプロピレン系樹脂粒子を耐圧容器内よりも低圧の雰囲気中に放出することで、ポリプロピレン系樹脂発泡粒子とすることが出来る。除圧発泡法で得られた発泡粒子を一段発泡粒子と呼ぶ場合がある。ポリプロピレン系樹脂粒子の軟化温度はJIS K 2207に従って測定できる。通常、軟化温度は融点よりも低い。   Polypropylene resin foam particles can be obtained from the polypropylene resin particles using a method called pressure-reducing foaming. Specifically, the polypropylene resin particles are dispersed in a dispersion medium in a pressure-resistant container, and after adding a foaming agent containing a hydrocarbon such as butane, the polypropylene resin particles are heated to a temperature equal to or higher than the temperature at which the polypropylene resin particles are softened. After impregnating the foaming agent, one end of the pressure vessel is opened, and the polypropylene resin particles are released into an atmosphere at a lower pressure than in the pressure vessel, whereby polypropylene resin foam particles can be obtained. The expanded particles obtained by the pressure-reducing foaming method are sometimes referred to as single-stage expanded particles. The softening temperature of the polypropylene resin particles can be measured according to JIS K 2207. Usually, the softening temperature is lower than the melting point.

本発明の発泡剤は、炭化水素を含む。ここで言う炭化水素としては、例えば、プロパン、n−ブタン、iso−ブタン、n−ペンタン、iso−ペンタン等の炭素数が3〜5の飽和炭化水素等が挙げられる。   The blowing agent of the present invention contains a hydrocarbon. Examples of the hydrocarbon mentioned here include saturated hydrocarbons having 3 to 5 carbon atoms such as propane, n-butane, iso-butane, n-pentane, and iso-pentane.

発泡剤に炭化水素を含んでいれば、他の発泡剤を併用してもよい。他の発泡剤としては、ジメチルエーテル等のエーテル類、メタノール、エタノール等のアルコール類、空気、窒素等の無機ガス、水等が挙げられる。   If the foaming agent contains hydrocarbons, other foaming agents may be used in combination. Examples of other foaming agents include ethers such as dimethyl ether, alcohols such as methanol and ethanol, inorganic gases such as air and nitrogen, water, and the like.

本発明においては、除圧発泡法によって得られたポリプロピレン系樹脂発泡粒子(一段発泡粒子)をさらに発泡させ、ポリプロピレン系樹脂多段発泡粒子とする。発泡方法としては、一段発泡粒子を耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、加熱することでさらに発泡させる方法が好ましい。二段発泡粒子をさらに発泡してもよい。一段発泡粒子をさらに発泡させることを多段発泡と称す(一段発泡粒子を更に発泡させる工程を一回だけ行うことを二段発泡と称す場合がある)。多段発泡によって得られた発泡粒子を多段発泡粒子と呼ぶ場合がある。なお、二段発泡によって得られた発泡粒子を二段発泡粒子と称す場合がある。   In the present invention, the polypropylene resin expanded particles (single-stage expanded particles) obtained by the decompression foaming method are further expanded to obtain polypropylene-based resin multistage expanded particles. The foaming method is preferably a method in which the single-stage foamed particles are pressurized with an inorganic gas such as air in a pressure-resistant container, and the foam is further foamed by heating after applying the internal pressure. The two-stage expanded particles may be further expanded. Further expansion of the single-stage expanded particles is referred to as multistage expansion (the process of further expanding the single-stage expanded particles may be referred to as two-stage expansion). Expanded particles obtained by multistage foaming may be referred to as multistage foamed particles. The expanded particles obtained by the two-stage expansion may be referred to as two-stage expanded particles.

本発明において用いるポリプロピレン系樹脂多段発泡粒子の発泡倍率は20倍以上であることが好ましく、より好ましくは30倍以上、さらに好ましくは32倍以上である。ポリプロピレン系樹脂多段発泡粒子の発泡倍率は60倍以下が好ましい。発泡倍率が20倍未満の場合は、軽量化のメリットが得られず、また得られるポリプロピレン系樹脂型内発泡成形体の柔軟性、緩衝特性などが不充分となる傾向があり、60倍を越える場合は得られるポリプロピレン系樹脂型内発泡成形体の寸法精度、機械的強度、耐熱性などが不充分となる傾向がある。ポリプロピレン系樹脂多段発泡粒子の発泡倍率の測定法は後記する。   The expansion ratio of the polypropylene resin multistage expanded particles used in the present invention is preferably 20 times or more, more preferably 30 times or more, and further preferably 32 times or more. The expansion ratio of the polypropylene resin multistage expanded particles is preferably 60 times or less. When the expansion ratio is less than 20 times, the advantage of weight reduction is not obtained, and the flexibility and buffering characteristics of the obtained polypropylene resin-in-mold foam-molded product tend to be insufficient, exceeding 60 times. In such a case, the dimensional accuracy, mechanical strength, heat resistance and the like of the obtained polypropylene resin in-mold foam molded product tend to be insufficient. A method for measuring the expansion ratio of the polypropylene resin multistage expanded particles will be described later.

本発明で用いるポリプロピレン系樹脂多段発泡粒子の平均気泡径は50μm以上800μm以下であることが好ましく、より好ましくは100μm以上600μm以下、さらに好ましくは200μm以上500μm以下である。平均気泡径が50μm未満の場合、得られるポリプロピレン系樹脂型内発泡成形体の形状が歪む、表面にしわが発生するなどの問題が生じる場合があり、800μmを越える場合、得られるポリプロピレン系樹脂型内発泡成形体の緩衝特性が低下する場合がある。平均気泡径は、ポリプロピレン系樹脂多段発泡粒子の切断面について、表層部を除く部分についてASTM D3576に従い測定する。   The average cell diameter of the polypropylene resin multistage expanded particles used in the present invention is preferably from 50 μm to 800 μm, more preferably from 100 μm to 600 μm, still more preferably from 200 μm to 500 μm. When the average cell diameter is less than 50 μm, there are cases where the shape of the foamed molded product in the polypropylene resin mold obtained is distorted and wrinkles are generated on the surface. The cushioning characteristics of the foamed molded product may be deteriorated. The average cell diameter is measured according to ASTM D3576 with respect to the cut surface of the polypropylene-based resin multistage expanded particles, except for the surface layer portion.

本発明で用いるポリプロピレン系樹脂多段発泡粒子の連泡率は0〜12%であることが好ましく、より好ましくは0〜8%、さらに好ましくは0〜5%である。連泡率が12%を超えると、型内発泡成形時に蒸気加熱による発泡性に劣り、得られたポリプロピレン系樹脂型内発泡成形体が収縮する傾向にある。   The open-cell ratio of the polypropylene resin multistage expanded particles used in the present invention is preferably 0 to 12%, more preferably 0 to 8%, and still more preferably 0 to 5%. When the open cell ratio exceeds 12%, the foaming property by steam heating is inferior during foam molding in the mold, and the obtained polypropylene resin in-mold foam molding tends to shrink.

本発明で用いるポリプロピレン系樹脂多段発泡粒子およびポリプロピレン系樹脂発泡粒子は、示差走査熱量測定によって得られるDSC曲線において、2つ以上の融点を示す結晶構造を有することが好ましい。2つ以上の融点を示す結晶構造を有するポリプロピレン系樹脂発泡粒子の場合、型内発泡成形性が良く、機械的強度や耐熱性の良好なポリプロピレン系樹脂型内発泡成形体が得られる傾向にある。ここで、ポリプロピレン系樹脂発泡粒子の示差走査熱量測定によって得られるDSC曲線とは、ポリプロピレン系樹脂発泡粒子1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。このDSC曲線において、現れる融解ピークの示す温度が融点である。   The polypropylene resin multistage expanded particles and polypropylene resin expanded particles used in the present invention preferably have a crystal structure having two or more melting points in a DSC curve obtained by differential scanning calorimetry. In the case of polypropylene-based resin expanded particles having a crystal structure exhibiting two or more melting points, there is a tendency to obtain a polypropylene-based resin in-mold expanded molded article with good in-mold foam moldability and good mechanical strength and heat resistance. . Here, the DSC curve obtained by differential scanning calorimetry of the polypropylene resin expanded particles refers to 1 to 10 mg of polypropylene resin expanded particles from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min by a differential scanning calorimeter. It is a DSC curve obtained when the temperature is raised. In this DSC curve, the temperature indicated by the melting peak that appears is the melting point.

また、融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから算出した、高温側の融解ピークの比率Qh/(Ql+Qh)×100(以下、DSC比と表記する場合がある)が、10%以上30%以下であることが好ましい。DSC比が10%未満では成形サイクルが極端に延び、さらに得られるポリプロピレン系樹脂型内発泡成形体の寸法収縮率、表面性、および機械的物性が劣る場合がある。また、DSC比が30%を超えると型内発泡成形時のポリプロピレン系樹脂発泡粒子の二次発泡力が不足し、得られるポリプロピレン系樹脂型内発泡成形体の融着性、および表面性が劣る場合がある。高温側の融解ピークに基づく融解ピーク熱量(Qh)は、低温側ピークと高温側ピークとの間のDSC曲線の勾配が0になる点から高温側のピークの終わる側のDSC曲線に接線を引き、該接線と高温側ピークとに囲まれた部分が示す熱量である。低温側の融解ピークに基づく融解ピーク熱量(Ql)は、前記DSC曲線において、低温側ピークと高温側ピークとの間のDSC曲線の勾配が0になる点から低温側のピークの終わる側のDSC曲線に接線を引き、該接線と低温側ピークとに囲まれた部分が示す熱量である。   Also, the melting peak ratio Qh / (Ql + Qh) × 100 (hereinafter referred to as DSC ratio) calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side of the melting peak. Is preferably 10% or more and 30% or less. If the DSC ratio is less than 10%, the molding cycle may be extremely extended, and the resulting polypropylene resin in-mold foam-molded product may have poor dimensional shrinkage, surface properties, and mechanical properties. Further, when the DSC ratio exceeds 30%, the secondary foaming force of the polypropylene resin foamed particles at the time of in-mold foam molding is insufficient, and the resulting polypropylene-based resin in-mold foam-molded product has poor fusion and surface properties. There is a case. The melting peak calorie (Qh) based on the melting peak on the high temperature side draws a tangent to the DSC curve on the side where the high temperature side peak ends from the point where the gradient of the DSC curve between the low temperature side peak and the high temperature side peak becomes zero. , The amount of heat indicated by the portion surrounded by the tangent and the high temperature side peak. The melting peak calorie (Ql) based on the melting peak on the low temperature side is the DSC on the side where the low temperature side peak ends from the point where the gradient of the DSC curve between the low temperature side peak and the high temperature side peak becomes 0 in the DSC curve. This is the amount of heat indicated by drawing a tangent line to the curve and enclosing the tangent line and the low temperature side peak.

前記のごとく2つ以上の融点を示す結晶構造を有するポリプロピレン系樹脂多段発泡粒子およびポリプロピレン系樹脂発泡粒子は、発泡時の耐圧容器内温度を適切な値に設定することにより容易に得られる。基材となるポリプロピレン系樹脂の融点以上、好ましくは融点+3℃以上、融解終了温度未満、好ましくは融解終了温度−2℃以下の温度から選定される。ここで、前記融解終了温度とは、示差走査熱量計によってポリプロピレン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られる融解ピーク曲線が高温側でベースラインの位置に戻ったときの温度である。   As described above, the polypropylene resin multistage expanded particles and the polypropylene resin expanded particles having a crystal structure exhibiting two or more melting points can be easily obtained by setting the pressure-resistant container temperature at the time of foaming to an appropriate value. The temperature is selected from the melting point of the polypropylene resin used as the base material, preferably the melting point + 3 ° C. or more, and less than the melting end temperature, preferably the melting end temperature −2 ° C. or less. Here, the melting end temperature is 1 to 10 mg of a polypropylene resin by a differential scanning calorimeter at a rate of 10 ° C./min from 40 ° C. to 220 ° C., and then at a rate of 10 ° C./min to 40 ° C. This is the temperature at which the melting peak curve obtained when cooling and again raising the temperature to 220 ° C. at a rate of 10 ° C./min returned to the baseline position on the high temperature side.

ポリプロピレン系樹脂発泡粒子は金型に充填し加熱することにより、発泡粒子間の隙間がなくなるように発泡させ、且つ、発泡粒子間を融着させ任意の形状に成形する、いわゆる型内発泡成形をすることができる。金型として、蒸気等加熱媒体は流通することができるが発泡粒子は外部に流出しない金型が通常用いられる。通常、加熱媒体として0.05〜0.5MPa(G)程度の水蒸気が用いられ、3〜30秒程度の加熱時間で型内発泡成形される。   Polypropylene resin foamed particles are filled in a mold and heated to foam so that there are no gaps between the foamed particles, and the foamed particles are fused and molded into an arbitrary shape, so-called in-mold foam molding. can do. As the mold, a mold that can circulate a heating medium such as steam but does not flow out the expanded particles to the outside is usually used. Usually, steam of about 0.05 to 0.5 MPa (G) is used as a heating medium, and in-mold foam molding is performed in a heating time of about 3 to 30 seconds.

ビーズ法型内発泡成形法において用いるポリプロピレン系樹脂多段発泡粒子に対しては次のような従来既知の処理を行うことができる。例えば、イ)そのまま用いる方法、ロ)あらかじめポリオレフィン系樹脂発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する、内圧付与法、ハ)ポリオレフィン系樹脂発泡粒子を圧縮状態で金型内に充填する、圧縮充填法などの方法が挙げられる。これらの中でも、圧縮充填法を用いる場合、金型の充填機取り付け部位付近の融着不良が顕著に改善される。   The following conventionally known treatments can be performed on the polypropylene resin multistage expanded particles used in the in-mold foam molding method of the bead method. For example, a) a method for use as it is, b) an inorganic gas such as air is press-fitted into the polyolefin resin foam particles in advance to impart foaming ability, and c) a mold in which the polyolefin resin foam particles are compressed. Examples of the method include a compression filling method in which the inside is filled. Among these, when the compression filling method is used, the fusion defect near the filling machine attachment portion of the mold is remarkably improved.

すなわち、ポリプロピレン系樹脂発泡粒子を、発泡粒子圧縮タンク中で加圧ガスを用いて、充填前の発泡粒子の嵩体積の20〜80%に圧縮し、圧縮された発泡粒子を閉鎖しうるが密閉しない金型内に充填し、金型内の圧力を開放した後、蒸気により発泡粒子を加熱、融着してポリプロピレン系樹脂型内発泡成形体を製造することが好ましい方法である。また、圧縮充填法と内圧付与法を併用することも可能である。   That is, polypropylene resin foam particles can be compressed to 20 to 80% of the bulk volume of the foam particles before filling using a pressurized gas in a foam particle compression tank, and the compressed foam particles can be closed but sealed. It is a preferred method to produce a polypropylene resin in-mold foam-molded product by filling in a mold that does not, releasing the pressure in the mold, and then heating and fusing the foamed particles with steam. It is also possible to use the compression filling method and the internal pressure applying method in combination.

圧縮充填法によるビーズ法型内発泡成形法の一例を、図面を参照しながら説明する。   An example of the bead method in-mold foam molding method by the compression filling method will be described with reference to the drawings.

第1図に示される装置においては、ポリプロピレン系樹脂多段発泡粒子(以下、単に「発泡粒子」と称する場合がある)は発泡粒子供給口2から発泡粒子貯槽1に供給され、加圧ガスが加圧ガス入口3から供給される。このとき、均圧ライン20によって閉鎖しうるが密閉できない金型内にも加圧ガスが供給される。   In the apparatus shown in FIG. 1, polypropylene resin multistage expanded particles (hereinafter sometimes simply referred to as “expanded particles”) are supplied from the expanded particle supply port 2 to the expanded particle storage tank 1 and pressurized gas is added. Supplied from the pressurized gas inlet 3. At this time, the pressurized gas is also supplied into the mold that can be closed by the pressure equalizing line 20 but cannot be sealed.

上記圧縮に用いる加圧ガスとしては、経済性、生産性、安全性、環境適合性等の点から、二酸化炭素、チッ素、空気又はこれらを主体(通常、50容量%以上が好ましく、70容量%以上がより好ましい)とし、アルゴン、ヘリウム、キセノン等の不活性ガスや水蒸気、酸素、水素、オゾン等を更に少量(50容量%以下が好ましく、30容量%以下がより好ましい)含む無機ガス等を使用することが好ましいが、圧縮設備の設備費の点から空気がより好ましい。   The pressurized gas used for the compression is mainly composed of carbon dioxide, nitrogen, air, or these (usually preferably 50% by volume or more, and 70 volumes from the viewpoint of economy, productivity, safety, environmental compatibility, etc. %, More preferably, an inert gas such as argon, helium, xenon, or an inorganic gas containing a smaller amount of water vapor, oxygen, hydrogen, ozone, etc. (preferably 50% by volume or less, more preferably 30% by volume or less) However, air is more preferable from the viewpoint of the equipment cost of the compression equipment.

発泡粒子貯槽1内および金型4内の圧力は金型ガス圧力調整バルブ13によって調整され、所定の圧力に昇圧される。このとき排気弁14は閉じている。圧縮時の圧力は、通常、下限が好ましくは0.04MPa(G)であり、より好ましくは0.05MPa(G)であり、上限が好ましくは0.40MPa(G)であり、より好ましくは0.35MPa(G)である。発泡粒子圧縮タンク1の耐圧は、高い方がそれだけ発泡粒子に圧縮ガス圧を与えられるため圧縮充填法が適用可能な嵩密度範囲が拡ってよいが、耐圧能力が高いと設備投資費が大きくなるため、通常用いられている耐圧0.4MPa(G)付近が好ましい。   The pressure in the expanded particle storage tank 1 and the mold 4 is adjusted by a mold gas pressure adjusting valve 13 and is increased to a predetermined pressure. At this time, the exhaust valve 14 is closed. As for the pressure at the time of compression, the lower limit is usually preferably 0.04 MPa (G), more preferably 0.05 MPa (G), and the upper limit is preferably 0.40 MPa (G), more preferably 0. .35 MPa (G). The higher the pressure resistance of the expanded foam compression tank 1, the more the compressed gas pressure can be applied to the expanded particles, so the bulk density range to which the compression filling method can be applied may be expanded. Therefore, the pressure resistance around 0.4 MPa (G) that is normally used is preferable.

ついで、圧縮された発泡粒子は固定型5と移動型6とのあいだの型窩7に充填機16によって充填される。なお、充填は通常のビーズ法型内発泡成形で行なわれているのと同様であり、発泡粒子充填用加圧ガス入口17から加圧ガスが供給されている。このとき金型ガス圧力調整バルブ13は所定の金型ガス圧力を維持するような開度で開いている。発泡粒子充填用加圧ガス入口17から供給された加圧ガスに発泡粒子を同伴させて型窩7内に発泡粒子が送り込まれる。   Next, the compressed expanded particles are filled into the mold cavity 7 between the fixed mold 5 and the movable mold 6 by a filling machine 16. The filling is the same as that performed in the ordinary bead method in-mold foam molding, and pressurized gas is supplied from the pressurized gas inlet 17 for filling foam particles. At this time, the mold gas pressure adjusting valve 13 is opened at such an opening that maintains a predetermined mold gas pressure. The foamed particles are fed into the mold cavity 7 by bringing the foamed particles into the pressurized gas supplied from the pressurized gas inlet 17 for filling the foamed particles.

金型は発泡粒子を通さないが空気や蒸気を通すことができる通気口8を有しており、発泡粒子が型窩7内に送り込まれると空気は通気口8を通って型窩7外に排出され、発泡粒子は型窩7内に残留する。発泡粒子が型窩7内に十分充填されると空気が型窩7内に侵入せず発泡粒子圧縮タンク1に逆流する。このとき充填機16内に存在する発泡粒子は押し戻され充填機16は空になる(自然ブローバック)。充填機16内の発泡粒子が除去された後、ピストンプラグ19により、金型の発泡粒子充填口18が閉塞される。   The mold has a vent 8 that does not allow foam particles to pass through but allows air or steam to pass therethrough. When the foam particles are fed into the mold cavity 7, the air passes through the vent 8 and goes out of the mold cavity 7. The foamed particles are discharged and remain in the mold cavity 7. When the foam particles are sufficiently filled in the mold cavity 7, air does not enter the mold cavity 7 and flows back into the foam particle compression tank 1. At this time, the expanded particles present in the filling machine 16 are pushed back, and the filling machine 16 becomes empty (natural blowback). After the expanded particles in the filling machine 16 are removed, the expanded particle filling port 18 of the mold is closed by the piston plug 19.

充填が終了したのち、発泡粒子圧縮タンク1および金型内の過剰の空気を排気弁14より逃し、金型の圧力を大気圧に開放する。そののち、加熱用水蒸気が蒸気ライン10から金型4内に供給され、型窩7に充填されたポリプロピレン系樹脂発泡粒子が加熱融着せしめられる。該蒸気の圧力は通常0.18MPa(G)以上であるのが好ましい。また、金型の加熱温度および加熱時間は金型の大きさや発泡粒子の種類などに応じて適宜調整されるが、通常加熱温度は116〜152℃、なかでも120〜145℃、加熱時間は3〜30秒間、なかでも8〜20秒間であるのが好ましい。   After the filling is completed, excess air in the foamed particle compression tank 1 and the mold is released from the exhaust valve 14, and the pressure of the mold is released to the atmospheric pressure. After that, steam for heating is supplied from the vapor line 10 into the mold 4, and the polypropylene resin expanded particles filled in the mold cavity 7 are heat-sealed. It is preferable that the pressure of the steam is usually 0.18 MPa (G) or more. The heating temperature and heating time of the mold are appropriately adjusted according to the size of the mold and the type of foamed particles, but the normal heating temperature is 116 to 152 ° C., particularly 120 to 145 ° C., and the heating time is 3 It is preferable that it is ˜30 seconds, especially 8 to 20 seconds.

実際には次のような加熱工程が採用されることが多い。
1)予備加熱工程:移動型、固定型の蒸気弁11、ドレン弁12及び排気弁14を開いた状態で下記両面加熱時よりも低圧の蒸気を金型内に流す。2)一方加熱工程:移動型蒸気弁を閉、固定型蒸気弁を開、移動型ドレン弁を開、固定型ドレン弁を閉及び排気弁14を開の状態で両面加熱時よりも低圧の蒸気を金型内に流す。
3)逆一方加熱工程:移動型蒸気弁を開、固定型蒸気弁を閉、移動型ドレン弁を閉、固定型ドレン弁を開及び排気弁を開の状態で両面加熱時よりも低圧の蒸気を金型内に流す。
4)両面加熱工程(本加熱工程):移動型、固定型の蒸気弁を開、移動型、固定型のドレン弁を閉の状態で蒸気を金型内に流す。両面加熱工程で型窩内は最も高い温度となる。このときの加熱温度が上記116〜152℃である。
In practice, the following heating process is often employed.
1) Preheating step: With the movable and fixed steam valves 11, the drain valve 12 and the exhaust valve 14 opened, lower pressure steam is allowed to flow into the mold than during double-sided heating described below. 2) One heating step: steam at a lower pressure than during double-sided heating with the mobile steam valve closed, the stationary steam valve opened, the mobile drain valve opened, the stationary drain valve closed and the exhaust valve 14 opened In a mold.
3) Reverse one-side heating process: open steam, close fixed steam valve, close mobile drain valve, open fixed drain valve and open exhaust valve, lower pressure steam than double-sided heating In a mold.
4) Double-sided heating step (main heating step): Steam is allowed to flow into the mold with the movable and fixed steam valves open and the movable and fixed drain valves closed. The mold cavity has the highest temperature in the double-sided heating process. The heating temperature at this time is said 116-152 degreeC.

加熱工程の後、ポリプロピレン系樹脂型内発泡成形体は水冷等により冷却され、つぎに金型を型開きにすることにより、ポリプロピレン系樹脂型内発泡成形体が取り出される。   After the heating step, the polypropylene resin in-mold foam molded product is cooled by water cooling or the like, and then the mold is opened to take out the polypropylene resin in-mold foam molded product.

つぎに実施例および比較例をあげて本発明のポリプロピレン系樹脂型内発泡成形体の製造方法をさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。また、実施例及び比較例における評価は下記の方法で行った。   Next, examples and comparative examples will be given to describe the method for producing a polypropylene resin-in-mold foam-molded article of the present invention in more detail, but the present invention is not limited to such examples. Moreover, the evaluation in an Example and a comparative example was performed with the following method.

(DSC比)
示差走査熱量計を用いて、ポリプロピレン系樹脂多段発泡粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量QhからDSC比を測定した。
(DSC ratio)
Using a differential scanning calorimeter, 5-6 mg of polypropylene resin multistage expanded particles were heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min. The DSC ratio was measured from the melting peak heat quantity Qh on the high temperature side.

(発泡粒子の嵩密度)
円筒状容器に発泡粒子を充填し、容器の開口部を越えた発泡粒子を取り除いて容器内の発泡粒子の重量を測定し、発泡粒子の重量を容器体積で除して嵩密度を求める。
(Bulk density of expanded particles)
The cylindrical container is filled with expanded particles, the expanded particles beyond the opening of the container are removed, the weight of the expanded particles in the container is measured, and the bulk density is obtained by dividing the weight of the expanded particles by the container volume.

(成形体発泡倍率)
ポリプロピレン系樹脂型内発泡成形体の重量w(g)および水没体積v(cm3)を求め、樹脂の密度d(g/cm3)から次式により求める。
発泡倍率=d×v/w
(Molded foam expansion ratio)
The weight w (g) and the submerged volume v (cm 3 ) of the polypropylene-based resin-molded foam-molded product are obtained, and obtained from the resin density d (g / cm 3 ) by the following equation.
Foaming ratio = d × v / w

(成形体における発泡粒子充填口の未融着発泡粒子数)
得られたポリプロピレン系樹脂型内発泡成形体を25℃で2時間静置し、次いで75℃に温調した恒温室内に15時間静置した後、取り出し、25℃で放冷した。該ポリプロピレン系樹脂型内発泡成形体における発泡粒子充填口にある発泡粒子を軽く爪で引掻いたときに剥がれた発泡粒子の数を未融着発泡粒子数とした。後記するように成形機は2カ所の発泡粒子充填口を有したものを使用した。充填口付近の未融着発泡粒子数の評価は3ショットの成形を行い、3個のポリプロピレン系樹脂型内発泡成形体にある合計6カ所の充填口付近の未融着発泡粒子数を計測し、その総数を充填口の数6で割ることにより、充填口1カ所当たりの未融着発泡粒子数に平均化して評価した。充填口付近の未融着発泡粒子数の値は充填口1カ所当たりの未融着発泡粒子数を示す。
(Number of unfused expanded particles at the expanded particle filling port in the molded product)
The obtained polypropylene resin-in-mold foam-molded product was allowed to stand at 25 ° C. for 2 hours, and then allowed to stand in a thermostatic chamber adjusted to 75 ° C. for 15 hours, then taken out and allowed to cool at 25 ° C. The number of foam particles peeled off when the foam particles in the expanded foam filling body in the polypropylene resin mold were lightly scratched with a nail was defined as the number of unfused foam particles. As described later, a molding machine having two foamed particle filling ports was used. The number of unfused foam particles near the filling port was evaluated by measuring the number of unfused foam particles near the filling port at a total of six locations in three polypropylene resin molds. The total number was divided by the number of filling ports 6 to evaluate by averaging the number of unfused foam particles per filling port. The value of the number of unfused foam particles near the filling port indicates the number of unfused foam particles per one filling port.

(融着率)
得られたポリプロピレン系樹脂型内発泡成形体を25℃で2時間静置し、次いで75℃に温調した恒温室内に15時間静置した後、取り出し、25℃で放冷した。該ポリプロピレン系樹脂型内発泡成形体を割った際に発泡粒子内で破断している粒子の割合を融着率とした。融着率は、通常70%以上であれば、良好とされる。
(Fusion rate)
The obtained polypropylene resin-in-mold foam-molded product was allowed to stand at 25 ° C. for 2 hours, and then allowed to stand in a thermostatic chamber adjusted to 75 ° C. for 15 hours, then taken out and allowed to cool at 25 ° C. The ratio of the particles that were broken in the expanded particles when the expanded polypropylene resin mold was cut was defined as the fusion rate. The fusion rate is usually good if it is 70% or more.

(実施例1)
基材樹脂として融点が141℃、MIが6g/10分であるエチレン−プロピレンランダム共重合体(エチレン含量3.6重量%)を用いた。この樹脂100重量部に対し、発泡核剤としてタルクを0.03重量部添加してドライブレンドし、押出機内で溶融混練した後、円形ダイよりストランド状に押出し、水冷後、カッターで切断し、一粒の重量が1.2mg/粒、ほぼ円柱形状の樹脂粒子を得た。得られた樹脂粒子100重量部、水200重量部、塩基性第三リン酸カルシウム0.5重量部、アルキルスルフォン酸ソーダ0.01重量部を耐圧オートクレーブ中に仕込み、さらにブタン14.3重量部を仕込み、内容物を発泡温度である143.4℃まで加熱した。その後、オートクレーブ下部のバルブを開き、内容物を大気圧下に放出して嵩密度49.2g/Lの一段発泡粒子を得た。得られた一段発泡粒子60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.5MPaにしたのち、約0.08MPa(G)の蒸気と接触させることで二段発泡させた。得られた二段発泡粒子の嵩密度は16.7g/L、DSC比は24.5%であった。
Example 1
An ethylene-propylene random copolymer (ethylene content 3.6% by weight) having a melting point of 141 ° C. and MI of 6 g / 10 min was used as the base resin. To 100 parts by weight of this resin, 0.03 parts by weight of talc as a foam nucleating agent was added and dry blended, melt-kneaded in an extruder, extruded into a strand form from a circular die, cooled with water, cut with a cutter, Resin particles having a weight of 1.2 mg / grain and a substantially cylindrical shape were obtained. 100 parts by weight of the obtained resin particles, 200 parts by weight of water, 0.5 parts by weight of basic tribasic calcium phosphate and 0.01 parts by weight of sodium alkyl sulfonate are charged into a pressure-resistant autoclave, and further, 14.3 parts by weight of butane are charged. The contents were heated to the foaming temperature of 143.4 ° C. Then, the valve | bulb of the autoclave lower part was opened, the content was discharge | released under atmospheric pressure, and the bulk density 49.2g / L single-stage expanded particle was obtained. The obtained single-stage expanded particles were dried at 60 ° C. for 6 hours, then impregnated with pressurized air in a pressure-resistant container to set the internal pressure to about 0.5 MPa, and then steam of about 0.08 MPa (G) To make two-stage foaming. The resulting two-stage expanded particles had a bulk density of 16.7 g / L and a DSC ratio of 24.5%.

二段発泡させた発泡粒子を再度、耐圧容器内にて空気で加圧し、約0.17MPaの内圧を付与した。得られた二段発泡粒子を発泡粒子圧縮タンクに充填し圧縮圧0.12MPaで圧縮比1.3とし、ほぼこの圧力下で400mm×300mm×20mmの寸法を有する直方体形状の金型型窩内に圧縮された二段発泡粒子を移送した。この後、系の圧力を大気圧に開放し、水蒸気による加熱により型内発泡成形した。   The two-stage foamed particles were again pressurized with air in a pressure resistant container to give an internal pressure of about 0.17 MPa. The obtained two-stage expanded particles are filled into a expanded particle compression tank, the compression ratio is set to 0.12 MPa, and the compression ratio is 1.3, and a rectangular parallelepiped-shaped mold cavity having dimensions of 400 mm × 300 mm × 20 mm under this pressure is obtained. The two-stage expanded particles that were compressed into the same were transferred. Thereafter, the system pressure was released to atmospheric pressure, and in-mold foam molding was performed by heating with water vapor.

加熱は予備加熱3秒(移動型、固定型のドレン弁を開いた状態)で行い、一方加熱3秒、逆一方加熱3秒、両面加熱10秒(両面加熱時の加熱圧は0.28MPa(G))で行った。加熱工程を完了後、予冷(ドレン弁を閉じた状態で冷却)を行い、次に水冷を行った後、離型し、ポリプロピレン系樹脂型内発泡成形体を得た。得られたポリプロピレン系樹脂型内発泡成形体の密度は21.7g/L、融着率70%、ポリプロピレン系樹脂型内発泡成形体の充填機充填口付近の未融着発泡粒子数は0であった。   Heating is performed in 3 seconds of preliminary heating (moving type, fixed drain valve opened), one heating for 3 seconds, reverse one heating for 3 seconds, double-sided heating for 10 seconds (heating pressure during double-sided heating is 0.28 MPa ( G)). After completion of the heating step, precooling (cooling with the drain valve closed) was performed, and then water cooling was performed, followed by mold release to obtain a polypropylene resin in-mold foam molded product. The density of the obtained expanded foam in the polypropylene resin mold was 21.7 g / L, the fusion rate was 70%, and the number of unfused expanded particles near the filler filling port of the expanded foam in the polypropylene resin mold was 0. there were.

(比較例1)
耐圧オートクレーブ中に仕込むブタン量を22.3重量部、発泡温度を138.1℃とする以外は実施例1と同様にして嵩密度17.5g/Lの一段発泡粒子を得た。得られた発泡粒子を二段発泡せずに耐圧容器内にて空気で加圧し、約0.17MPaの内圧を付与した。得られた二段発泡粒子を実施例1と同様に型内発泡成形した。得られたポリプロピレン系樹脂型内発泡成形体の密度は22.8g/L、融着率100%、ポリプロピレン系樹脂型内発泡成形体の充填機充填口付近の未融着発泡粒子数は3であった。
(Comparative Example 1)
Single-stage expanded particles with a bulk density of 17.5 g / L were obtained in the same manner as in Example 1 except that the amount of butane charged in the pressure-resistant autoclave was 22.3 parts by weight and the foaming temperature was 138.1 ° C. The obtained foamed particles were pressurized with air in a pressure-resistant container without being subjected to two-stage foaming, and an internal pressure of about 0.17 MPa was applied. The obtained two-stage expanded particles were subjected to in-mold foam molding in the same manner as in Example 1. The density of the obtained expanded foam in the polypropylene resin mold was 22.8 g / L, the fusion rate was 100%, and the number of unfused expanded particles in the vicinity of the filler filling port of the expanded foam in the polypropylene resin mold was 3. there were.

実施例と比較例の結果から明らかなように、同じ樹脂から製造された同じ嵩密度の発泡粒子を使用しているにもかかわらず、二段発泡した発泡粒子を用いて型内発泡成形すると得られるポリプロピレン系樹脂型内発泡成形体の充填機充填口付近の融着が改善されることがわかる。   As is clear from the results of Examples and Comparative Examples, it is obtained by in-mold foam molding using foam particles that are two-stage foamed, although foam particles having the same bulk density manufactured from the same resin are used. It can be seen that the fusion in the vicinity of the filler filling port of the molded polypropylene resin mold is improved.

本発明の製造方法により得られるポリプロピレン系樹脂型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材などの用途に用いることができる。高発泡倍率の型内発泡成形体が使用されることが多い緩衝包装材に、本発明の製造方法を用いて得られるポリプロピレン系樹脂型内発泡成形体を使用することは、特に望ましい使用法である。   The polypropylene resin-in-mold foam-molded product obtained by the production method of the present invention can be used for applications such as a heat insulating material, a cushioning packaging material, an automobile interior member, and a core material for an automobile bumper. It is a particularly desirable usage method to use a polypropylene resin in-mold foam molded product obtained by using the production method of the present invention for a buffer packaging material in which an in-mold foam molded product with a high expansion ratio is often used. is there.

1 発泡粒子貯槽
2 発泡粒子供給口
3 加圧ガス入口
4 金型
5 固定型
6 移動型
7 型窩
8 通気口
9 スチームチャンバー
10 蒸気ライン
11 蒸気弁
12 ドレン弁
13 金型ガス圧力調整バルブ
14 排気弁
15 排気口
16 充填機
17 発泡粒子充填用加圧ガス入口
18 発泡粒子充填口
19 ピストンプラグ
20 均圧ライン
DESCRIPTION OF SYMBOLS 1 Expanded particle storage tank 2 Expanded particle supply port 3 Pressurized gas inlet 4 Mold 5 Fixed type 6 Mobile type 7 Mold cavity 8 Vent 9 Steam chamber 10 Steam line 11 Steam valve 12 Drain valve 13 Mold gas pressure adjustment valve 14 Exhaust gas Valve 15 Exhaust port 16 Filling machine 17 Pressurized gas inlet for filling expanded particles 18 Expanded particle filling port 19 Piston plug 20 Pressure equalization line

Claims (4)

ポリプロピレン系樹脂粒子を耐圧容器内で分散媒に分散させ、炭化水素を含む発泡剤を添加した後、ポリプロピレン系樹脂粒子が軟化する温度以上の温度に加熱し、前記発泡剤を含浸させたのち、耐圧容器の一端を開放してポリプロピレン系樹脂粒子を耐圧容器内よりも低圧の雰囲気中に放出することにより得られたポリプロピレン系樹脂発泡粒子を用いて型内発泡成形するポリプロピレン系樹脂型内発泡成形体の製造方法において、前記ポリプロピレン系樹脂発泡粒子をさらに発泡させたポリプロピレン系樹脂多段発泡粒子を型内発泡成形することを特徴とするポリプロピレン系樹脂型内発泡成形体の製造方法。   After dispersing the polypropylene resin particles in a dispersion medium in a pressure vessel, adding a foaming agent containing hydrocarbons, heating to a temperature equal to or higher than the temperature at which the polypropylene resin particles soften, and impregnating the foaming agent, Opening one end of the pressure vessel and releasing the polypropylene resin particles into the atmosphere at a lower pressure than in the pressure vessel, and using the polypropylene resin foam particles obtained by in-mold foam molding in the mold. In the manufacturing method of a body, the polypropylene resin multistage expanded particle which further expanded the said polypropylene resin expanded particle is in-mold foam-molded, The manufacturing method of the polypropylene resin in-mold expanded molded object characterized by the above-mentioned. ポリプロピレン系樹脂多段発泡粒子を、圧縮充填法によって金型内に充填し型内発泡成形を行うことを特徴とする請求項1に記載のポリプロピレン系樹脂型内発泡成形体の製造方法。   The method for producing an expanded molded article in a polypropylene resin mold according to claim 1, wherein the polypropylene resin multistage expanded particles are filled in a mold by a compression filling method and subjected to in-mold foam molding. 内圧を付与したポリプロピレン系樹脂多段発泡粒子を型内発泡成形することを特徴とする請求項1または2記載のポリプロピレン系樹脂型内発泡成形体の製造方法。   3. The method for producing a polypropylene resin in-mold foam-molded product according to claim 1 or 2, wherein in-mold foam molding is performed on the polypropylene resin multistage expanded particles to which an internal pressure is applied. ポリプロピレン系樹脂が、エチレンに起因する単量体単位を含んでなるポリプロピレン系ランダム共重合体であることを特徴とする請求項1〜3いずれか一項に記載のポリプロピレン樹脂型内発泡成形体の製造方法。   The polypropylene resin in-mold foam-molded product according to any one of claims 1 to 3, wherein the polypropylene resin is a polypropylene random copolymer comprising a monomer unit derived from ethylene. Production method.
JP2009016890A 2009-01-28 2009-01-28 Method for manufacturing polypropylene-based resin in-mold foam molded body Pending JP2010173146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016890A JP2010173146A (en) 2009-01-28 2009-01-28 Method for manufacturing polypropylene-based resin in-mold foam molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016890A JP2010173146A (en) 2009-01-28 2009-01-28 Method for manufacturing polypropylene-based resin in-mold foam molded body

Publications (1)

Publication Number Publication Date
JP2010173146A true JP2010173146A (en) 2010-08-12

Family

ID=42704568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016890A Pending JP2010173146A (en) 2009-01-28 2009-01-28 Method for manufacturing polypropylene-based resin in-mold foam molded body

Country Status (1)

Country Link
JP (1) JP2010173146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131057A (en) * 2010-12-20 2012-07-12 Sekisui Plastics Co Ltd Foam molding and method for producing the same
JP2012233182A (en) * 2011-04-21 2012-11-29 Kaneka Corp Polypropylene-based resin expanded particle, and polypropylene-based resin in-mold expansion molded product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449622A (en) * 1987-08-19 1989-02-27 Jsp Corp Resin foaming particle containing crosslinked polyolefin-based resin and manufacture thereof
WO1997038048A1 (en) * 1996-04-05 1997-10-16 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded moldings
JPH10147661A (en) * 1996-11-19 1998-06-02 Kanegafuchi Chem Ind Co Ltd Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same
JP2000017079A (en) * 1998-07-02 2000-01-18 Jsp Corp Expanded particle of uncrosslinked polyethylenic resin and its molding
JP2000198872A (en) * 1998-10-29 2000-07-18 Jsp Corp Expanded polypropylene-based resin particle, and formed product thereof
JP2001131327A (en) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd Molded foam of polypropylene resin composition
JP2004090467A (en) * 2002-08-30 2004-03-25 Jsp Corp Method for molding thermoplastic resin foam particle molding and combination mold for molding thermoplastic resin foamed particles
WO2006016478A1 (en) * 2004-08-11 2006-02-16 Kaneka Corporation Process for producing polypropylene resin foam molding
JP2007320092A (en) * 2006-05-31 2007-12-13 Kaneka Corp Method for producing molding foamed in mold using preliminarily foamed polypropylene particles
JP2008274025A (en) * 2007-04-25 2008-11-13 Kaneka Corp Polypropylene-based resin pre-expanded particle, method for producing the same and in-mold foam-molded article
JP2010138226A (en) * 2008-12-09 2010-06-24 Kaneka Corp Method for producing polypropylene resin in-mold expansion molded product using compressive filling method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449622A (en) * 1987-08-19 1989-02-27 Jsp Corp Resin foaming particle containing crosslinked polyolefin-based resin and manufacture thereof
WO1997038048A1 (en) * 1996-04-05 1997-10-16 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded moldings
JPH10147661A (en) * 1996-11-19 1998-06-02 Kanegafuchi Chem Ind Co Ltd Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same
JP2000017079A (en) * 1998-07-02 2000-01-18 Jsp Corp Expanded particle of uncrosslinked polyethylenic resin and its molding
JP2000198872A (en) * 1998-10-29 2000-07-18 Jsp Corp Expanded polypropylene-based resin particle, and formed product thereof
JP2001131327A (en) * 1999-11-05 2001-05-15 Kanegafuchi Chem Ind Co Ltd Molded foam of polypropylene resin composition
JP2004090467A (en) * 2002-08-30 2004-03-25 Jsp Corp Method for molding thermoplastic resin foam particle molding and combination mold for molding thermoplastic resin foamed particles
WO2006016478A1 (en) * 2004-08-11 2006-02-16 Kaneka Corporation Process for producing polypropylene resin foam molding
JP2007320092A (en) * 2006-05-31 2007-12-13 Kaneka Corp Method for producing molding foamed in mold using preliminarily foamed polypropylene particles
JP2008274025A (en) * 2007-04-25 2008-11-13 Kaneka Corp Polypropylene-based resin pre-expanded particle, method for producing the same and in-mold foam-molded article
JP2010138226A (en) * 2008-12-09 2010-06-24 Kaneka Corp Method for producing polypropylene resin in-mold expansion molded product using compressive filling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131057A (en) * 2010-12-20 2012-07-12 Sekisui Plastics Co Ltd Foam molding and method for producing the same
JP2012233182A (en) * 2011-04-21 2012-11-29 Kaneka Corp Polypropylene-based resin expanded particle, and polypropylene-based resin in-mold expansion molded product

Similar Documents

Publication Publication Date Title
CN105849167B (en) Polyolefin resin foamed particles and polyolefin resin in-mold foam molded article
WO2014136933A1 (en) Method for manufacturing foamed polypropylene-resin particles
JP2008075076A (en) Styrene-modified polypropylenic resin particle and its foamable resin particle, their production method, pre-foamed particle and foam-molded article
JP4953891B2 (en) Black polypropylene resin pre-expanded particles
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP5364333B2 (en) Foam cushioning material for collective packaging
JP2010248341A (en) Polypropylene-based resin prefoamed particle
JP5253123B2 (en) Method for producing foamed molded article in polypropylene resin mold by compression filling method
JP5722564B2 (en) Automotive exterior materials
JP2010173146A (en) Method for manufacturing polypropylene-based resin in-mold foam molded body
JP5910626B2 (en) Polypropylene-based resin pre-expanded particles, polypropylene-based in-mold foam-molded article, and method for producing the same
CN108884261B (en) Method for producing polyethylene resin foamed particles and method for producing polyethylene resin in-mold foamed molded article
JP6625472B2 (en) Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
JP5364289B2 (en) Method for producing expanded polypropylene resin particles
JP5216353B2 (en) Method for producing expanded polypropylene resin particles
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP5581138B2 (en) Parts packing material
JP2012025908A (en) Automotive interior material
JP5095451B2 (en) Method for producing expanded polypropylene resin particles
JP5248939B2 (en) Polypropylene resin foam particles
JP2009256410A (en) Method for producing polypropylene-based resin foam particle
JP2011137172A (en) Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof
JP2010209286A (en) Polyolefin resin foaming particle
JP2009298931A (en) Polyolefin-based resin pre-foamed particles and method for producing the same
JP2023177105A (en) Method for producing polyolefin-based resin foam particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903