JP2012233182A - Polypropylene-based resin expanded particle, and polypropylene-based resin in-mold expansion molded product - Google Patents

Polypropylene-based resin expanded particle, and polypropylene-based resin in-mold expansion molded product Download PDF

Info

Publication number
JP2012233182A
JP2012233182A JP2012094537A JP2012094537A JP2012233182A JP 2012233182 A JP2012233182 A JP 2012233182A JP 2012094537 A JP2012094537 A JP 2012094537A JP 2012094537 A JP2012094537 A JP 2012094537A JP 2012233182 A JP2012233182 A JP 2012233182A
Authority
JP
Japan
Prior art keywords
polypropylene resin
mold
polypropylene
particles
standing wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094537A
Other languages
Japanese (ja)
Other versions
JP6038479B2 (en
Inventor
Shinobu Ochikoshi
忍 落越
Toru Yoshida
融 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012094537A priority Critical patent/JP6038479B2/en
Publication of JP2012233182A publication Critical patent/JP2012233182A/en
Application granted granted Critical
Publication of JP6038479B2 publication Critical patent/JP6038479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide polypropylene-based resin expanded particles which allow, in the in-mold expansion molding, significant reduction in molding pressure and stable production even with a currently widely used molding machine having a withstand pressure specification of 0.4 MPa (gauge pressure), and can provide an in-mold expansion molded product having high rigidity and high surface beauty; and in particular, to provide polypropylene-based resin expanded particles capable of providing an in-mold expansion molded product in which a "part which is hard to weld", and/or a thick part and a thin part are mixed, wherein both the weldability of the thick part and the surface beauty of the thin part are achieved.SOLUTION: The polypropylene-based resin expanded particles include, as a base material resin, a polypropylene-based resin which has a specific 1-butene content and a specific ethylene content, and a specific melting point, wherein a DSC curve obtained by the differential scanning calorimetry (DSC) of the polypropylene-based resin expanded particles has two regions of a region of low-temperature-side heat quantity of fusion and a region of high-temperature-side heat quantity of fusion, and the region of low-temperature-side heat quantity of fusion has a maximum value in the differential curve of the DSC curve.

Description

本発明は、自動車内装部材、自動車バンパー用芯材、断熱材、緩衝包材、通箱などに用いられるポリプロピレン系樹脂発泡粒子、及び該発泡粒子を用いて得られる型内発泡成形体に関するものである。特に、剛性が必要とされる自動車部材、通箱等に使用される発泡粒子と発泡成形体に、関するものである。   The present invention relates to polypropylene resin foam particles used for automobile interior members, automobile bumper core materials, heat insulating materials, buffer packaging materials, pass boxes, and the like, and in-mold foam molded articles obtained using the foam particles. is there. In particular, the present invention relates to foamed particles and foamed moldings used in automobile members, passing boxes and the like that require rigidity.

ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴を有する。また、ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は、ポリスチレン系樹脂発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、また、ポリエチレン系樹脂発泡粒子を用いて得られる型内発泡成形体と比較すると、寸法精度、耐熱性、圧縮強度が優れている。   The in-mold foam molded article obtained using the polypropylene resin foamed particles has characteristics such as shape flexibility, light weight, and heat insulation, which are advantages of the in-mold foam molded article. In-mold foam moldings obtained using polypropylene resin foam particles are more resistant to chemicals, heat and strain after compression compared to in-mold foam moldings obtained using polystyrene resin foam particles. In addition, the dimensional accuracy, heat resistance, and compressive strength are superior as compared with an in-mold foam molded product obtained using polyethylene resin expanded particles.

これらの特徴により、ポリプロピレン系樹脂発泡粒子を用いて得られる型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材、通箱など様々な用途に用いられている。   Due to these characteristics, in-mold foam molded products obtained using polypropylene resin foam particles are used for various applications such as automotive interior members, automotive bumper core materials, heat insulating materials, shock-absorbing packaging materials, and boxes. ing.

特に、剛性が必要とされる自動車部材、通箱等では、高剛性を有するポリプロピレン系樹脂を基材樹脂とした発泡粒子を用いるために、型内発泡成形時には、0.4MPa(ゲージ圧)以上の加熱水蒸気圧が必要となる。一般に、ポリプロピレン系樹脂発泡粒子の型内発泡成形用の成形機は、加熱水蒸気の圧力が0.4MPa(ゲージ圧)以下の耐圧仕様であるものが大半を占めており、該成形機を用いて通常生産される成形加熱蒸気圧力はおおむね0.36MPa(ゲージ圧)程度までであり、加熱水蒸気圧を低下できる高剛性のポリプロピレン系樹脂発泡粒子の開発が、行われてきた。   In particular, in automobile parts and pass boxes that require rigidity, foam particles using a high-rigidity polypropylene-based resin as a base resin are used. Therefore, at the time of in-mold foam molding, 0.4 MPa (gauge pressure) or more The heating steam pressure is required. In general, most of the molding machines for in-mold foam molding of polypropylene resin foamed particles have a pressure resistance specification in which the pressure of heated steam is 0.4 MPa (gauge pressure) or less. Usually, the molded heating steam pressure produced is approximately up to about 0.36 MPa (gauge pressure), and development of highly rigid polypropylene resin expanded particles capable of lowering the heating steam pressure has been carried out.

ポリプロピレン系樹脂型内発泡成形体においては、自動車内装部材、自動車バンパー用芯材、通箱など、剛性の高い製品が求められる用途も多い。ポリプロピレン系樹脂型内発泡成形体の剛性は、おおむね原料樹脂の剛性と発泡倍率によって決まるが、現状では、これらの用途には型内発泡成形体の密度の高い、すなわち、発泡倍率の低い製品を用いることにより、高い剛性を充足させている。しかし、高密度化は、本来、型内発泡成形体に求められる軽量性を損なう。高密度化は、特に、自動車部材などでは装着する自動車の燃費悪化の原因となり、また、最終廃棄物重量の増加につながるため、可能であるならば回避したい手段である。   Polypropylene-based resin-in-mold foam-molded articles often have high-rigidity products such as automobile interior members, automobile bumper cores, and pass boxes. The rigidity of the polypropylene resin in-mold molded product is largely determined by the rigidity of the raw material resin and the expansion ratio, but at present, products with a high density of the in-mold foam molded product, that is, a low expansion ratio are used for these applications. By using it, high rigidity is satisfied. However, the high density impairs the lightness that is originally required for an in-mold foam molded article. Densification is a means that should be avoided if possible, especially because it causes deterioration of fuel consumption of automobiles to be mounted on automobile parts and the like and leads to an increase in the weight of final waste.

また、高い剛性を達成するためのもうひとつの手段である樹脂自体の剛性を上げると、
型内発泡成形における生産条件が厳しくなり、成形加工コストも増大する。すなわち、高い剛性を持つポリプロピレン系樹脂とは、一般にコモノマー含量の少ない、融点の高い樹脂となるが、樹脂の融点が高くなるに伴い、良好な成形体を得るために必要となる成形加熱蒸気の圧力は高くなる傾向にある。このため、より高い剛性を求めて、より高い剛性を持つポリプロピレン系樹脂を使用する場合、耐圧仕様の高い成形機や金型を用いる必要があり、設備コストが高くなると共に、ユーティリティコストが高くなるため、成形加工コストが高くなる。
Also, when increasing the rigidity of the resin itself, which is another means to achieve high rigidity,
Production conditions in in-mold foam molding become severe, and molding processing costs also increase. In other words, high-rigidity polypropylene-based resin is generally a resin having a low comonomer content and a high melting point. However, as the melting point of the resin increases, the molding heating steam required to obtain a good molded product is used. The pressure tends to increase. For this reason, when polypropylene resin having higher rigidity is used in order to obtain higher rigidity, it is necessary to use a molding machine or mold having a high pressure resistance specification, which increases equipment costs and utility costs. For this reason, the molding processing cost increases.

一方、近年、ポリプロピレン系樹脂型内発泡成形体においても、外観が重要視されるものが増えてきている。この要求は、使用者の目に触れる場所に使用される自動車内装部材や通箱といった用途に多く、ポリプロピレン系樹脂型内発泡成形体は、通常求められる剛性、軽量性、断熱性などの物性に加え、良好な外観が求められる。
ポリプロピレン系樹脂型内発泡成形体は、その製法上、粒子間の隙間や粒子の亀甲模様が見られるが、外観を重視する製品にはこれらを嫌うものも多い。粒子間の隙間を目立たなくさせるためには、一般に、型内発泡成形時の加熱蒸気圧力を高くし、粒子同士の融着を促進させるなどの方法が取られる。
On the other hand, in recent years, the number of polypropylene resin-in-mold foam molded products whose appearance is regarded as important is increasing. This requirement is often used in applications such as automobile interior parts and pass boxes used in places where the user can see. Polypropylene resin-in-mold foam-molded products have properties such as rigidity, lightness, and heat insulation that are usually required. In addition, a good appearance is required.
Due to the manufacturing method of the polypropylene resin-in-mold foam-molded product, there are gaps between particles and a turtle shell pattern, but many products that emphasize the appearance do not like them. In order to make the gaps between the particles inconspicuous, generally, a method of increasing the heating steam pressure at the time of in-mold foam molding and promoting fusion between the particles is taken.

また、粒子の亀甲模様を消すためには、金型表面に微細な凹凸模様を転写した金型を用いるなどの技術(例えば、特許文献1参照)なども行われているが、該技術においても型内発泡成形時の加熱蒸気圧力を高目にして、発泡成形体への凹凸模様の転写を促進させている。これらの技術から判るように、粒子間の間隙が目立たない外観が良好な型内発泡成形体、すなわち、表面美麗性の高い型内発泡成形体を得るためには、型内発泡成形時の成形加熱蒸気圧力を粒子間の融着に必要となる圧力より高くする必要がある。 一方、型内発泡成形時の成形加熱蒸気圧力が逆に高すぎると、ポリプロピレン系樹脂型内発泡成形体の表面にしわが入ったり、あるいは、いわゆるヒケが発生し、亀甲模様は消えるものの、やはり表面美麗性が低下してしまうという問題点がある。   In addition, in order to erase the turtle shell pattern of particles, a technique (for example, refer to Patent Document 1) using a mold in which a fine uneven pattern is transferred to the mold surface is also performed. The heating steam pressure at the time of in-mold foam molding is increased, and the transfer of the uneven pattern to the foam molded body is promoted. As can be seen from these techniques, in order to obtain an in-mold foam molded article with a good appearance with no conspicuous gaps between particles, that is, a molded foam molded article with a high surface beauty, molding at the time of in-mold foam molding. The heating steam pressure needs to be higher than the pressure required for fusion between particles. On the other hand, if the molding heating steam pressure at the time of in-mold foam molding is too high, the surface of the polypropylene resin in-mold foam molding will be wrinkled, or so-called sink marks will be generated and the tortoiseshell pattern will disappear, but the surface There is a problem that the beauty is deteriorated.

特に、厚みが異なる部位を有する剛性の高いポリプロピレン系樹脂型内発泡成形体においては、肉厚部の融着性を確保する為には成形加熱蒸気圧力を高くする必要があるが、該蒸気圧力は薄肉部の成形においては高すぎる圧力となり、薄肉部にしわやヒケが発生して表面美麗性が低下してしまう。
逆に、薄肉部の表面美麗性を求める為に、低めの成形加熱蒸気圧力で成形すると、肉厚部の融着性が低下してしまう。
In particular, in a highly rigid polypropylene-based resin-molded foam-molded body having parts with different thicknesses, it is necessary to increase the molding heating steam pressure in order to ensure the meltability of the thick part. The pressure becomes too high in the molding of the thin portion, and wrinkles and sink marks are generated in the thin portion and the surface beauty is deteriorated.
On the other hand, if the molding is performed at a low molding heating steam pressure in order to obtain the surface beauty of the thin portion, the meltability of the thick portion is lowered.

以上のように、剛性が高く、かつ、表面美麗性の高いポリプロピレン系樹脂型内発泡成形体を、特に、厚みが異なる部位を有する剛性の高いポリプロピレン系樹脂型内発泡成形体を、特殊な成形機を使用しなくとも、安定的により低い成形加工温度で製造することができる技術が求められている。   As described above, special molding of high-rigidity and highly beautiful polypropylene-based resin-molded in-mold molded products, particularly high-rigidity polypropylene-based resin-molded in-mold molded products having parts with different thicknesses There is a need for a technique that can be stably produced at a lower molding temperature without using a machine.

ポリプロピレン系樹脂型内発泡成形体の剛性を向上するための技術に関して、様々な技術が検討されている。ポリプロピレン系樹脂で高い剛性を得るためには、単純にホモポリプロピレンを用いることが考えられる。   Various techniques have been studied with respect to techniques for improving the rigidity of the polypropylene resin in-mold foam-molded body. In order to obtain high rigidity with a polypropylene resin, it is conceivable to simply use homopolypropylene.

例えば、特許文献2には、引張弾性率が15000〜25000kg/cmで示差走査型熱量計にて得られるDSC曲線の高温側ピークの熱量が30〜60J/gであるホモポリプロピレン系樹脂発泡粒子に関しての技術が開示されている。また、特許文献2には、MFRが20〜100g/10分の範囲にあるホモプロピレン系樹脂を用いて、比較的低い成形温度で型内発泡成形体を得ることのできる発泡粒子が作製しうるという技術が開示されている。
しかし、特許文献2記載の技術では、良好な発泡成形体を得るために必要な成形時の加熱蒸気の圧力が0.4〜0.6MPa(ゲージ圧)であると記載されており、前述のように0.4MPa(ゲージ圧)耐圧仕様の成形機では成形できない。また、特許文献2には、成形体の表面美麗性に関しては特段の記載はない。
For example, Patent Document 2 discloses a homopolypropylene resin expanded particle having a tensile elastic modulus of 15,000 to 25000 kg / cm 2 and a DSC curve obtained by a differential scanning calorimeter having a high-temperature peak heat of 30 to 60 J / g. The technology regarding is disclosed. Further, Patent Document 2 can produce foamed particles capable of obtaining an in-mold foam-molded product at a relatively low molding temperature using a homopropylene resin having an MFR in the range of 20 to 100 g / 10 min. This technique is disclosed.
However, in the technique described in Patent Document 2, it is described that the pressure of the heating steam at the time of molding necessary for obtaining a good foamed molded article is 0.4 to 0.6 MPa (gauge pressure). Thus, it cannot be molded by a molding machine having a 0.4 MPa (gauge pressure) pressure resistance specification. In addition, Patent Document 2 does not particularly describe the surface beauty of the molded body.

また、特許文献3には、ホモプロピレン、またはα−オレフィン含有量が1重量%未満であるランダム共重合体のポリプロピレン系樹脂発泡粒子を使用することによって、型内成形時の加熱水蒸気圧を0.4MPa(ゲージ圧)以下にすることができる技樹が開示されている。
しかしながら、特許文献3記載の技術では、ホモポリプロピレンや、コモノマー含量の少ないランダムポリプロピレン系樹脂を用いているが、表面美麗性に関して特段の記載は無い。
Patent Document 3 discloses that the water vapor pressure at the time of in-mold molding is reduced to 0 by using polypropylene-based resin expanded particles of a random copolymer having a homopropylene or α-olefin content of less than 1% by weight. Technical trees that can be reduced to 4 MPa (gauge pressure) or less are disclosed.
However, in the technique described in Patent Document 3, homopolypropylene or a random polypropylene resin having a low comonomer content is used, but there is no particular description regarding the surface beauty.

類似の評価基準としては、発泡粒子同士の融着が60%以上という基準で評価しているが、該基準は型内発泡成形体内部の粒子同士がそれぞれ部分融着するという評価基準であり、表面美麗性を得るという基準に比べ、低い成形加熱蒸気圧力でも満たしうる基準である。該公報記載の技術では、実際に0.4MPa(ゲージ圧)耐圧使用の成形機では表面美麗な成形体を得ることは難しいものと思われる。   As a similar evaluation standard, the evaluation is based on the standard that the fusion between the foamed particles is 60% or more, but the standard is an evaluation standard in which the particles inside the in-mold foam molded product are partially fused, Compared to the standard for obtaining surface aesthetics, this is a standard that can be satisfied even with a low molding heating steam pressure. With the technique described in the publication, it seems that it is difficult to obtain a molded article having a beautiful surface with a molding machine that actually uses 0.4 MPa (gauge pressure) pressure resistance.

ホモポリプロピレンほど高い剛性は得られないものの、成形性を重視してポリプロピレン系ランダム共重合体を用いた技術も検討されている。   Although high rigidity cannot be obtained as compared with homopolypropylene, a technique using a polypropylene random copolymer has been studied with emphasis on moldability.

例えば、特許文献4には、基材樹脂として、融点が149〜157℃、MFRが1〜20g/10分、かつ半結晶時間が一定の値以下のプロピレン系ランダム共重合体を用いる技術が開示されている。   For example, Patent Document 4 discloses a technique using a propylene-based random copolymer having a melting point of 149 to 157 ° C., an MFR of 1 to 20 g / 10 minutes, and a half-crystal time of a certain value or less as a base resin. Has been.

また、特許文献5には、型内発泡成形に用いるポリプロピレン系樹脂発泡粒子の結晶状態について、示差走査型熱量分析(以下、「DSC」と略す)を用いて得られる融解結晶カーブの高温側結晶量と低温側結晶量の関係を一定の範囲に設定することにより、得られる型内発泡成形体の圧縮強度を向上する技術が開示されている。
しかし、これらの技術に関しては、型内発泡成形に必要となる加熱蒸気の圧力は0.4〜0.5MPa(ゲージ圧)と高く、前記特許文献2〜3に記載の技術と同様、特に耐圧性能の高い成形機を用いることによって可能となっている技術である。
Patent Document 5 discloses a high-temperature side crystal of a melting crystal curve obtained by using differential scanning calorimetry (hereinafter abbreviated as “DSC”) for the crystalline state of polypropylene resin expanded particles used for in-mold foam molding. A technique for improving the compressive strength of the in-mold foam-molded product obtained by setting the relationship between the amount and the low-temperature side crystal amount within a certain range is disclosed.
However, regarding these techniques, the pressure of the heating steam required for in-mold foam molding is as high as 0.4 to 0.5 MPa (gauge pressure), and in particular, the pressure resistance is similar to the techniques described in Patent Documents 2 to 3. This technology is made possible by using a high-performance molding machine.

さらに、特許文献6には、1−ブテンをコモノマーとして含むポリプロピレン系樹脂を用いることにより、樹脂融点に対して高い引張弾性率、すなわち剛性を有する樹脂発泡粒子が得られ、これを用いることにより、高い剛性を有する型内発泡成形体を得ることができるという技術が開示されている。
しかし、特許文献6記載の技術に関しても、型内発泡成形に必要となる加熱蒸気の圧力は0.4MPa(ゲージ圧)前後であり、他の技術と比較すると、比較的低い成形加熱蒸気圧力であるものの、実施されている例の中で最も低いもので0.36MPa(ゲージ圧)であり、現状よく用いられている0.4MPa(ゲージ圧)耐圧仕様の成形機の仕様ぎりぎりのレベルである。また、表面美麗性に関して特段の記載はない。
Furthermore, in Patent Document 6, by using a polypropylene resin containing 1-butene as a comonomer, resin expanded particles having a high tensile elastic modulus, that is, rigidity with respect to the resin melting point are obtained, and by using this, A technique is disclosed in which an in-mold foam molded body having high rigidity can be obtained.
However, with regard to the technique described in Patent Document 6, the pressure of the heating steam necessary for in-mold foam molding is around 0.4 MPa (gauge pressure), which is a relatively low molding heating steam pressure compared to other techniques. Although it is, the lowest one of the examples being implemented is 0.36 MPa (gauge pressure), which is a level just below the specifications of a molding machine of 0.4 MPa (gauge pressure) pressure resistance specification that is often used at present. . Moreover, there is no special description regarding the surface beauty.

さらに、特許文献7には、1−ブテン成分量を3〜12重量%含むプロピレン・1−ブテンランダム共重合体を基材樹脂とするポリプロピレン系樹脂発泡粒子を用いることにより、高い剛性を持つポリプロピレン系樹脂発泡成形体が得られる技術が開示されている。特許文献7記載の技術を用いた場合、成形加熱蒸気の圧力が0.3MPa(ゲージ圧)前後と現状よく用いられる0.4MPa(ゲージ圧)耐圧仕様の成形機でも成形可能であると記載されている。
しかし、特許文献7記載の実施例を見ると、0.3MPa(ゲージ圧)前後の成形加熱蒸気圧力で得られる型内発泡成形体の剛性は、JIS K6767に準じて、20℃で測定した圧縮歪50%時の圧縮強度が6.2kg/cmであり、高い剛性を求める用途には十分ではない。
Furthermore, Patent Document 7 discloses a polypropylene having high rigidity by using polypropylene-based resin expanded particles whose base resin is a propylene / 1-butene random copolymer containing 3 to 12% by weight of 1-butene component. A technique for obtaining a resin-based foamed molded article is disclosed. When the technique described in Patent Document 7 is used, it is described that molding can be performed even with a molding machine having a pressure resistance of 0.4 MPa (gauge pressure), which is often used at present, and a pressure of molding heating steam around 0.3 MPa (gauge pressure). ing.
However, when the Example of patent document 7 is seen, the rigidity of the in-mold foaming molding obtained with the shaping | molding heating steam pressure of about 0.3 MPa (gauge pressure) is the compression measured at 20 degreeC according to JISK6767. The compressive strength at a strain of 50% is 6.2 kg / cm 2 , which is not sufficient for applications requiring high rigidity.

また、エチレン成分を含まない1−ブテン単独系のポリプロピレン系樹脂ランダム共重合体は、エチレン成分を含むポリプロピレン系樹脂ランダム共重合体に比べて硬くもろい性質があり、この性質が発泡体の基材樹脂として用いた場合に、圧縮後の寸法回復性や、低温領域での衝撃特性が劣る性質となる。ポリプロピレン系樹脂発泡成形体は、同じ型内発泡成形体であるポリスチレン系樹脂発泡成形体と比べ、剛性面では劣るものの、繰り返し衝撃への耐性や柔軟性に優位性があり、これをもって緩衝包装材などに用いられている面もある。このため、特許文献7に記載の技術は、剛性のみを目的とする用途以外の一般的な緩衝包装用途には向いていないという欠点もある。   Further, a 1-butene homopolypropylene resin random copolymer containing no ethylene component has a harder and more brittle property than a polypropylene resin random copolymer containing an ethylene component, and this property is a base material of a foam. When it is used as a resin, it has properties that are poor in dimensional recovery after compression and impact properties in a low temperature region. Polypropylene resin foam molded products are superior to polystyrene resin foam molded products, which are the same in-mold foam molded products, in terms of rigidity, but have superior resistance to repeated impacts and flexibility. Some aspects are used for such purposes. For this reason, the technique described in Patent Document 7 also has a drawback that it is not suitable for general buffer packaging applications other than applications intended only for rigidity.

以上のように、高い剛性が必要とされる用途には、高い成形加熱蒸気圧力に耐えうる特殊な成形機を使用している現状がある。しかし、成形機の耐圧性能を上げるためには、成形機の強度を高めるため装置を大型にする必要があり、また金型も肉厚にする必要があるため、装置コストがかなり上昇するという短所がある。   As described above, there is a current situation in which special molding machines that can withstand high molding heating steam pressure are used in applications that require high rigidity. However, in order to increase the pressure resistance of the molding machine, it is necessary to increase the size of the machine in order to increase the strength of the molding machine, and it is also necessary to increase the thickness of the mold. There is.

また、成形加熱蒸気の圧力を上げるということは、成形時の加熱に必要な蒸気量も増加することとなり、これを冷却するための冷却水量が増加するなどユーティリティコストも上昇する。さらに、より高温に加熱するために成形時の加熱時間が長くなり、さらに加熱された金型を冷却水で冷却する工程にもより長い時間を必要とするため、製品あたりの生産サイクルが長くなり生産性が悪化する。さらには、型内発泡成形では金型形状が複雑であるため、形状によっては、成形加熱時に金型の一部に応力が集中し、金型が破損することもあり、さらにコストアップの原因となる。   In addition, increasing the pressure of the molding heating steam increases the amount of steam necessary for heating during molding, which increases the utility cost, for example, increasing the amount of cooling water for cooling this. Furthermore, the heating time at the time of molding becomes longer in order to heat to a higher temperature, and more time is required for the process of cooling the heated mold with cooling water, so the production cycle per product becomes longer. Productivity deteriorates. Furthermore, since the mold shape is complicated in in-mold foam molding, depending on the shape, stress may concentrate on a part of the mold during molding heating, and the mold may be damaged. Become.

以上のように、型内発泡成形において成形加熱蒸気圧力が高いということは様々な欠点を有しており、できる限り低い成形加熱蒸気圧力で成形できることが望ましい。既存技術の範疇では、現状多く用いられている0.4MPa(ゲージ圧)耐圧仕様の成形機にて安定生産でき、かつ高い剛性を持つ型内発泡成形用ポリプロピレン系樹脂発泡粒子を得ることは困難である。さらには、型内発泡成形体の表面美麗性を満足する技術に関しては、現状存在しないと言わざるをえない。   As described above, the high molding heating steam pressure in the in-mold foam molding has various drawbacks, and it is desirable that molding can be performed with the lowest possible molding heating steam pressure. In the category of existing technology, it is difficult to obtain polypropylene-based resin foam particles for in-mold foam molding with high rigidity that can be stably produced with a molding machine with 0.4 MPa (gauge pressure) pressure resistance specifications that are widely used at present. It is. Furthermore, it must be said that there is no present state of the technology that satisfies the surface beauty of the in-mold foam molded article.

また、異なる物性の樹脂を混合して用いることにより、新たな特性を樹脂に持たせる技術も開発されている。   In addition, a technique for imparting new characteristics to a resin by using a mixture of resins having different physical properties has been developed.

特許文献8には、MFR6〜10g/10分のポリプロピレン系樹脂90〜10重量%と、MFR0.5〜3g/10分ポリプロピレン系樹脂10〜90重量%を混合した樹脂からなり、混合樹脂のMFRが2〜5g/10分になることを特徴とするポリプロピレン系樹脂発泡粒子が記載されている。該発泡粒子を用いると、成形体の表面性、融着が良好で成形体にヒケが無く、成形時間の短い成形体が得られることが記載されている。しかしながら、該公報では主に成形時間について効果を示しており、特に剛性については言及されていない。さらに、該公報には成形体のヒケという視点での評価はあるものの、表面美麗性に関して特段の記述は無い。   Patent Document 8 includes a resin in which 90 to 10% by weight of a polypropylene resin of MFR 6 to 10 g / 10 min and 10 to 90% by weight of a polypropylene resin MFR 0.5 to 3 g / 10 min are mixed, and the MFR of the mixed resin. Polypropylene-based resin expanded particles, characterized in that is 2 to 5 g / 10 min. It is described that when the foamed particles are used, it is possible to obtain a molded product having good surface properties and fusion of the molded product, no sink marks on the molded product, and a short molding time. However, the gazette mainly shows the effect on the molding time, and does not particularly mention the rigidity. Furthermore, although the publication has an evaluation from the viewpoint of sink marks of the molded article, there is no particular description regarding the surface beauty.

特許文献9には、特定のメルトフローレート、融点、および曲げ弾性率を有するエチレン−プロピレン−ブテンランダム共重合体を基材樹脂とするポリプロピレン系樹脂発泡粒子が開示されており、一段発泡粒子内に内圧を付与した後、蒸気で加熱する二段発泡法により得られた二段発泡粒子についても記載されている。そして、このような二段発泡粒子は、低い加熱蒸気圧にて成形できることが記載されている。
しかしながら、特許文献9の技術においては、基材樹脂の融点が145℃以下であることから、剛性が要求される用途への適用は困難である。また、このような二段発泡粒子が、厚みが異なる部位を有するポリプロピレン系樹脂型内発泡成形体とした際に、肉厚部の融着性が良好となり、かつ、薄肉部の表面美麗性も優れることについては言及されていない。
Patent Document 9 discloses polypropylene-based resin expanded particles having an ethylene-propylene-butene random copolymer having a specific melt flow rate, melting point, and flexural modulus as a base resin. Also described is a two-stage expanded particle obtained by a two-stage expansion method in which an internal pressure is applied to the container and then heated with steam. It is described that such two-stage expanded particles can be molded with a low heating vapor pressure.
However, in the technique of Patent Document 9, since the melting point of the base resin is 145 ° C. or less, it is difficult to apply to applications that require rigidity. In addition, when such a two-stage expanded particle is formed into a polypropylene resin-in-mold foam-molded body having portions with different thicknesses, the fusion property of the thick part becomes good, and the surface beauty of the thin part is also improved. There is no mention of superiority.

特開2000−108134号公報JP 2000-108134 A 特開平8−277340号公報JP-A-8-277340 特開平10−45938号公報Japanese Patent Laid-Open No. 10-45938 特開平10−316791号公報Japanese Patent Laid-Open No. 10-316791 特開平11−156879号公報JP-A-11-156879 特開平7−258455号公報JP 7-258455 A 特開平1−242638号公報JP-A-1-242638 特開2000−327825号公報JP 2000-327825 A 特開2009−280783号公報JP 2009-280783 A

本発明は、高剛性を有するポリプロピレン系樹脂発泡粒子の型内発泡成形において、成形圧力を大幅に低下可能で、現状多く用いられている0.4MPa(ゲージ圧)耐圧仕様の成形機でも安定的に生産でき、剛性が高く、型内発泡成形体内部の融着に優れ、かつ表面美麗性の高い型内発泡成形体が得られるポリプロピレン系樹脂発泡粒子を提供するものである。   The present invention can greatly reduce the molding pressure in in-mold foam molding of polypropylene-based resin foam particles having high rigidity, and is stable even in a molding machine with a 0.4 MPa (gauge pressure) pressure resistance specification that is widely used at present. It is possible to provide polypropylene-based resin foamed particles that can be produced in a mold, have high rigidity, are excellent in fusion within the in-mold foam-molded body, and have a high surface beauty.

本発明者は、上記課題に鑑みて鋭意研究した結果、ポリプロピレン系樹脂発泡粒子の示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピーク(融解熱量領域)と高温側融解ピーク(融解熱量領域)の2つの融解ピーク(融解熱量領域)を有し、さらに、前記低温側融解ピーク(融解熱量領域)に、DSC曲線の微分曲線中に極大値を有するポリプロピレン系樹脂発泡粒子を使用して型内発泡成形を行うことにより、上記課題が解決することを見出し、本発明の完成に至った。   As a result of diligent research in view of the above problems, the present inventor has found that a low temperature side melting peak (melting calorie region) and a high temperature side melting peak (DSC curve) obtained by differential scanning calorimetry (DSC) of polypropylene resin expanded particles (high temperature side melting peak) Polypropylene resin foam particles having two melting peaks (melting calorie region) in the melting calorie region and having a maximum value in the differential curve of the DSC curve at the low-temperature side melting peak (melting calorie region) Then, by performing in-mold foam molding, it was found that the above problems were solved, and the present invention was completed.

すなわち本発明は以下の構成よりなる。
[1] プロピレンに共重合されるコモノマーとして、1−ブテンおよびエチレンを含み、1−ブテン含量とエチレン含量の総和が1.0重量%以上、且つ、1−ブテン含量が6.0重量%以下、エチレン含量が3.0重量%以下であり、かつ融点が140℃以上155℃以下であるポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂発泡粒子であって、
発泡倍率が20倍以上60倍以下であり、
10℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解熱量領域(Ql)と高温側融解熱量領域(Qh)の2つの領域を有し、
高温側融解熱量の比率(Qh/(Ql+Qh)×100)(%)が10%以上30%以下であり、且つ、20℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線の微分曲線中に、105℃以上120℃以下の間に極大値を有することを特徴とする、ポリプロピレン系樹脂発泡粒子。
[2] 基材樹脂としてのポリプロピレン系樹脂の融点が、147℃以上153℃以下であることを特徴とする、[1]記載のポリプロピレン系樹脂発泡粒子。
[3] 少なくとも2回の発泡工程を経て得られることを特徴とする、[1]あるいは[2]に記載のポリプロピレン系樹脂発泡粒子。
[4] [1]〜[3]の何れか一項に記載のポリプロピレン系樹脂発泡粒子を、型内発泡成形してなることを特徴とする、ポリプロピレン系樹脂型内発泡成形体。
[5] 固定型と移動型の金型を用いて得られる型内発泡成形体において、ポリプロピレン系樹脂発泡粒子を金型内に充填した場合にいずれか一方の型のみで形が形成される部位を有することを特徴とする、[4]記載のポリプロピレン系樹脂型内発泡成形体。
[6] 固定型と移動型の金型を用いて得られる型内発泡成形体において、ポリプロピレン系樹脂発泡粒子を金型内に充填した場合にいずれか一方の型のみで形が形成される部位の形状が、前記部位から最も大きい球を切り出す際に、直径20mm以上100mm以下の球を切り出すことができる形状であることを特徴とする、[5]記載のポリプロピレン系樹脂型内発泡成形体。
[7]底面と底面周縁立ち壁部からなり、物品収納可能な内部を有するポリプロピレン系樹脂型内発泡成形体であって、
内部底面に少なくとも1つの立ち壁部を有し、
内部底面立ち壁部の厚みが、底面周縁立ち壁部厚みの1.2倍以上5倍以下であり、
内部底面立ち壁部の高さが、底面の厚みの2倍以上30倍以下であることを特徴とする、[5]あるいは[6]記載のポリプロピレン系樹脂型内発泡成形体。
[8] 内部底面の立ち壁部が、物品収納可能な内部を区画する為の立ち壁部であることを特徴とする、[7]記載のポリプロピレン系樹脂型内発泡成形体。
[9] 内部底面の立ち壁部の高さ方向の延長線上に、充填機先端の転写跡が残っていることを特徴とする、[7]あるいは[8]に記載のポリプロピレン系樹脂型内発泡成形体。
[10] ポリプロピレン系樹脂型内発泡成形体が、ラゲッジボックスであることを特徴とする、[7]〜[9]の何れか一項に記載のポリプロピレン系樹脂型内発泡成形体。
That is, the present invention has the following configuration.
[1] As a comonomer copolymerized with propylene, it contains 1-butene and ethylene, the sum of 1-butene content and ethylene content is 1.0 wt% or more, and 1-butene content is 6.0 wt% or less The polypropylene resin expanded particles having a base resin of a polypropylene resin having an ethylene content of 3.0% by weight or less and a melting point of 140 ° C. or higher and 155 ° C. or lower,
The expansion ratio is 20 times or more and 60 times or less,
In a DSC curve obtained by differential scanning calorimetry (DSC) in which the temperature is raised from 40 ° C. to 220 ° C. at a rate of temperature increase of 10 ° C./minute, the low temperature side melting calorie region (Ql) and the high temperature side melting calorie region (Qh) Have two areas,
The differential in which the ratio (Qh / (Ql + Qh) × 100) (%) of the high temperature side heat of fusion is 10% or more and 30% or less and the temperature is increased from 40 ° C. to 220 ° C. at a temperature increase rate of 20 ° C./min. Polypropylene resin foamed particles having a maximum value between 105 ° C. and 120 ° C. in a differential curve of a DSC curve obtained by scanning calorimetry (DSC).
[2] The polypropylene resin expanded particles according to [1], wherein the polypropylene resin as the base resin has a melting point of 147 ° C. or higher and 153 ° C. or lower.
[3] The polypropylene resin foamed particles according to [1] or [2], which are obtained through at least two foaming steps.
[4] A polypropylene resin-in-mold foam-molded article obtained by foam-molding the polypropylene-based resin foam particles according to any one of [1] to [3].
[5] In an in-mold foam-molded product obtained using a fixed mold and a movable mold, when a polypropylene resin expanded particle is filled in a mold, the shape is formed only by one of the molds. The polypropylene resin-in-mold foam-molded article according to [4], characterized by comprising:
[6] In an in-mold foam molded product obtained using a fixed mold and a movable mold, when a polypropylene resin foam particle is filled in a mold, a part is formed by only one of the molds. The polypropylene resin in-mold foam-molded article according to [5], wherein when the largest sphere is cut out from the part, a sphere having a diameter of 20 mm or more and 100 mm or less can be cut out.
[7] A polypropylene resin-in-mold foam-molded article comprising a bottom surface and a bottom peripheral edge standing wall portion and having an interior capable of storing articles,
Having at least one standing wall on the inner bottom surface;
The thickness of the internal bottom standing wall is 1.2 times or more and 5 times or less the bottom peripheral edge standing wall thickness,
The polypropylene resin-in-mold foam-molded article according to [5] or [6], wherein the height of the internal bottom standing wall portion is not less than 2 times and not more than 30 times the thickness of the bottom surface.
[8] The polypropylene resin-in-mold foam-molded molded product according to [7], wherein the standing wall portion on the inner bottom surface is a standing wall portion for partitioning an interior in which articles can be stored.
[9] The foaming in the polypropylene resin mold according to [7] or [8], wherein a transfer mark at the tip of the filling machine remains on an extension line in the height direction of the standing wall portion on the inner bottom surface. Molded body.
[10] The polypropylene resin-in-mold foam-molded product according to any one of [7] to [9], wherein the polypropylene-based resin mold-in-mold foam-molded product is a luggage box.

本発明のポリプロピレン系樹脂発泡粒子を型内発泡成形に用いることにより、成形圧力を大幅に低下させることが可能であり、現状多く用いられている0.4MPa(ゲージ圧)耐圧仕様の成形機でも安定的に生産でき、剛性が高く、型内発泡成形体内部の融着に優れ、かつ、表面美麗性の優れた型内発泡成形体が得ることができる。特に、肉厚部と薄肉部とが混在する型内発泡成形体において、肉厚部内部の融着性が良好であると共に、薄肉部の表面美麗性も良好な型内発泡成形体を得ることが可能となる。   By using the polypropylene resin foamed particles of the present invention for in-mold foam molding, the molding pressure can be greatly reduced. Even with a molding machine with a 0.4 MPa (gauge pressure) pressure resistance specification, which is currently widely used, An in-mold foam-molded article that can be stably produced, has high rigidity, is excellent in fusion within the in-mold foam-molded body, and has excellent surface beauty can be obtained. In particular, in an in-mold foam molded article in which a thick part and a thin part are mixed, an in-mold foam molded article having good fusion properties inside the thick part and good surface beauty of the thin part is obtained. Is possible.

本発明のポリプロピレン系樹脂発泡粒子の、10℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)より得られるDSC曲線(温度vs吸熱量)の一例である。DSC曲線は、低温側融解熱領域と高温側融解熱領域の2つの融解熱量領域を有している。An example of a DSC curve (temperature vs. endothermic amount) obtained from differential scanning calorimetry (DSC) in which the temperature of the polypropylene resin expanded particle of the present invention is increased from 40 ° C. to 220 ° C. at a rate of temperature increase of 10 ° C./min. is there. The DSC curve has two regions of heat of fusion, a low temperature side heat of fusion region and a high temperature side heat of fusion region. ポリプロピレン系樹脂発泡粒子の、20℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)より得られるDSC曲線の微分曲線(温度vs吸熱量の微分量)の一例である。本発明のポリプロピレン系樹脂発泡粒子に関する曲線Aでは、105℃以上120℃以下の範囲内に極大値(点E)が存在し、従来のポリプロピレン系樹脂発泡粒子に関する曲線Bでは、極大値が存在しない。Differential curve of DSC curve (differential amount of temperature vs. endotherm) obtained from differential scanning calorimetry (DSC) of polypropylene-based resin expanded particles heated from 40 ° C. to 220 ° C. at a rate of temperature increase of 20 ° C./min. It is an example. In the curve A related to the expanded polypropylene resin particles of the present invention, there is a maximum value (point E) in the range of 105 ° C. or more and 120 ° C. or less, and in the curve B related to the conventional expanded polypropylene resin particles, there is no maximum value. . ポリプロピレン系樹脂の融点を求めるために、示差走査熱量測定(DSC)において、10℃/分の昇温速度での40℃から220℃までの昇温、10℃/分の降温速度での220℃から40℃までの降温、10℃/分の昇温速度での40℃から220℃までの昇温の操作を行った2回目の昇温時のDSC曲線の一例である。In order to determine the melting point of the polypropylene resin, in differential scanning calorimetry (DSC), the temperature was increased from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min, and the temperature was 220 ° C. at a temperature decrease rate of 10 ° C./min. It is an example of the DSC curve at the time of the 2nd temperature increase which performed operation of temperature increase from 40 degreeC to 220 degreeC at the temperature increase rate of 10 degreeC / min. 本願実施例および比較例で用いた肉厚部と薄肉部とが混在するポリプロピレン系樹脂型内発泡成形体であり、具体的には、箱型の内部底面に立ち壁部が設けられた箱型の型内発泡成形体である。It is a polypropylene-based resin-molded foam-molded body in which a thick part and a thin part used in Examples and Comparative Examples of the present application are mixed, specifically, a box type in which a standing wall part is provided on the inner bottom surface of the box type This is an in-mold foam molded article. 図4に例示したポリプロピレン系樹脂型内発泡成形体の型内発泡成形工程において、充填機を通してポリプロピレン系樹脂発泡粒子(格子部)を固定型(右上がり斜線部として示す)と移動型(右下がり斜線部として示す)からなる金型に充填した場合の断面を示す一例である(ただし、金型を搭載する型内発泡成形機は図示せず。)。In the in-mold foam molding process of the polypropylene resin in-mold foam illustrated in FIG. 4, the polypropylene resin foam particles (lattice part) are passed through a filling machine and the fixed mold (shown as a right-upward slanted part) and the movable mold (down-right). It is an example which shows the cross section at the time of filling the metal mold | die consisting of a hatched part (however, the in-mold foam molding machine which mounts a metal mold | die is not shown in figure). 図5の要部を拡大すると共に、型内発泡成形する際の水蒸気の流れを示した一例である。It is an example which expanded the principal part of FIG. 5, and showed the flow of the water vapor | steam at the time of in-mold foam molding.

本発明のポリプロピレン系樹脂発泡粒子では、10℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)した際に得られるDSC曲線において、図1に示されるように、全融解熱量は、低温側融解熱量領域と高温側融解領域の2つの融解熱量領域に分けられる。   In the expanded polypropylene resin particles of the present invention, a DSC curve obtained when differential scanning calorimetry (DSC) is performed at a temperature rising rate of 10 ° C./min from 40 ° C. to 220 ° C. is shown in FIG. As described above, the total heat of fusion is divided into two heat of fusion regions, a low temperature side heat of fusion region and a high temperature side heat of fusion region.

なお、本発明においては、全融解熱量(Q)、低温側融解熱量(Ql)および高温側融解熱量(Qh)を、次のように定義する。
低温側融解熱量(Ql)および高温側融解熱量(Qh)の和である全融解熱量(Q)とは、得られるDSC曲線において、低温側融解熱が開始する温度100℃での吸熱量(点A)から、高温側融解が終了する温度での吸熱量(点B)を結ぶ線分ABを引き、線分ABとDSC曲線で囲まれた部分である。
DSC曲線の低温側融解熱量および高温側融解熱量の2つの融解熱量領域の間の最も吸熱量が小さくなる点を点Cとし、点Cから線分ABへ垂直に上げて交わる点をDとした時、線分ADと線分CDとDSC曲線で囲まれた部分が、低温側融解熱量(Ql)であり、線分BDと線分CDとDSC曲線で囲まれた部分が高温側融解熱量(Qh)である。
In the present invention, total heat of fusion (Q), low temperature side heat of fusion (Ql), and high temperature side heat of fusion (Qh) are defined as follows.
The total heat of fusion (Q), which is the sum of the low-temperature side heat of fusion (Ql) and the high-temperature side heat of fusion (Qh), is the endotherm at a temperature of 100 ° C. at which the low-temperature side heat of fusion starts in the obtained DSC curve. A line segment AB connecting the endothermic amount (point B) at the temperature at which the high temperature side melting ends is drawn from A), and is a part surrounded by the line segment AB and the DSC curve.
The point at which the endotherm between the two melting calorie regions of the low temperature side melting calorie and the high temperature side calorie of the DSC curve becomes the smallest is point C, and the point that intersects perpendicularly from the point C to the line segment AB is D. The part surrounded by line segment AD, line segment CD, and DSC curve is the low temperature side heat of fusion (Ql), and the part surrounded by line segment BD, line segment CD, and DSC curve is the high temperature side heat of fusion ( Qh).

本発明のポリプロピレン系樹脂発泡粒子において、高温側融解熱量(Qh)の比率[=Qh/(Ql+Qh)×100(%)](以下、「高温熱量比」という場合がある)の値としては、10%以上30%以下、より好ましくは15%以上25%以下であり、より好ましくは、15%以上20%以下である。
高温熱量比が10%未満の場合、型内発泡成形で得られる成形体の圧縮強度が低く実用強度が低下する傾向がある。また、高温熱量比が30%を超える場合は、型内発泡成形で得られる発泡体の圧縮強度が高くなるが、ポリプロピレン系樹脂発泡粒子の発泡力が低すぎ、型内発泡成形体全体が融着不良となる、あるいは、融着させるために高い成形圧が必要となる傾向がある。
In the polypropylene resin expanded particles of the present invention, the value of the ratio of the high temperature side heat of fusion (Qh) [= Qh / (Ql + Qh) × 100 (%)] (hereinafter sometimes referred to as “high temperature heat quantity ratio”) It is 10% or more and 30% or less, more preferably 15% or more and 25% or less, and more preferably 15% or more and 20% or less.
When the high temperature calorie ratio is less than 10%, the compression strength of the molded product obtained by in-mold foam molding tends to be low and the practical strength tends to decrease. When the high temperature heat ratio exceeds 30%, the compression strength of the foam obtained by in-mold foam molding increases, but the foaming force of the polypropylene resin foamed particles is too low, and the entire in-mold foam molded body melts. There is a tendency that a poor molding or a high molding pressure is required for fusing.

本発明のポリプロピレン系樹脂発泡粒子の発泡倍率は、20倍以上60倍以下であり、好ましくは30倍以上50倍以下である。
ポリプロピレン系樹脂発泡粒子の発泡倍率が20倍未満では、低温側熱量領域のDSC曲線の微分曲線中に極小値を有するポリプロピレン系樹脂発泡粒子を得ることが困難となり、型内発泡体を得る成形圧が高くなる傾向がある。また、発泡倍率が60倍を超えると、型内発泡成形して得られるポリプロピレン系樹脂型内発泡成形体の圧縮強度、等の実用機械特性が低下する傾向がある。
The expansion ratio of the expanded polypropylene resin particles of the present invention is 20 times or more and 60 times or less, preferably 30 times or more and 50 times or less.
When the expansion ratio of the polypropylene resin expanded particles is less than 20 times, it becomes difficult to obtain polypropylene resin expanded particles having a minimum value in the differential curve of the DSC curve in the low-temperature side calorie region, and the molding pressure for obtaining the in-mold foam Tend to be higher. On the other hand, when the expansion ratio exceeds 60 times, the practical mechanical properties such as the compression strength of the polypropylene resin in-mold foam molded product obtained by in-mold foam molding tend to be lowered.

なお、本発明において、ポリプロピレン系樹脂発泡粒子の発泡倍率とは、ポリプロピレン系樹脂発泡粒子の重量w(g)を測定後、水没法にて体積v(cm)を測定し、ポリプロピレン系樹脂発泡粒子の真比重ρb=w/vを求め、発泡前のポリプロピレン系樹脂粒子の密度ρr(本願では0.9g/cmとする)との比(ρr/ρb)である。 In the present invention, the expansion ratio of the expanded polypropylene resin particles means that after measuring the weight w (g) of the expanded polypropylene resin particles, the volume v (cm 3 ) is measured by a submersion method, and expanded polypropylene resin foam. The true specific gravity ρb = w / v of the particles is obtained, and is the ratio (ρr / ρb) to the density ρr (0.9 g / cm 3 in the present application) of the polypropylene resin particles before foaming.

本発明のポリプロピレン系樹脂発泡粒子において、最も重要な点は、20℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線の微分曲線において、105℃以上120℃以下の間に極大値を有することである。   In the expanded polypropylene resin particles of the present invention, the most important point is the differential curve of the DSC curve obtained by differential scanning calorimetry (DSC) in which the temperature is raised from 40 ° C. to 220 ° C. at a rate of temperature increase of 20 ° C./min. The maximum value between 105 ° C. and 120 ° C.

本発明におけるポリプロピレン系樹脂発泡粒子のDSC曲線の微分曲線は、図2に示すように、前記低温側融解熱量領域に、極大値(点E)を有している。極大値(点E)は、ポリプロピレン系樹脂粒子にかかる熱履歴温度を示し、型内成形体を得る成形圧に大きく影響しており、微分曲線の極大値を示す温度は、105℃以上120℃以下であることが好ましく、110℃以上115℃以下であることがより好ましい。   As shown in FIG. 2, the differential curve of the DSC curve of the polypropylene resin expanded particles in the present invention has a maximum value (point E) in the low-temperature side melting heat amount region. The maximum value (point E) indicates the heat history temperature applied to the polypropylene resin particles and greatly affects the molding pressure for obtaining the molded product in the mold, and the temperature indicating the maximum value of the differential curve is 105 ° C. or higher and 120 ° C. The temperature is preferably 110 ° C. or higher and more preferably 110 ° C. or higher and 115 ° C. or lower.

微分曲線での極大値を示す温度が105℃未満の場合、得られるポリプロピレン系樹脂型内発泡成形体の融着不良となったり、融着させるために、高い成形圧が必要となる傾向がある。一方、極大値を示す温度が120℃を超える場合、ポリプロピレン系樹脂発泡粒子中のセル膜が破泡し、得られる成形体の収縮率が大きく、大きなシワを発生し、良好な成形体を得ることができない傾向がある。   When the temperature showing the maximum value in the differential curve is less than 105 ° C., the resulting polypropylene resin in-mold foam molded product tends to be poorly fused or requires a high molding pressure to be fused. . On the other hand, when the temperature showing the maximum value exceeds 120 ° C., the cell membrane in the polypropylene resin expanded particles breaks down, the resulting molded product has a large shrinkage rate, generates large wrinkles, and obtains a good molded product. There is a tendency to not be able to.

本発明における、低温側融解熱量領域において、DSC曲線の微分曲線中に極大値を有するポリプロピレン系樹脂発泡粒子は、例えば、次のような方法を組み合わせることによって、容易に得ることができる。
(1)一旦、ポリプロプレン系樹脂発泡粒子を得た後、無機ガス(例えば、空気、窒素、二酸化炭素等)を含浸して内圧を付与した後、特定の圧力の水蒸気と接触させるといった、少なくとも2回の発泡工程を経る方法、
(2)グリセリン、ポリエチレングリコール、炭素数が10以上25以下の脂肪酸のグリセリンエステルよりなる群、或いは、メラミン、イソアヌル酸等の吸水性物質、から選ばれる少なくとも1種の親水性化合物を0.05重量%以上2重量%以下含んでなるポリプロピレン系樹脂粒子を、加熱水蒸気中に発泡させる方法、
(3)複数のポリプロピレン系樹脂をブレンドしたポリプロピレン系樹脂粒子を原料として、加熱水蒸気中に発泡する方法、等が挙げられる。
In the low temperature side melting calorie | heat amount area | region in this invention, the polypropylene resin expanded particle which has the maximum value in the differential curve of a DSC curve can be easily obtained by combining the following methods, for example.
(1) After obtaining expanded polypropylene resin particles, after impregnating with an inorganic gas (for example, air, nitrogen, carbon dioxide, etc.) and applying an internal pressure, at least contact with water vapor at a specific pressure. A method through two foaming steps,
(2) 0.05 or more of at least one hydrophilic compound selected from the group consisting of glycerin, polyethylene glycol, a glycerin ester of a fatty acid having 10 to 25 carbon atoms, or a water-absorbing substance such as melamine and isoanuric acid. A method of foaming polypropylene-based resin particles comprising 2% by weight to 2% by weight in heated steam;
(3) A method of foaming into heated steam using, as a raw material, polypropylene resin particles obtained by blending a plurality of polypropylene resins can be mentioned.

本発明のポリプロピレン系樹脂発泡粒子の基材樹脂としてのポリプロピレン系樹脂は、プロピレンにコモノマーとして、1−ブテンおよびエチレンを含んだ共重合体樹脂である。
ただし、1−ブテンおよびエチレン以外のコモノマーを含んでいてもよく、このような共重合可能なコモノマーとしては、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。
これらは、単独で使用されてもよいし、併用されてもよい。
The polypropylene resin as the base resin of the expanded polypropylene resin particles of the present invention is a copolymer resin containing 1-butene and ethylene as propylene as a comonomer.
However, it may contain a comonomer other than 1-butene and ethylene. Examples of the copolymerizable comonomer include isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl- 1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene and other α-olefins having 2 or 4 to 12 carbon atoms, cyclopentene, norbornene Cyclic olefins such as tetracyclo [6,2,11,8,13,6] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1, Dienes such as 4-hexadiene and 7-methyl-1,6-octadiene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate , Acrylic acid, methacrylic acid, maleic acid, ethyl acrylate, butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, and vinyl monomers such as divinylbenzene.
These may be used alone or in combination.

ただし、ポリプロピレン系樹脂発泡粒子を得る際の発泡性や、ポリプロピレン系樹脂型内発泡成形体とした際の表面美麗性が優れる点からは、コモノマーとして、1−ブテンおよびエチレンのみを用いることが好ましい。   However, it is preferable to use only 1-butene and ethylene as a comonomer from the viewpoint of excellent foamability when obtaining polypropylene resin foamed particles and excellent surface beauty when formed into a polypropylene resin mold. .

本発明のポリプロピレン系樹脂発泡粒子に用いられる基材樹脂としては、コモノマーとして、少なくとも1−ブテンおよびエチレンを含み、1−ブテン含量およびエチレン含量の総和が1.0重量%以上であり、且つ、1−ブテン含量が6.0重量%以下、エチレン含量が3.0重量%以下であり、融点が140℃以上155℃以下であるポリプロピレン系樹脂である。   The base resin used for the expanded polypropylene resin particles of the present invention includes at least 1-butene and ethylene as a comonomer, and the total 1-butene content and ethylene content is 1.0% by weight or more, and A polypropylene resin having a 1-butene content of 6.0% by weight or less, an ethylene content of 3.0% by weight or less, and a melting point of 140 ° C. or more and 155 ° C. or less.

1−ブテン含有量およびエチレン含有量の総和が1重量%未満のポリプロピレン系樹脂は、融点が160℃を超える樹脂であり、得られる発泡粒子を型内発泡成形しても、成形圧が0.40MPa(ゲージ圧)を超えてしまい、成形が困難な場合がある。また、仮に得られる発泡粒子に対して成形圧0.40MPa(ゲージ圧)以下で型内発泡成形を実施しても、得られる成形体の外観は著しく損なう傾向がある。   A polypropylene resin having a sum of 1-butene content and ethylene content of less than 1% by weight is a resin having a melting point exceeding 160 ° C. Even when the obtained expanded particles are subjected to in-mold foam molding, the molding pressure is 0. The pressure may exceed 40 MPa (gauge pressure), and molding may be difficult. In addition, even if the foamed particles obtained are subjected to in-mold foam molding at a molding pressure of 0.40 MPa (gauge pressure) or less, the appearance of the resulting molded product tends to be significantly impaired.

本発明のポリプロピレン系樹脂発泡粒子に用いられる基材樹脂中の1−ブテン含量としては、6.0重量%以下であるが、3.0重量%以上5.0重量%以下がさらに好ましい。1−ブテン含量が6.0重量%を超えると、基材樹脂の融点が140℃未満となり、型内発泡成形時の水蒸気加熱圧は低下するものの、ポリプロピレン系樹脂自体の剛性が弱くなり、実用剛性を満足しなくなる傾向がある。   The 1-butene content in the base resin used for the expanded polypropylene resin particles of the present invention is 6.0% by weight or less, more preferably 3.0% by weight or more and 5.0% by weight or less. When the 1-butene content exceeds 6.0% by weight, the melting point of the base resin becomes less than 140 ° C., and the steam heating pressure at the time of in-mold foam molding is reduced, but the rigidity of the polypropylene resin itself becomes weak and practical. There is a tendency not to satisfy rigidity.

本発明のポリプロピレン系樹脂発泡粒子に用いられる基材樹脂中のエチレン含量としては、3.0重量%以下であるが1.0重量%以下が好ましく、0.2重量%以上1.0重量%以下がさらに好ましい。
エチレン含量が3.0重量%を超えると、発泡成形体の剛性(圧縮強度)が低くなり、自動車部材等での実用剛性に耐えなくなる傾向がある。
また、基材樹脂の融点としては、高い剛性を確保しつつ、低い成形圧を達成する観点からは、146℃以上154℃以下がより好ましく、147℃以上153℃以下が最も好ましい。
The ethylene content in the base resin used in the polypropylene resin expanded particles of the present invention is 3.0% by weight or less, preferably 1.0% by weight or less, and 0.2% by weight or more and 1.0% by weight. The following is more preferable.
When the ethylene content exceeds 3.0% by weight, the rigidity (compression strength) of the foamed molded product tends to be low, and there is a tendency that it cannot withstand the practical rigidity of automobile members and the like.
Further, the melting point of the base resin is preferably 146 ° C. or higher and 154 ° C. or lower, and most preferably 147 ° C. or higher and 153 ° C. or lower from the viewpoint of achieving a low molding pressure while ensuring high rigidity.

なお、上述のような、特定の1−ブテン含量やエチレン含量であり、特定の融点を有するポリプロピレン系樹脂は、ポリプロピレン系樹脂メーカーのカタログや情報に基づき選定可能であり、また、ポリプロピレン系樹脂メーカーに依頼することにより、公知の技術により生産することが可能である。   The polypropylene resin having a specific 1-butene content or ethylene content and having a specific melting point as described above can be selected based on a catalog or information of a polypropylene resin manufacturer, and a polypropylene resin manufacturer. Can be produced by a known technique.

本発明で用いられる基材樹脂としてのポリプロピレン系樹脂は、無架橋の状態が好ましいが、有機過酸化物や放射線により架橋させても良い。   The polypropylene resin as the base resin used in the present invention is preferably in an uncrosslinked state, but may be crosslinked with an organic peroxide or radiation.

本発明で用いられる基材樹脂としてのポリプロピレン系樹脂は、ポリプロピレン系樹脂と混合使用可能な他の熱可塑性樹脂、例えば低密度ポリエチレン、直鎖状密度ポリエチレン、ポリスチレン、ポリブテン、アイオノマー等を、ポリプロプレン系樹脂の特性が失われない範囲で混合使用しても良い。   Polypropylene resin as a base resin used in the present invention is made of other thermoplastic resins that can be mixed with polypropylene resin, such as low density polyethylene, linear density polyethylene, polystyrene, polybutene, ionomer, etc. Mixtures may be used as long as the characteristics of the resin are not lost.

本発明で用いられる基材樹脂としてのポリプロピレン系樹脂は、ポリプロピレン系樹脂の特性を損なわない程度に、発泡倍率向上を促す親水性化合物、発泡時に気泡核の形成を促す発泡核剤、相溶化剤、帯電防止剤、着色剤などを添加することができる。   The polypropylene resin as a base resin used in the present invention is a hydrophilic compound that promotes improvement of the expansion ratio to the extent that the properties of the polypropylene resin are not impaired, a foam nucleating agent that promotes the formation of cell nuclei during foaming, and a compatibilizing agent. Further, an antistatic agent, a colorant, and the like can be added.

発泡倍率向上を促す親水性化合物としては、グリセリン、ポリエチレングリコール、グリセリン脂肪酸エステル、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物等の吸水性有機物、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、ホウ砂、ホウ酸カルシウム、ホウ酸亜鉛等の水溶性無機物、セチルアルコール、ステアリルアルコールといった炭素数12以上18以下の脂肪アルコール類などが挙げられる。   Hydrophilic compounds that promote the improvement of the expansion ratio include water-absorbing organic substances such as glycerin, polyethylene glycol, glycerin fatty acid ester, melamine, isocyanuric acid, melamine / isocyanuric acid condensate, sodium chloride, calcium chloride, magnesium chloride, borax, and boron. Examples thereof include water-soluble inorganic substances such as calcium acid and zinc borate, and fatty alcohols having 12 to 18 carbon atoms such as cetyl alcohol and stearyl alcohol.

発泡時に気泡核の形成を促す発泡核剤としては、タルク、炭酸カルシウム、シリカ、カオリン、硫酸バリウム、水酸化カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、ゼオライト等の無機物質、ステアリン酸カルシウム、ステアリン酸バリウムなどの脂肪酸金属塩などが挙げられる。   Foam nucleating agents that promote the formation of cell nuclei during foaming include talc, calcium carbonate, silica, kaolin, barium sulfate, calcium hydroxide, aluminum hydroxide, aluminum oxide, titanium oxide, zeolite and other inorganic substances, calcium stearate, stearin Examples include fatty acid metal salts such as barium acid.

本発明のポリプロピレン系樹脂発泡粒子を製造するに際しては、まず、ポリプロピレン系樹脂粒子を製造する。
ポリプロピレン系樹脂粒子を製造する方法としては、押出機を用いる方法があげられる。
具体的には、例えば、ポリプロピレン系樹脂に予め、必要に応じて親水性化合物や発泡核剤、その他の添加剤をブレンドし、ブレンド物を押出機に投入して溶融混練し、ダイスより押出し、冷却した後、カッターにて細断することにより、粒子形状とすることができる。
In producing the polypropylene resin expanded particles of the present invention, first, polypropylene resin particles are produced.
Examples of the method for producing polypropylene resin particles include a method using an extruder.
Specifically, for example, a polypropylene compound is previously blended with a hydrophilic compound, a foam nucleating agent, and other additives as necessary, and the blend is put into an extruder, melt-kneaded, and extruded from a die. After cooling, it can be made into a particle shape by chopping with a cutter.

以上のようにして得られるポリプロピレン系樹脂粒子を用いて、本発明のポリプロピレン系樹脂発泡粒子を製造することができる。   The polypropylene resin particles of the present invention can be produced using the polypropylene resin particles obtained as described above.

本発明のポリプロピレン系樹脂発泡粒子を製造する好ましい態様としては、
密閉容器内に、ポリプロピレン系樹脂粒子を二酸化炭素などの発泡剤と共に水系分散媒に分散させ、ポリプロピレン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出する発泡工程を経て得るという、水分散系でポリプロピレン系樹脂発泡粒子を製造する方法があげられる。
As a preferred embodiment for producing the polypropylene resin expanded particles of the present invention,
In a closed container, polypropylene resin particles are dispersed in an aqueous dispersion medium together with a foaming agent such as carbon dioxide, heated and pressurized to a temperature equal to or higher than the softening temperature of the polypropylene resin particles, and then a pressure lower than the internal pressure of the sealed container. There is a method for producing polypropylene resin foamed particles in an aqueous dispersion, which is obtained through a foaming step that is released into the region.

具体的には、
(1)密閉圧力容器内に、ポリプロピレン系樹脂粒子および水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて、密閉容器内を真空引きした後、1MPa(ゲージ圧)以上2MPa以下(ゲージ圧)の発泡剤を導入し、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱する。加熱することによって、密閉容器内の圧力が約2MPa(ゲージ圧)以上5MPa以下(ゲージ圧)まで上がる。必要に応じて、発泡温度付近にて、さらに発泡剤を追加して所望の発泡圧力に調整、さらに温度調整を行った後、密閉容器の内圧よりも低い圧力域に放出することにより、ポリプロピレン系樹脂発泡粒子を得ることができる。
In particular,
(1) After charging polypropylene resin particles and an aqueous dispersion medium, a dispersing agent, etc., if necessary, the inside of the sealed container is evacuated and then 1 MPa (gauge pressure) or more. A foaming agent of 2 MPa or less (gauge pressure) is introduced and heated to a temperature equal to or higher than the softening temperature of the polypropylene resin. By heating, the pressure in the sealed container rises to about 2 MPa (gauge pressure) or more and 5 MPa or less (gauge pressure). If necessary, add a foaming agent near the foaming temperature to adjust to the desired foaming pressure, adjust the temperature further, and then release it to a pressure range lower than the internal pressure of the sealed container. Resin foam particles can be obtained.

また、別の好ましい態様としては、
(2)密閉容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて密閉容器内を真空引きした後、ポリプロピレン系樹脂の軟化温度以上の温度まで加熱しながら、発泡剤を導入してもよい。
As another preferred embodiment,
(2) After charging polypropylene-based resin particles, aqueous dispersion medium, and dispersing agent, if necessary, into a sealed container, evacuating the sealed container as necessary, until the temperature is equal to or higher than the softening temperature of the polypropylene-based resin A foaming agent may be introduced while heating.

さらに、別の好ましい態様としては、
(3)密閉容器にポリプロピレン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、発泡温度付近まで加熱し、さらに発泡剤を導入し、発泡温度とし、密閉容器の内圧よりも低い圧力域に放出してポリプロピレン系樹脂発泡粒子を得ることもできる。
Furthermore, as another preferred embodiment,
(3) After charging polypropylene-based resin particles, aqueous dispersion medium, and dispersing agent if necessary into a sealed container, heat to near the foaming temperature, introduce a foaming agent, set the foaming temperature, and from the internal pressure of the sealed container Further, it is possible to obtain expanded polypropylene resin particles by releasing into a low pressure range.

なお、低圧域に放出する前に、二酸化炭素、窒素、空気あるいは発泡剤として用いた物質を圧入することにより、密閉容器内の内圧を高め、発泡時の圧力開放速度を調節し、更には、低圧域への放出中にも二酸化炭素、窒素、空気あるいは発泡剤として用いた物質を密閉容器内に導入して圧力を制御することにより、発泡倍率の調整を行うこともできる。   Before releasing into the low pressure region, carbon dioxide, nitrogen, air or a substance used as a foaming agent is injected to increase the internal pressure in the sealed container, and the pressure release speed during foaming is adjusted. The foaming ratio can be adjusted by controlling the pressure by introducing carbon dioxide, nitrogen, air, or a substance used as a foaming agent into the sealed container even during release to the low pressure region.

本発明のポリプロピレン系樹脂発泡粒子は、前述したとおり、10℃/分の昇温速度で昇温した示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解熱量と高温側融解熱量の2つの融解熱量を有する。   In the DSC curve obtained by differential scanning calorimetry (DSC) in which the polypropylene resin expanded particles of the present invention are heated at a temperature rising rate of 10 ° C./min as described above, Has two heats of fusion.

2つの融解熱量領域を有するポリプロピレン系樹脂発泡粒子は、前述の水分散系でのポリプロピレン系樹脂発泡粒子を製造する方法において、発泡時の密閉容器内温度を適切な値に設定することにより容易に得られる。   Polypropylene resin foamed particles having two heat of calorie regions can be easily obtained by setting the temperature in the sealed container to an appropriate value during foaming in the above-described method for producing polypropylene resin foamed particles in an aqueous dispersion. can get.

すなわち、発泡時の密閉容器内温度としては、通常、基材樹脂であるポリプロピレン系樹脂の融点をTm、融解終了温度をTfとする場合、Tm−10(℃)以上が好ましく、Tm−8(℃)以上Tf(℃)未満がより好ましく、Tm−5(℃)以上Tf−2(℃)以下の温度がさらに好ましい。   That is, as the temperature in the sealed container at the time of foaming, when the melting point of the polypropylene resin as the base resin is Tm and the melting end temperature is Tf, it is preferably Tm-10 (° C.) or higher, and Tm-8 ( More preferably, the temperature is Tm-5 (° C.) or more and Tf-2 (° C.) or less.

ここで、前記ポリプロピレン系樹脂の融点Tmとは、図3に示すように、示差走査熱量計DSCを用いて、ポリプロピレン系樹脂1mg以上10mg以下を、40℃から220℃まで10℃/分の速度で昇温し、その後220℃から40℃まで10℃/分の速度で冷却し、再度40℃から220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における、2回目の昇温時の融解ピーク温度である。
また、融解終了温度Tfとは、2回目の昇温時の融解ピークの高温側のすそが、高温側でベースラインの位置に戻る時の温度である。
Here, as shown in FIG. 3, the melting point Tm of the polypropylene resin is a rate of 10 ° C./min from 40 ° C. to 220 ° C. of 1 mg to 10 mg of polypropylene resin using a differential scanning calorimeter DSC. In the DSC curve obtained when the temperature was raised from 220 ° C. to 40 ° C. at a rate of 10 ° C./min and then raised again from 40 ° C. to 220 ° C. at a rate of 10 ° C./min. It is the melting peak temperature when warm.
The melting end temperature Tf is a temperature at which the high temperature side tail of the melting peak at the second temperature increase returns to the baseline position on the high temperature side.

前述した高温側融解熱量(Qh)の比率[=Qh/(Ql+Qh)×100(%)]は、例えば、前記密閉容器内温度での保持時間(所望の密閉容器内温度に達した後から発泡するまでの保持時間)、発泡温度(発泡時の温度であり、前記密閉容器内温度と同じである場合や異なる場合がある)、発泡圧力(発泡時の圧力)等により適宜調整することができる。一般的には、保持時間を長くする、発泡温度を低くする、発泡圧力を低くすることにより、DSC比あるいは高温側融解ピーク熱量が大きくなる傾向がある。以上のことから、保持時間、発泡温度、発泡圧力を系統的に適宜変化させた実験を何回か試行することにより、所望の高温側融解熱量の比率となる条件を容易に見出すことができる。なお、発泡圧力の調節は、発泡剤の量により調節することできる。   For example, the ratio [= Qh / (Ql + Qh) × 100 (%)] of the high temperature side heat of fusion (Qh) described above is the holding time at the temperature in the closed container (after reaching the desired temperature in the closed container, foaming is performed. Holding time), foaming temperature (temperature at the time of foaming, which may be the same as or different from the temperature in the closed container), foaming pressure (pressure at the time of foaming), etc. . In general, the DSC ratio or the high temperature side melting peak heat amount tends to increase by increasing the holding time, lowering the foaming temperature, or lowering the foaming pressure. From the above, it is possible to easily find a condition that provides a desired high-temperature side heat of fusion ratio by performing several experiments in which the holding time, foaming temperature, and foaming pressure are systematically changed as appropriate. The foaming pressure can be adjusted by adjusting the amount of foaming agent.

本発明において、ポリプロピレン系樹脂粒子を分散させる密閉容器には、特に制限はなく、発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよいが、例えば、オートクレーブ型の耐圧容器があげられる。   In the present invention, the sealed container in which the polypropylene resin particles are dispersed is not particularly limited as long as it can withstand the pressure in the container and the temperature in the container at the time of producing the foamed particles. For example, an autoclave pressure container Is given.

本発明で用いられる発泡剤としては、例えば、プロパン、ブタン、ペンタン等の飽和炭化水素類、ジメチルエーテル等のエーテル類、メタノール、エタノール等のアルコール類、空気、窒素、二酸化炭素、水等の無機ガスが挙げられる。これらの中でも、特に環境負荷が小さく、燃焼危険性も無いことから、二酸化炭素や水を用いることが望ましい。   Examples of the blowing agent used in the present invention include saturated hydrocarbons such as propane, butane and pentane, ethers such as dimethyl ether, alcohols such as methanol and ethanol, inorganic gases such as air, nitrogen, carbon dioxide and water. Is mentioned. Among these, it is desirable to use carbon dioxide or water because it has a particularly low environmental load and no danger of combustion.

本発明においては、水系分散媒中、ポリエチレン系樹脂粒子同士の合着を防止するために、分散剤、分散助剤を使用することが好ましい。
分散剤として、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレー等の無機系分散剤が例示できる。これらは、単独で用いても良く、2種以上を併用しても良い。
In the present invention, it is preferable to use a dispersant and a dispersion aid in order to prevent coalescence of polyethylene resin particles in the aqueous dispersion medium.
Examples of the dispersant include inorganic dispersants such as tricalcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay. These may be used alone or in combination of two or more.

分散助剤として、カルボン酸塩型、アルキルスルホン酸塩、n−パラフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩等のスルホン酸塩型、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアミド硫酸塩等の硫酸エステル型、アルキルリン酸塩、ポリオキシエチレンリン酸塩、アルキルアリルエーテル硫酸塩等のリン酸エステル型等の陰イオン界面活性剤をあげることができる。これらは、単独で用いても良く、2種以上を併用しても良い。   Dispersion aids include carboxylic acid salt types, alkyl sulfonates, n-paraffin sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, sulfosuccinates, sulfonates, sulfated oils, alkyl sulfates And anionic surfactants such as sulfates such as alkyl ether sulfates and alkylamide sulfates, and phosphates such as alkyl phosphates, polyoxyethylene phosphates, and alkyl allyl ether sulfates. it can. These may be used alone or in combination of two or more.

これらの中でも、分散剤として、第三リン酸カルシウム、第三リン酸マグネシウム、硫酸バリウムまたはカオリンよりなる群から選ばれる少なくとも一種、および分散助剤としてn−パラフィンスルホン酸ソーダを併用することが好ましい。   Among these, it is preferable to use at least one selected from the group consisting of tricalcium phosphate, tribasic magnesium phosphate, barium sulfate or kaolin as a dispersant and n-paraffin sulfonic acid soda as a dispersion aid.

本発明においては、ポリプロピレン系樹脂粒子は、水系分散媒中での分散性を良好なものにするために、通常、水系分散媒100重量部に対して、20重量部以上100重量部以下使用するのが好ましい。   In the present invention, the polypropylene resin particles are usually used in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium in order to improve the dispersibility in the aqueous dispersion medium. Is preferred.

上述したような、水分散系でポリプロピレン系樹脂発泡粒子を製造する方法の他に、水系分散媒を用いず、例えば、密閉容器中でポリプロピレン系樹脂粒子に直接発泡剤を接触させ、発泡剤を含浸して発泡性ポリプロピレン系樹脂粒子を得た後、この発泡性ポリプロピレン系樹脂粒子に水蒸気を接触させるなどして発泡させ、ポリプロピレン系樹脂発泡粒子を得ることもできる。   In addition to the above-described method for producing polypropylene resin foamed particles in an aqueous dispersion system, without using an aqueous dispersion medium, for example, by directly contacting the foaming agent with the polypropylene resin particles in a closed container, It is also possible to obtain expandable polypropylene resin particles by impregnating the expandable polypropylene resin particles and then expanding the expandable polypropylene resin particles by bringing water vapor into contact with the expandable polypropylene resin particles.

以上のように、ポリプロピレン系樹脂粒子からポリプロピレン系樹脂発泡粒子を得る工程を「一段発泡工程」と称す場合があり、このようにして得たポリプロピレン系樹脂発泡粒子を「一段発泡粒子」と呼ぶ場合がある。   As described above, the process of obtaining the polypropylene resin expanded particles from the polypropylene resin particles is sometimes referred to as “one-stage expanded process”, and the polypropylene resin expanded particles obtained in this way are referred to as “one-stage expanded particles”. There is.

一段発泡粒子は、製造する際の発泡剤の種類にも依るが、発泡倍率が10倍に達しない場合がある。更には、一段発泡粒子の20℃/分の昇温速度のDSC曲線の微分曲線において、105℃以上120℃以下に、微分曲線の極大値が現れない場合もある。
このような場合には、一段発泡粒子に、無機ガス(例えば、空気、窒素、二酸化炭素、等)を含浸して内圧を付与した後、特定の圧力の水蒸気と接触させることにより、一段発泡粒子よりも発泡倍率が向上した発泡粒子であって、20℃/分の昇温速度のDSC曲線の微分曲線において、105℃以上120℃以下に、極大値を有する本発明のポリプロピレン系樹脂発泡粒子を得ることができる。
Depending on the type of foaming agent used in the production of the first-stage expanded particles, the expansion ratio may not reach 10 times. Furthermore, in the differential curve of the DSC curve of the heating rate of 20 ° C./min of the single-stage expanded particles, the maximum value of the differential curve may not appear at 105 ° C. or higher and 120 ° C. or lower.
In such a case, the single-stage foamed particles are impregnated with an inorganic gas (for example, air, nitrogen, carbon dioxide, etc.) and given an internal pressure, and then contacted with water vapor at a specific pressure, whereby the single-stage foam particles are obtained. The expanded polypropylene resin particles of the present invention having a maximum value at 105 ° C. or more and 120 ° C. or less in the differential curve of the DSC curve at a heating rate of 20 ° C./min. Can be obtained.

このように、ポリプロピレン系樹脂発泡粒子をさらに発泡させてより発泡倍率の高いポリプロピレン系樹脂発泡粒子とする工程を、「二段発泡工程」と称す場合がある。二段発泡工程を経ることにより、105℃以上120℃以下の低温側熱量領域のDSC微分曲線中に、極大値を有する本発明の発泡粒子を得ることができる。このような二段発泡工程を経て得られるポリプロピレン系樹脂発泡粒子を「二段発泡粒子」と呼ぶ場合がある。   As described above, the process of further expanding the polypropylene resin expanded particles to obtain a polypropylene resin expanded particle having a higher expansion ratio may be referred to as a “two-stage expansion process”. By passing through the two-stage foaming step, the foamed particles of the present invention having a maximum value can be obtained in the DSC differential curve in the low temperature side calorific value region of 105 ° C. or more and 120 ° C. or less. Polypropylene resin foam particles obtained through such a two-stage foaming process may be referred to as “two-stage foam particles”.

本発明において、二段発泡工程における水蒸気の圧力は、20℃/分の昇温速度のDSC曲線の微分曲線において、105℃以上120℃以下に、極大値を有する二段発泡粒子を得る際に非常に重要であり、二段発泡粒子の発泡倍率を考慮した上で、0.04MPa(ゲージ圧)以上0.25MPa(ゲージ圧)以下に調整することが好ましく、0.05MPa(ゲージ圧)以上0.15MPa(ゲージ圧)以下に調製することがより好ましい。   In the present invention, when the pressure of water vapor in the two-stage foaming step is to obtain two-stage foamed particles having a maximum value at 105 ° C. or more and 120 ° C. or less in the differential curve of the DSC curve at a temperature increase rate of 20 ° C./min. It is very important, and it is preferable to adjust to 0.04 MPa (gauge pressure) or more and 0.25 MPa (gauge pressure) or less, considering the expansion ratio of the two-stage expanded particles, 0.05 MPa (gauge pressure) or more More preferably, it is adjusted to 0.15 MPa (gauge pressure) or less.

二段発泡工程における水蒸気の圧力が0.04MPa(ゲージ圧)未満では、微分曲線中に極大値を発現しない場合があり、0.25MPa(ゲージ圧)を超えると、微分曲線中に極大値は発現するものの、得られる二段発泡粒子同士が合着してブロッキングしてしまい、その後の型内発泡成形に供することができなくなる傾向がある。   If the water vapor pressure in the two-stage foaming process is less than 0.04 MPa (gauge pressure), the maximum value may not be expressed in the differential curve, and if it exceeds 0.25 MPa (gauge pressure), the maximum value in the differential curve is Although it develops, the resulting two-stage foam particles tend to coalesce and block, and cannot be used for subsequent in-mold foam molding.

一段発泡粒子に含浸する空気の内圧は、二段発泡粒子の発泡倍率および二段発泡工程の水蒸気圧力を考慮して適宜変化させることが望ましいが、0.2MPa以上(絶対圧)0.6MPa以下(絶対圧)であることが好ましい。   The internal pressure of the air impregnated in the first-stage expanded particles is preferably changed in consideration of the expansion ratio of the second-stage expanded particles and the water vapor pressure in the second-stage expansion process, but is 0.2 MPa or more (absolute pressure) 0.6 MPa or less (Absolute pressure) is preferred.

一段発泡粒子に含浸する空気の内圧が0.2MPa(絶対圧)未満では、発泡倍率を向上させるために高い圧力の水蒸気が必要となり、二段発泡粒子がブロッキングする傾向にある。一段発泡粒子に含浸する空気の内圧が0.6MPa(絶対圧)を超えると、所望の発泡倍率を得るための水蒸気圧力が低くなり、微分曲線中に極大値を有さない二段発泡粒子となる傾向がある。   If the internal pressure of the air impregnated in the first-stage expanded particles is less than 0.2 MPa (absolute pressure), high-pressure steam is required to improve the expansion ratio, and the second-stage expanded particles tend to block. When the internal pressure of the air impregnated in the first-stage expanded particles exceeds 0.6 MPa (absolute pressure), the water vapor pressure for obtaining the desired expansion ratio becomes lower, and the second-stage expanded particles having no maximum value in the differential curve Tend to be.

このように、一段発泡工程に比べ、二段発泡工程のように、2回以上の発泡工程を経て得られるポリプロピレン系樹脂発泡粒子は、20℃/分の昇温速度のDSC曲線の微分曲線において、105℃以上120℃以下の間に極大値を有するため、本発明において好ましい態様である。   Thus, compared with the one-stage foaming process, the polypropylene resin foamed particles obtained through two or more foaming processes as in the two-stage foaming process have a differential curve of the DSC curve with a temperature rising rate of 20 ° C./min. , A maximum value between 105 ° C. and 120 ° C. is preferable in the present invention.

以上のようにして得られる本発明のポリプロピレン系樹脂発泡粒子は、従来のポリプロピレン系樹脂発泡粒子に比べて、型内発泡成形する際の水蒸気の通りが良好であるという特長を有する。   The polypropylene resin expanded particles of the present invention obtained as described above have a feature that the passage of water vapor during in-mold foam molding is better than conventional polypropylene resin expanded particles.

従来のポリプロピレン系樹脂発泡粒子は、型内発泡成形において、金型面から水蒸気を噴出させる際に、金型面に近傍のポリプロピレン系樹脂発泡粒子のみが急激に膨張し、融着してしまい、型内発泡成形体内部に相当する部分へ水蒸気が通りにくくなる為、金型面近傍の温度は上昇するが、型内発泡成形体内部の温度は上昇しない。その結果、金型面近傍に相当する型内発泡成形体表面は美麗となるものの、型内発泡成形体内部のポリプロピレン系樹脂発泡粒子の融着性が劣ったものとなりやすかった。
そして、型内発泡成形体内部の融着性を向上させる為には、水蒸気圧力を高める(水蒸気温度を高める)必要があった。
In the conventional polypropylene resin expanded particles, in the in-mold foam molding, when water vapor is ejected from the mold surface, only the polypropylene resin expanded particles in the vicinity of the mold surface are rapidly expanded and fused, Since it becomes difficult for water vapor to pass through the portion corresponding to the inside of the in-mold foam molded body, the temperature in the vicinity of the mold surface rises, but the temperature inside the in-mold foam molded body does not rise. As a result, the surface of the in-mold foam molded body corresponding to the vicinity of the mold surface was beautiful, but the polypropylene resin foam particles inside the in-mold foam molded body were liable to be inferior in adhesion.
And, in order to improve the fusion property inside the in-mold foam molded body, it is necessary to increase the water vapor pressure (increase the water vapor temperature).

また、型内発泡成形体内部の融着性低下は、得られる型内発泡成形体の形状にも依存する。
例えば、固定型と移動型の金型を用いた型内発泡成形体において、いずれか一方の型のみで形が形成される部位を有する形状のものでは、当該部位は、型内発泡成形時に、他の部位に比べて水蒸気の通りが低いことから、融着性が低下する傾向にある。
なお、「固定型と移動型の金型を用いた型内発泡成形体において、発泡粒子を金型内に充填した場合にいずれか一方の型のみで形が形成される部位」を、以降「融着困難部位」と略して記載する。
In addition, the decrease in the meltability inside the in-mold foam molded product also depends on the shape of the obtained in-mold foam molded product.
For example, in an in-mold foam molded body using a fixed mold and a movable mold, in a shape having a portion where the shape is formed only by either one of the molds, the portion is at the time of in-mold foam molding, Since the passage of water vapor is lower than in other parts, the fusing property tends to decrease.
In addition, “in the in-mold foam-molded article using the fixed mold and the movable mold, when the foam particles are filled in the mold, the portion where only one mold is formed” will be referred to as “ It is abbreviated as “a site difficult to fuse”.

「融着困難部位」の具体例としては、例えば、図4または図6の、内部底面立ち壁部などが挙げられる。
融着性が低下しやすい別の型内発泡成形体形状としては、例えば、肉厚部と薄肉部が混在する型内発泡成形体が挙げられる。肉厚部と薄肉部が混在する型内発泡成形体では、表面美麗性を優先させると、薄肉部内部の融着性は確保できたとしても、肉厚部内部の融着性が著しく低下したものとなり、逆に、肉厚部内部の融着性を優先して水蒸気圧力を高めると、薄肉部には過剰の水蒸気圧となり、発泡粒子内の空気分圧は減少し、薄肉部表面にヒケや収縮によるしわが発生し、表面美麗性が低下したものとなる。即ち、融着性と表面美麗性のバランスがとりにくい傾向がある。
As a specific example of the “parts difficult to fuse”, for example, the internal bottom standing wall portion of FIG. 4 or FIG.
As another in-mold foam-molded product shape in which the fusibility is likely to be lowered, for example, an in-mold foam-molded product in which a thick part and a thin part are mixed can be cited. In the in-mold foam molded product with both thick and thin parts, if the surface aesthetics are prioritized, the meltability inside the thick part is significantly reduced, even if the meltability inside the thin part can be secured. Conversely, if the water vapor pressure is increased with priority given to the fusing property inside the thick part, an excessive water vapor pressure is applied to the thin part, and the partial pressure of air in the foamed particles is reduced. Or wrinkles due to shrinkage, resulting in a decrease in surface aesthetics. That is, there is a tendency that it is difficult to balance the fusion property and the surface beauty.

このようなことから、特に「融着困難部位」が肉厚部である場合においては、融着性低下という不具合が顕著となる。さらに、「融着困難部位」が肉厚部であり、かつその他の部位で薄肉部を有する型内発泡成形体においては、融着性と表面美麗性のバランスが著しくとりにくいものとなる。   For this reason, in particular, in the case where the “fusible part” is a thick part, the problem of a decrease in fusibility becomes remarkable. Furthermore, in an in-mold foam molded product in which the “fusible part” is a thick part and the thin part is in another part, the balance between the meltability and the surface beauty becomes extremely difficult.

これに対して、本発明のポリプロピレン系樹脂発泡粒子は、型内発泡成形する際の水蒸気の通りが良好であることから、「融着困難部位」の融着性を確保することが可能となる。また、肉厚部と薄肉部とが混在する型内発泡成形体において、肉厚部内部の融着性を向上させる為に過剰の水蒸気圧で型内発泡成形する必要がなく、その結果、肉厚部内部の融着性が良好であると共に、薄肉部の表面美麗性も良好な型内発泡成形体を得ることが可能となる。   On the other hand, since the polypropylene resin expanded particles of the present invention have good water vapor passage during in-mold foam molding, it becomes possible to ensure the fusion property of the “fusible part”. . In addition, in an in-mold foam molded product in which a thick part and a thin part are mixed, there is no need to perform in-mold foam molding with an excessive water vapor pressure in order to improve the fusing property inside the thick part. It is possible to obtain an in-mold foam-molded article having good fusion properties inside the thick part and good surface beauty of the thin part.

本発明のポリプロピレン系樹脂発泡粒子は、従来から知られている型内発泡成形法により、ポリプロピレン系樹脂型内発泡成形体とすることができる。   The polypropylene resin foamed particles of the present invention can be made into a polypropylene resin in-mold foam-molded product by a conventionally known in-mold foam molding method.

型内発泡成形法としては、例えば、
イ)ポリプロピレン系樹脂発泡粒子を無機ガス、例えば空気や窒素、二酸化炭素等で加圧処理してポリプロピレン系樹脂発泡粒子内に無機ガスを含浸させ所定のポリプロピレン系樹脂発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、
ロ)ポリプロピレン系樹脂発泡粒子をガス圧力で圧縮して金型に充填し、ポリプロピレン系樹脂発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、
ハ)特に前処理することなくポリプロピレン系樹脂発泡粒子を金型に充填し、水蒸気で加熱融着させる方法、などの方法が利用し得る。
As an in-mold foam molding method, for example,
B) After the polypropylene resin foamed particles are pressurized with an inorganic gas such as air, nitrogen, carbon dioxide and the like, the polypropylene resin foamed particles are impregnated with the inorganic gas and given a predetermined polypropylene resin foamed particle internal pressure, A method of filling a mold and heat-sealing with steam,
B) A method in which polypropylene resin foamed particles are compressed with gas pressure and filled in a mold, and heat recovery is performed with water vapor using the recovery force of the polypropylene resin foamed particles.
C) A method such as a method in which a polypropylene resin expanded particle is filled in a mold without heat treatment and heat-sealed with water vapor can be used.

本発明のポリプロピレン系樹脂発泡粒子から得られるポリプロピレン系樹脂型内発泡成形体に特に制限はない。ただし、本発明のポリプロピレン系樹脂発泡粒子の型内発泡成形する際の水蒸気の通りが良好であるという特長が顕著となる観点から、ポリプロピレン系樹脂型内発泡成形体としては、前述したように、「融着困難部位」を有するポリプロピレン系樹脂型内発泡体、および/または、肉厚部と肉薄部が混在するポリプロピレン系樹脂型内発泡成形体に好適に使用し得る。   There is no restriction | limiting in particular in the polypropylene resin in-mold expansion molding obtained from the polypropylene resin expanded particle of this invention. However, from the viewpoint of the remarkable feature that the water vapor passage is good when the in-mold foam molding of the polypropylene resin foamed particles of the present invention is performed, as described above, the polypropylene resin in-mold foam-molded article, It can be suitably used for a polypropylene-based resin mold internal foam having a “part where fusion is difficult” and / or a polypropylene-based resin mold internal foam molded body in which a thick part and a thin part are mixed.

「融着困難部位」を有するポリプロピレン系樹脂型内発泡体、および/または、肉厚部と肉薄部が混在するポリプロピレン系樹脂型内発泡成形体の具体的な例としては、例えば、図4に示すような、底面と底面周縁立ち壁部からなり物品収納可能な内部を有し、内部底面に少なくとも1つの立ち壁部を有するポリプロピレン系樹脂型内発泡成形体が挙げられる。   As a specific example of a polypropylene resin mold foam having a “fusible part” and / or a polypropylene resin mold foam molding in which a thick part and a thin part are mixed, for example, FIG. As shown in the drawing, there can be mentioned a polypropylene-based resin-mold-in-mold foam-molded article having a bottom and a bottom-periphery standing wall portion, having an interior capable of storing articles, and having at least one standing wall portion on the inner bottom surface.

図4における内部底面立ち壁部は、前述の通り、一つの型のみで形を形成することのできる「融着困難部位」である(図5も参照)。図4では、内部底面立ち壁部は両端が底面周縁立ち壁部と融着・接合しているが、一方だけが融着・接合し、他方は底面周縁立ち壁部と距離を隔てていても良い。また、両端とも底面周縁立ち壁部と距離を隔てていても良い。
一方、図4における底面周縁立ち壁部は、底面の内部ではなく周縁部の立ち壁部であり、「融着困難部位」とは異なり、固定型と移動型の金型を用いた型内発泡成形体において、発泡粒子を金型内に充填した場合に、両方の型により形を形成することのできる部位である。
As described above, the inner bottom standing wall portion in FIG. 4 is a “fusible part” that can be formed with only one mold (see also FIG. 5). In FIG. 4, both ends of the inner bottom standing wall are fused and joined to the bottom peripheral standing wall, but only one of them is fused and joined, and the other may be spaced apart from the bottom peripheral standing wall. good. Further, both ends may be separated from the bottom peripheral edge standing wall portion.
On the other hand, the bottom peripheral edge standing wall portion in FIG. 4 is not the inside of the bottom surface but the peripheral wall standing wall portion. Unlike the “fusible part”, in-mold foaming using a fixed mold and a movable mold. In the molded body, when foamed particles are filled in a mold, it is a part where a shape can be formed by both molds.

なお、図4では、内部底面立ち壁部あるいは底面周縁立ち壁部と底面の角度が垂直である場合を示しているが、当該角度は垂直であっても良く、垂直でなくても良い。
図4における、底面、底面周縁立ち壁部、内部底面立ち壁部の厚みは、それぞれ、図4に示した通りである。
Note that FIG. 4 shows a case where the angle between the inner bottom surface standing wall portion or the bottom peripheral edge standing wall portion and the bottom surface is vertical, but the angle may be vertical or may not be vertical.
The thicknesses of the bottom surface, bottom peripheral edge standing wall portion, and internal bottom surface standing wall portion in FIG. 4 are as shown in FIG.

なお、それぞれの厚みは、一方の面と他方の面において、一つの面上のある一点と、これに対向する他方の面との最短距離(以下、単に「最短距離」ともいう。)である。
一組の対向する2面は、平行であってもなくても良い。また、ここでいう「面」は、平面であっても、曲面であっても良い。
上記「最短距離」とは、少なくとも一方の面が平面の場合、他方の面のある一点から該平面上に垂線を伸ばした際の接点までの距離とする。
一方、部位形状が円形、略円形や楕円形の場合、閉じた1面であって実際には2面は存在しないが、円形や略円形の場合は直径を最短距離とし、楕円形の場合は短軸の長さ(短径)をもって最短距離とする。
なお、一つの部位において厚みは一定であっても良く、一定でなくても良い。
Each thickness is the shortest distance (hereinafter also simply referred to as “shortest distance”) between a certain point on one surface and the other surface opposite to the one surface on one surface and the other surface. .
A set of two opposing surfaces may or may not be parallel. The “surface” here may be a flat surface or a curved surface.
The “shortest distance” is a distance from a point on the other surface to a contact point when a perpendicular is extended on the plane when at least one surface is a plane.
On the other hand, when the part shape is circular, approximately circular or elliptical, it is a closed surface and there are actually no two surfaces. However, in the case of circular or approximately circular, the diameter is the shortest distance. The shortest length is the short axis length (minor axis).
Note that the thickness may be constant or not constant in one part.

図4における、底面周縁立ち壁部、内部底面立ち壁部の高さは、立ち壁部上端部のある一点から底面までの最短距離をいう。
なお、一つの立ち壁部において、高さは一定であっても良く、一定でなくても良い。
内部底面立ち壁部の高さは、図4では、底面周縁立ち壁部の高さと同一であるが、異なっていても良い。
さらに、内部底面立ち壁部の数に関しても、図4では1つであるが、複数であっても良い。
In FIG. 4, the height of the bottom peripheral edge standing wall portion and the inner bottom standing wall portion is the shortest distance from one point to the bottom surface of the upper end portion of the standing wall portion.
In addition, in one standing wall part, height may be constant and does not need to be constant.
In FIG. 4, the height of the inner bottom surface standing wall portion is the same as the height of the bottom surface peripheral wall portion, but may be different.
Further, the number of internal bottom surface standing wall portions is one in FIG. 4, but may be plural.

図4に示すポリプロピレン系樹脂型内発泡成形体を型内発泡成形して方法としては、図5に示すような固定型と移動型からなる金型を用い、以下のような工程を経る方法が例示できる。
(1)図5に示すような固定型<右上がり斜線部として示す。>と移動型<右下がり斜線部として示す>からなる金型に充填機を通してポリプロピレン系樹脂発泡粒子(格子部)を充填する工程(以降、「充填工程」と称す。)。
(2)蒸気弁Aとドレン弁Aを開け、蒸気弁Bとドレン弁Bを開けて、蒸気弁A、Bから水蒸気を流すことにより、金型チャンバー内に存在する空気を追い出すと共に、金型全体を加熱する工程(以降、「予備加熱工程」と称す。)。
(3)蒸気弁Aとドレン弁Bを開け、蒸気弁Bとドレン弁Aは閉じておき、蒸気弁Aから水蒸気を流すことにより、金型内に充填されたポリプロピレン系樹脂発泡粒子の間に存在する空気を追い出すと共に加熱する工程(以降、「一方加熱工程」と称す。)。
(4)次いで、蒸気弁Bとドレン弁Aを開け、蒸気弁Aとドレン弁Bは閉じておき、蒸気弁Bから水蒸気を流すことにより、金型内に充填されたポリプロピレン系樹脂発泡粒子の間に存在する空気を更に追い出すと共に、加熱する工程(以降、「逆一方加熱工程」と称す。)。
(5)蒸気弁AとBを開け、ドレン弁AとBを閉じて、蒸気弁AとBから水蒸気を流すことにより、金型内に充填されたポリプロピレン系樹脂発泡粒子表面が軟化する迄、充分温度を上昇させて、ポリプロピレン系樹脂発泡粒子同士を最終的に融着せしめ、一定形状のポリプロピレン系樹脂型内発泡成形体とする工程(以降、「両面加熱工程」と称す。)。
(6)金型を冷却した後、金型を開き、ポリプロピレン系樹脂型内発泡成形体を取り出す工程(以降、「冷却・取り出し工程」と称す。)。
As a method for in-mold foam molding of the polypropylene resin in-mold foam molded body shown in FIG. 4, a method comprising the following steps using a mold composed of a fixed mold and a movable mold as shown in FIG. It can be illustrated.
(1) As shown in FIG. > And a moving mold (shown as a downward slanting slanted portion) are filled with polypropylene resin expanded particles (lattice portions) through a filling machine (hereinafter referred to as “filling step”).
(2) Open steam valve A and drain valve A, open steam valve B and drain valve B, and flow steam from steam valves A and B to expel air present in the mold chamber and mold Step of heating the whole (hereinafter referred to as “preheating step”).
(3) Opening the steam valve A and the drain valve B, keeping the steam valve B and the drain valve A closed, and allowing water vapor to flow from the steam valve A, between the polypropylene resin foam particles filled in the mold A process of expelling existing air and heating (hereinafter referred to as “one heating process”).
(4) Next, the steam valve B and the drain valve A are opened, the steam valve A and the drain valve B are closed, and water vapor is allowed to flow from the steam valve B. A process of further expelling air present between them and heating (hereinafter referred to as “reverse one heating process”).
(5) Opening the steam valves A and B, closing the drain valves A and B, and flowing water vapor from the steam valves A and B, until the surface of the polypropylene resin foam particles filled in the mold is softened, A step of raising the temperature sufficiently and finally fusing the polypropylene resin foamed particles to form a polypropylene resin in-mold foam molded product having a fixed shape (hereinafter referred to as “double-side heating step”).
(6) A step of opening the die after cooling the die and taking out the expanded foam in the polypropylene resin mold (hereinafter referred to as “cooling / removing step”).

ところで、上記一方加熱工程や逆一方加熱工程においては、チャンバーAとチャンバーBとの間に差圧が生じることから、水蒸気が一方のチャンバーから他方のチャンバーに流れる。そして、図6記載の底面周縁立ち壁部の厚み方向に対応する実線矢印Cや底面の厚み方向に対応する実線矢印Dの4方向は、上記差圧が存在すると共に、型内発泡成形体の厚みが比較的薄い(薄肉部)為、水蒸気の通りは良好で、充填されたポリプロピレン系樹脂発泡粒子の温度上昇が速やかに起こる。   By the way, in the one heating process and the reverse one heating process, since a differential pressure is generated between the chamber A and the chamber B, water vapor flows from one chamber to the other chamber. And as for the four directions of the solid line arrow C corresponding to the thickness direction of the bottom-surface periphery standing wall part of FIG. 6, and the solid line arrow D corresponding to the thickness direction of a bottom face, while the said differential pressure exists, Since the thickness is relatively thin (thin wall portion), the passage of water vapor is good, and the temperature rise of the filled polypropylene resin expanded particles occurs rapidly.

これに対して、内部底面立ち壁部の厚み方向に対応する破線矢印Eの2方向は、チャンバーBのみに面している為、チャンバー差圧がないことから、水蒸気の通りが悪くなり、充填されたポリプロピレン系樹脂発泡粒子の温度上昇がしがたくなる傾向がある。そのため、内部底面立ち壁部の厚みが厚い場合は、内部底面立ち壁部は、底面や底面周縁立ち壁部などより融着性が低下する傾向にあり、さらに、内部底面立ち壁部の高さが大きい場合には、破線矢印Eに対して90度の方向の当該部位の水蒸気の通りも低下傾向となり、より融着性が低下する傾向が大となる。   On the other hand, since the two directions of the broken line arrow E corresponding to the thickness direction of the internal bottom standing wall face only the chamber B, there is no chamber differential pressure, so that the passage of water vapor becomes worse and the filling is completed. There is a tendency that the temperature of the expanded polypropylene resin expanded particles is difficult to increase. For this reason, when the thickness of the internal bottom surface standing wall portion is thick, the internal bottom surface standing wall portion tends to be less adhesive than the bottom surface or bottom peripheral edge standing wall portion, and the height of the internal bottom surface standing wall portion is further increased. When the value is large, the flow of water vapor in the portion in the direction of 90 degrees with respect to the broken line arrow E also tends to decrease, and the tendency for the fusion property to decrease further increases.

ただし、内部底面立ち壁部の厚みが薄い場合には、金型からの伝熱によっても、充填されたポリプロピレン系樹脂発泡粒子の温度上昇は確保される為、底面や底面周縁立ち壁部などより融着性が低下するという問題点はあまり顕著ではない。   However, when the thickness of the internal bottom standing wall is thin, the temperature rise of the filled polypropylene resin foamed particles is secured even by heat transfer from the mold, so from the bottom or bottom peripheral edge standing wall, etc. The problem that the fusing property is lowered is not so remarkable.

また、成形金型には、コアベントと呼ばれる水蒸気の通り孔(図示せず)が複数設けられている。内部底面立ち壁部が移動型により形成されるような金型形状においては、コアベントを設ける際の作業性の観点から、内部底面立ち壁部を形成する金型部分にはコアベントが設けにくい場合があり、他の部分に設けられるコアベントよりも孔径の小さなキリ穴等しか設けることが困難な場合があり、水蒸気の通りはさらに悪くなる傾向にある。   In addition, the molding die is provided with a plurality of steam passages (not shown) called core vents. In a mold shape in which the inner bottom standing wall is formed by a movable mold, it may be difficult to provide a core vent in the mold part that forms the inner bottom standing wall from the viewpoint of workability when providing the core vent. In some cases, it is difficult to provide only a drill hole or the like having a smaller hole diameter than the core vent provided in other portions, and the passage of water vapor tends to be worse.

さらに、図5および図6に例示したように、内部底面立ち壁部の高さ方向の延長線上に、充填機が設置される場合には、固定型の当該部分にはコアベントを設けることができず、いっそう水蒸気の通りが悪いものとなる。さらには、この場合、内部底面立ち壁部へのポリプロピレン系樹脂発泡粒子の充填性が良いことから、当該部位のポリプロピレン系樹脂発泡粒子の充填率が他の部位よりも高くなる傾向があり、さらに水蒸気の通りが悪いものとなりやすい。   Furthermore, as illustrated in FIGS. 5 and 6, when a filling machine is installed on the extension line in the height direction of the internal bottom wall, the core vent can be provided in the fixed part. In addition, the passage of water vapor becomes worse. Furthermore, in this case, since the filling property of the polypropylene resin expanded particles in the internal bottom standing wall portion is good, the filling rate of the polypropylene resin expanded particles in the part tends to be higher than other parts, Water vapor tends to be bad.

なお、充填機の設置位置は、得られるポリプロピレン系樹脂型内発泡成形体に充填機先端部分の形状が転写されることから、内部底面立ち壁部の高さ方向の延長線上に充填機が設けられているか否かは、容易に判別することができる。   As for the installation position of the filling machine, the shape of the tip part of the filling machine is transferred to the obtained polypropylene-based resin mold foam molding, so the filling machine is installed on the extension line in the height direction of the internal bottom wall standing wall. It can be easily discriminated whether or not it is done.

このようなことから、肉厚の内部底面立ち壁部の融着性を向上させる為には、型内発泡成形時の加熱水蒸気圧力をより高くせざるを得ない。その場合、該加熱水蒸気圧力は、特に底面周縁立ち壁部などの薄肉部に対して過剰な加熱水蒸気圧力となる。その結果として、底面周縁立ち壁部などの薄肉部の表面美麗性が低下することになり、従来技術においては、肉厚の内部底面立ち壁部の融着性と薄肉部の表面美麗性を両立させることが困難であった。   For this reason, in order to improve the fusing property of the thick inner bottom standing wall portion, the heating steam pressure at the time of in-mold foam molding must be increased. In that case, the heating water vapor pressure becomes an excessive heating water vapor pressure especially for a thin wall portion such as a bottom peripheral edge standing wall portion. As a result, the surface beauty of the thin wall portion such as the bottom peripheral edge standing wall is lowered, and in the prior art, both the fusion of the thick internal bottom surface standing wall portion and the surface beauty of the thin wall portion are achieved. It was difficult to make.

これに対して、本願発明のポリプロピレン系樹脂発泡粒子は、従来のポリプロピレン系樹脂発泡粒子よりも水蒸気の通りが良いという特長を有していることから、従来のポリプロピレン系樹脂発泡粒子を型内発泡成形する場合よりも低圧の加熱蒸気圧力で成形が可能であり、前述した「融着困難部位」を有するポリプロピレン系樹脂型内発泡成形体の融着性を良好なものとすることができる。また、前述した内部底面立ち壁部が肉厚部である場合でも良好な融着性が発現すると共に、底面周縁立ち壁部や底面のような薄肉部の表面美麗性も損なうことがなく、融着性と表面美麗性を両立させることが可能となる。   On the other hand, the expanded polypropylene resin particles of the present invention have the feature that water vapor can pass better than the expanded polypropylene resin particles of the present invention. Molding can be performed with a heating steam pressure lower than that in the case of molding, and the above-described polypropylene resin in-mold foam-molded article having the “difficult-to-fuse part” can have good fusion properties. In addition, even when the above-mentioned inner bottom standing wall portion is a thick portion, good fusing property is exhibited, and the surface beauty of the thin wall portion such as the bottom peripheral edge standing wall portion and the bottom surface is not impaired, It is possible to achieve both wearability and surface beauty.

本発明における「融着困難部位」の形状に特に制限はないが、当該部位から最も大きい球を切り出す際に、直径20mm以上100mm以下の球を切り出すことができる形状の場合、従来技術では融着性の低下が顕著であるところ、本願発明のポリプロピレン系樹脂発泡粒子では融着性が向上し、その効果が顕著となることから好ましい。この観点からは、最も好ましくは、最も大きく球を切り出す際の、球の直径が30mm以上80mm以下となる形状である。
直径20mm未満の球しか切り出せない形状であれば、本発明の効果の発現が、従来技術に対して顕著ではなく、また、直径100mmを超える球を切り出すことのできる形状の場合は、当該部位について、融着性の良好な型内発泡成形を行うことが困難な傾向がある。
In the present invention, there is no particular limitation on the shape of the “parts difficult to fuse”. In the polypropylene resin foamed particles of the present invention, the fusion property is improved and the effect becomes remarkable. From this point of view, the most preferable shape is a shape in which the diameter of the sphere is 30 mm or more and 80 mm or less when the largest sphere is cut out.
If it is a shape that can cut out only a sphere having a diameter of less than 20 mm, the effect of the present invention is not significant with respect to the prior art, and in the case of a shape that can cut out a sphere having a diameter of more than 100 mm, In addition, there is a tendency that it is difficult to perform in-mold foam molding with good fusion properties.

また、上述したような内部底面立ち壁部と底面周縁立ち壁部を有するポリプロピレン系樹脂型内発泡成形体の中でも、
底面と底面周縁立ち壁部からなり物品収納可能な内部を有するポリプロピレン系樹脂型内発泡成形体であって、
内部底面に少なくとも1つの立ち壁部を有し、
内部底面の立ち壁部の厚みが底面周縁立ち壁部厚みの1.2倍以上5倍以下であり、
内部底面の立ち壁部の高さが、底面の厚みの2倍以上25倍以下であるポリプロピレン系樹脂型内発泡成形体において、肉厚部の融着性向上および薄肉部の表面美麗性の両立という顕著な効果が発現される。そのため、本発明のポリプロピレン系樹脂発泡粒子を、該形状を有するポリプロピレン系樹脂型内発泡成形体の成形に用いることがより好ましい。
形状の更に好ましい態様としては、内部底面の立ち壁部の厚みが底面周縁立ち壁部厚みの1.5倍以上4倍以下であり、内部底面立ち壁部の高さが、底面の厚みの5倍以上25倍以下である。
In addition, among the polypropylene-based resin-in-mold foam-molded bodies having the inner bottom standing wall portion and the bottom peripheral edge standing wall portion as described above,
A polypropylene resin-in-mold foam-molded body having an interior capable of storing articles consisting of a bottom surface and a bottom peripheral edge standing wall,
Having at least one standing wall on the inner bottom surface;
The thickness of the standing wall portion of the inner bottom surface is 1.2 times or more and 5 times or less of the bottom peripheral edge standing wall portion thickness,
In polypropylene-type resin-molded in-mold molded products in which the height of the standing wall on the inner bottom surface is 2 to 25 times the thickness of the bottom surface, it is possible to achieve both improved fusion of the thick part and beautiful surface of the thin part. The remarkable effect is expressed. Therefore, it is more preferable to use the polypropylene resin foamed particles of the present invention for molding a polypropylene resin in-mold foam molded product having the shape.
As a more preferable aspect of the shape, the thickness of the standing wall portion of the inner bottom surface is 1.5 times or more and 4 times or less the thickness of the bottom peripheral edge standing wall portion, and the height of the inner bottom surface standing wall portion is 5 times the thickness of the bottom surface. It is not less than 25 times and not more than 25 times.

ただし、内部底面の立ち壁部の厚み、底面周縁立ち壁部厚み、内部底面の立ち壁部の高さ、および底面の厚みは、型内発泡成形体内で一定である必要はない。型内発泡成形体内で一定でない場合、内部底面の立ち壁部の厚みとしては当該部位の最も大きい厚みを、底面周縁立ち壁部厚みとしては当該部位の最も小さい厚みを、内部底面の立ち壁部の高さとしては当該部位の最も大きい高さを、底面の厚みは当該部位の最も小さい厚みを採用して、前述の比率を求めることとする。   However, the thickness of the standing wall portion on the inner bottom surface, the thickness of the bottom wall peripheral standing wall portion, the height of the standing wall portion on the inner bottom surface, and the thickness of the bottom surface do not have to be constant in the in-mold foam molded body. If it is not constant in the in-mold foam molded body, the thickness of the inner bottom wall is the largest thickness of the part, and the bottom peripheral edge standing wall part is the smallest thickness of the part. The above-mentioned ratio is obtained by adopting the largest height of the part as the height of the part and the smallest thickness of the part as the thickness of the bottom part.

さらに、内部底面立ち壁部の高さ方向の延長線上に充填機を設けて得られるポリプロピレン系樹脂型内発泡成形体を得る為に、本発明のポリプロピレン系樹脂発泡粒子を用いることは、より好ましい態様である。   Furthermore, it is more preferable to use the polypropylene resin foamed particles of the present invention in order to obtain a polypropylene resin-in-mold foam-molded product obtained by providing a filling machine on the extension line in the height direction of the inner bottom standing wall portion. It is an aspect.

なお、内部底面の立ち壁部は、物品収納可能な内部を区画する為の立ち壁部であることが好ましく、具体的には、ラゲッジボックス、工具箱、通箱、等で設計されるものである。
これらの中でも、比較的広い面積の底面周縁立ち壁部や底面と、肉厚の内部底面立ち壁部を有するラゲッジボックスにおいて、顕著な効果を奏する為、好適に使用することができる。すなわち、ラゲッジボックスにおける広い面積を有する底面周縁立ち壁部や底面は、表面のヒケやしわが目立ちやすいものであるが、本発明のポリプロピレン系樹脂発泡粒子からなる場合は、肉厚の内部底面立ち壁部の融着性が優れると共に、広い面積の底面周縁立ち壁部や底面の表面美麗性も優れたものとなる。
In addition, the standing wall portion on the inner bottom surface is preferably a standing wall portion for partitioning the inside where the article can be stored. Specifically, the standing wall portion is designed with a luggage box, a tool box, a passing box, or the like. is there.
Among these, in a luggage box having a bottom peripheral edge standing wall portion and a bottom surface having a relatively large area and a thick internal bottom surface standing wall portion, a remarkable effect can be obtained, so that it can be preferably used. That is, the bottom peripheral edge standing wall portion and the bottom surface having a large area in the luggage box are prone to notice sink marks and wrinkles on the surface, but when the polypropylene resin foamed particles of the present invention are used, In addition to excellent fusion of the wall, the bottom peripheral edge standing wall having a large area and the surface beauty of the bottom are also excellent.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to such examples.

実施例および比較例において、使用した物質は、以下のとおりであるが、特に精製等は行っていない。
●ポリプロピレン系樹脂:表1に示すポリプロピレン系樹脂[プライムポリマー(株)製]
●ポリエチレングリコール:ライオン(株)製、平均分子量300
●メラミン:日産化学(株)製
●タルク:林化成(株)製、タルカンパウダーPK−S
In the examples and comparative examples, the substances used were as follows, but no particular purification was performed.
● Polypropylene resin: Polypropylene resin shown in Table 1 [manufactured by Prime Polymer Co., Ltd.]
● Polyethylene glycol: Lion Corporation, average molecular weight 300
● Melamine: Nissan Chemical Co., Ltd. ● Talc: Hayashi Kasei Co., Ltd., Talcan Powder PK-S

なお、実施例および比較例における評価は、次の方法により行なった。   The evaluation in the examples and comparative examples was performed by the following method.

(共重合組成の定量)
ポリプロピレン系樹脂(約1g)に、キシレン50gを加えて120℃で加熱溶解し、高温遠心分離(国産遠心機製、H175)を用いて、12000rpm×30分の条件にて、不溶分と可溶分に分別した。得られた可溶分を冷却後、遠心分離(12000rpm×30分)により、不溶分を得た。
得られた不溶分50mgに、オルトジクロロベンゼン−dを0.4g加え、100℃で加熱溶融させて、13C−MNR[VARIAN社製、INOVA AS600]を用いて98℃にて測定を行い、プロピレン、ブテン、エチレンの共重合組成の定量を行った。
(Quantification of copolymer composition)
Add 50 g of xylene to polypropylene resin (about 1 g), heat and dissolve at 120 ° C., and use high-temperature centrifuge (produced by Kokusan Centrifuge, H175) under the condition of 12000 rpm × 30 minutes, insoluble and soluble components Sorted into After cooling the obtained soluble matter, insoluble matter was obtained by centrifugation (12000 rpm × 30 minutes).
0.4 g of orthodichlorobenzene-d 4 was added to 50 mg of the obtained insoluble matter, and the mixture was heated and melted at 100 ° C., and measurement was performed at 98 ° C. using 13 C-MNR [VARIAN, INOVA AS600]. The copolymer composition of propylene, butene and ethylene was quantified.

(発泡粒子の発泡倍率)
得られた発泡粒子3g以上10g以下程度を取り、60℃で6時間乾燥した後、23℃、湿度50%の室内で状態調節し、重量w(g)を測定後、水没法にて体積v(cm)を測定し、発泡粒子の真比重ρb=w/vを求め、発泡前のポリプロピレン系樹脂粒子の密度ρrとの比から発泡倍率K=ρr/ρbを求めた。
なお、以下に示す実施例および比較例においては、発泡前のポリプロピレン系樹脂粒子の密度ρrは、いずれも0.90g/cmである。
(Expansion ratio of expanded particles)
After taking 3 g or more and 10 g or less of the obtained expanded particles, drying at 60 ° C. for 6 hours, adjusting the condition in a room at 23 ° C. and 50% humidity, measuring the weight w (g), and then subtracting the volume v by submerging method. (Cm 3 ) was measured to determine the true specific gravity ρb = w / v of the expanded particles, and the expansion ratio K = ρr / ρb was determined from the ratio to the density ρr of the polypropylene resin particles before expansion.
In the following examples and comparative examples, the density ρr of the polypropylene resin particles before foaming is 0.90 g / cm 3 .

(ポリプロピレン系樹脂の融点測定)
融点の測定は、示差走査熱量計DSC[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、得られたポリプロピレン系樹脂粒子5〜6mgを、10℃/minの昇温速度で40℃から220℃まで昇温して樹脂粒子を融解し、その後10℃/minの降温速度で220℃から40℃まで降温することにより結晶化させた後に、さらに10℃/minの昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度として求められる値である。
(Measurement of melting point of polypropylene resin)
The melting point was measured by using a differential scanning calorimeter DSC [Seiko Instruments Co., Ltd., DSC6200 type], and obtained polypropylene resin particles 5 to 6 mg at a heating rate of 10 ° C./min from 40 ° C. to 220 ° C. The resin particles are melted by heating to 40 ° C., and then crystallized by cooling from 220 ° C. to 40 ° C. at a temperature lowering rate of 10 ° C./min, and further from 40 ° C. at a temperature rising rate of 10 ° C./min. This is a value obtained as a melting peak temperature at the second temperature increase from a DSC curve obtained when the temperature is increased to 220 ° C.

(ポリプロピレン系発泡粒子の高温側融解熱量の比率の算出)
高温側融解熱量の比率の測定は、示差走査熱量計DSC[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、ポリプロピレン系樹脂発泡粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られるDSC曲線(図1参照)から、算出した。
(Calculation of the ratio of high-temperature melting heat amount of polypropylene-based expanded particles)
The ratio of the high-temperature side melting heat quantity is measured by using a differential scanning calorimeter DSC [Seiko Instruments Co., Ltd., DSC6200 type], and polypropylene resin foamed particles 5 to 6 mg at a heating rate of 10 ° C./min at 40 ° C. Was calculated from the DSC curve (see FIG. 1) obtained when the temperature was raised from 1 to 220 ° C.

(ポリプロピレン系発泡粒子のDSC曲線の微分曲線の極大値の読み取り)
DSC曲線の微分曲線の極大値の算出は、示差走査熱量計DSC[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、得られたポリプロピレン系樹脂発泡粒子5〜6mgを20℃/minの昇温速度で40℃から220℃まで昇温する際に得られるDSC曲線を微分処理した曲線(図2参照)において、その極大値になる時点の温度を読み取った。
(Reading the maximum value of the differential curve of the DSC curve of polypropylene-based expanded particles)
The maximum value of the differential curve of the DSC curve was calculated by using a differential scanning calorimeter DSC [Seiko Instruments Co., Ltd., DSC6200 type] and increasing the obtained polypropylene resin foamed particles 5-6 mg at a rate of 20 ° C./min. In the curve obtained by differentiating the DSC curve obtained when the temperature was raised from 40 ° C. to 220 ° C. at a temperature rate (see FIG. 2), the temperature at which the maximum value was reached was read.

(最低成形加熱蒸気圧力の測定)
ポリプロピレン発泡成形機[ダイセン株式会社製、KD345]を用い、固定型と移動型からなる縦400mm×横300mm×厚み60mmのブロック金型に、耐圧容器内にて加圧空気を含浸させ、発泡粒子内圧を予め0.2MPa(絶対圧)になるように調整した二段発泡粒子を充填し、まず0.1MPa(ゲージ圧)の水蒸気で金型内の空気を追い出し、その後、所定の成形圧力の加熱蒸気を用いて10秒間加熱成形(両面加熱)させることにより、ポリプロピレン系樹脂発泡成形体を得た。この際、成形圧力を0.01MPaごとに変化させて融着不良のポリプロピレン系樹脂発泡成形体から、融着良好なポリプロピレン系樹脂発泡成形体を作製した。
得られた発泡成形体を割って、各粒子が取れずに融着している成形体が得られる最も低い成形圧力を、最低成形加熱蒸気圧力とした。
(Measurement of minimum molding heating steam pressure)
Using a polypropylene foam molding machine [Daisen Co., Ltd., KD345], a block mold having a length of 400 mm, a width of 300 mm, and a thickness of 60 mm consisting of a fixed mold and a movable mold is impregnated with pressurized air in a pressure vessel, and expanded particles Filled with two-stage expanded particles whose internal pressure has been adjusted to 0.2 MPa (absolute pressure) in advance, first expelling the air in the mold with water vapor of 0.1 MPa (gauge pressure), and then at a predetermined molding pressure A polypropylene resin foam molded article was obtained by heating molding (both sides heating) for 10 seconds using heated steam. At this time, by changing the molding pressure every 0.01 MPa, a polypropylene resin foam molded article with good fusion was produced from a polypropylene resin foam molded article with poor fusion.
The lowest molding pressure at which the obtained foamed molded product was divided to obtain a molded product fused without removing each particle was defined as the lowest molding heating steam pressure.

(成形体の表面性)
ブロック金型を用いて最低成形加熱蒸気圧力にて型内発泡成形して得られた型内発泡成形体の表面について、以下の基準にて、表面性を評価した。
○:しわや粒間(ポリプロピレン系樹脂発泡粒子間の粒間)がほとんどなく、表面凹凸も目立たず、美麗である。
△:しわや粒間があり、表面凹凸がやや目立つ。
×:しわや粒間あるいは、ヒケがあり、外観が明らかに不良である。
(Surface properties of molded products)
The surface property of the surface of the in-mold foam molded product obtained by in-mold foam molding using a block mold at the minimum molding heating steam pressure was evaluated according to the following criteria.
○: There are almost no wrinkles or intergranularity (intergranularity between polypropylene resin foam particles), the surface irregularities are not conspicuous, and it is beautiful.
(Triangle | delta): There exists a wrinkle and a grain and surface unevenness is somewhat conspicuous.
X: There are wrinkles, intergranular or sink marks, and the appearance is clearly poor.

(圧縮強度)
ブロック金型を用いて得られた発泡成形体から縦50mm×横50mm×厚み25mmのテストピースを切り出し、NDZ−Z0504に準拠し、引張圧縮試験機[ミネベア製、TGシリーズ]を用いて、10mm/minの速度で圧縮した際の50%圧縮時の圧縮応力を測定した。
なお、50%圧縮時の圧縮応力は、型内発泡成形体の剛性の尺度である。
(Compressive strength)
A test piece having a length of 50 mm, a width of 50 mm and a thickness of 25 mm was cut out from the foamed molded product obtained using the block mold, and 10 mm using a tensile / compression tester [manufactured by Minebea, TG series] in accordance with NDZ-Z0504. Compressive stress at 50% compression when compressed at a rate of / min was measured.
The compressive stress at 50% compression is a measure of the rigidity of the in-mold foam molded product.

(成形体密度)
圧縮強度測定前のテストピースの重量W(g)を測定し、テストピースの縦、横、厚み寸法をノギスで測定し体積V(cm)を算出し、成形体密度をW/Vにて求める。但し、単位がg/Lとなるように換算した。
(Molded body density)
Measure the weight W (g) of the test piece before measuring the compressive strength, measure the vertical, horizontal, and thickness dimensions of the test piece with calipers to calculate the volume V (cm 3 ), and the compact density in W / V. Ask. However, it was converted so that the unit would be g / L.

(内部底面立ち壁部の融着性)
箱形金型を用いて得られた発泡成形体の、内部底面立ち壁部厚み方向の中央にカッターで深さ5mmの切り込みを入れ、その後、手で内部底面立ち壁部を裂き、破断面を目視観察して、発泡粒子界面ではなく、発泡粒子内部が破断している割合を求めて、以下の基準にて、融着性を判定した。
○:発泡粒子内部破断の割合が80%以上。
△:発泡粒子内部破断の割合が60%以上80%未満。
×:発泡粒子内部破断の割合が60%未満(融着度合いが低いため、破断面に現れる発泡粒子界面割合が40%超)。
(Fusibility of internal bottom standing wall)
A foam molded body obtained using a box-shaped mold is cut with a depth of 5 mm with a cutter at the center in the thickness direction of the inner bottom surface standing wall, and then the inner bottom surface standing wall is split by hand. By visually observing, the ratio of not the foamed particle interface but the inside of the foamed particle was determined, and the fusing property was determined according to the following criteria.
○: The ratio of internal fracture of the expanded particles is 80% or more.
(Triangle | delta): The ratio of an internal fracture | rupture of an expanded particle is 60% or more and less than 80%.
X: The ratio of the internal fracture of the expanded particles is less than 60% (because the degree of fusion is low, the ratio of the expanded particle interface appearing on the fracture surface is more than 40%).

(底面周縁立ち壁部外面の表面美麗性)
箱形金型を用いて得られた発泡成形体の、底面周縁立ち壁部外面の表面美麗性を、以下の基準にて判定した。
○:底面周縁立ち壁部外面にヒケおよび/またはしわが見られない。ポリプロピレン系樹脂発泡粒子間(粒間)も目立たず美麗である。
△:底面周縁立ち壁部外面にヒケおよび/またはしわが少し見られる。ポリプロピレン系樹脂発泡粒子間(粒間)は目立たず美麗である。
×:底面周縁立ち壁部外面にヒケやしわが顕著に見られる。あるいはポリプロピレン系樹脂発泡粒子間(粒間)が目立つ。
(Beautiful surface of the outer surface of the standing wall edge)
The surface beauty of the outer peripheral surface of the bottom peripheral edge standing wall of the foam molded product obtained using the box mold was determined according to the following criteria.
○: No sink marks and / or wrinkles are observed on the outer peripheral surface of the bottom peripheral edge standing wall. The space between the foamed polypropylene resin particles (intergranular) is also inconspicuous and beautiful.
Δ: Some sink marks and / or wrinkles are seen on the outer peripheral surface of the bottom peripheral edge standing wall. The space between the foamed polypropylene resin particles (intergranular) is inconspicuous and beautiful.
X: Sink marks and wrinkles are remarkably seen on the outer peripheral surface of the bottom peripheral edge. Or the space between the polypropylene resin expanded particles (intergranular) is conspicuous.

(実施例1)
<ポリプロピレン系樹脂粒子の作製>
1−ブテン含量3.8重量%、エチレン含量0.5重量%のポリプロピレン系樹脂[プライムポリマー(株)製]100部に対して、親水性化合物としてのポリエチレングリコール0.5重量部、発泡核剤としてのタルク0.2重量部を添加・混合した。得られた混合物を、2軸押出機[(株)オーエヌ機械製、TEX40]を用いて、樹脂温度220℃にて溶融混練した後、得られたストランドを水冷後、切断して、ポリプロピレン系樹脂粒子(1.2mg/粒)を製造した。
<一段発泡粒子の作製>
内容量10Lの耐圧容器中に、得られた樹脂粒子100重量部、分散剤としてのパウダー状塩基性第3リン酸カルシウム2重量部および分散助剤としてのn−パラフィンスルホン酸ソーダ0.05重量部を含む水系分散媒300重量部、ならびに発泡剤として炭酸ガス7.5重量部を仕込み、攪拌しながら、表1に示す発泡温度まで昇温し、10分間保持した後、炭酸ガスを追加圧入して、表1に示す発泡圧力に調整し、30分間保持した。
その後、炭酸ガスを圧入しながら容器内温、圧力を一定に保持しつつ、耐圧容器下部のバルブを開いて、水系分散媒を開孔径3.6mmφのオリフィス板を通して、大気圧下に放出することによってポリプロピレン系樹脂発泡粒子(一段発泡粒子)を得た。得られた一段発泡粒子に関して、発泡倍率、高温側融解熱量の比率の算出、DSC曲線の微分曲線の極大値の有無の読み取りを行った。その結果を、表1に示す。
<ポリプロピレン系樹脂発泡粒子(二段発泡粒子)の作製>
得られた一段発泡粒子を80℃にて6時間乾燥させた後、耐圧容器内にて、加圧空気を含浸させて、内圧を0.37MPa(絶対圧)にした後、0.08MPa(ゲージ圧)の水蒸気と接触させることにより、二段発泡させた。
得られた二段発泡粒子に関して、発泡倍率、高温側融解熱量の比率の算出、DSC曲線の微分曲線の極大値の有無、極大値の温度の読み取りを行った。その結果を、表1に示す。
<型内発泡成形体の作製>
(最低成形加熱蒸気圧力の測定)に示した条件にて型内発泡成形体を作製し、最低成形加熱蒸気圧力を評価した。
さらに、最低成形加熱蒸気圧力で得られた成形体を、75℃で16時間乾燥した後、23℃で24時間養生し、成形体の表面性評価、圧縮強度を測定した。その結果を、表1に示す。
Example 1
<Preparation of polypropylene resin particles>
100 parts of polypropylene resin [Prime Polymer Co., Ltd.] having a 1-butene content of 3.8% by weight and an ethylene content of 0.5% by weight, 0.5 parts by weight of a polyethylene glycol as a hydrophilic compound, a foam core 0.2 parts by weight of talc as an agent was added and mixed. The obtained mixture was melt-kneaded at a resin temperature of 220 ° C. using a twin-screw extruder [manufactured by ON Machinery Co., Ltd., TEX40], and the resulting strand was cooled with water and then cut to obtain a polypropylene resin. Particles (1.2 mg / grain) were produced.
<Production of single-stage expanded particles>
In a pressure-resistant container having an internal volume of 10 L, 100 parts by weight of the obtained resin particles, 2 parts by weight of powdery basic tricalcium phosphate as a dispersant, and 0.05 parts by weight of sodium n-paraffin sulfonate as a dispersion aid are added. 300 parts by weight of an aqueous dispersion medium containing, and 7.5 parts by weight of carbon dioxide gas as a foaming agent were added, and while stirring, the temperature was raised to the foaming temperature shown in Table 1 and held for 10 minutes. The foaming pressure shown in Table 1 was adjusted and held for 30 minutes.
After that, while keeping the internal temperature and pressure constant while injecting carbon dioxide gas, open the valve at the bottom of the pressure vessel and release the aqueous dispersion medium through the orifice plate with a hole diameter of 3.6 mmφ under atmospheric pressure. Thus, polypropylene-based resin expanded particles (single-stage expanded particles) were obtained. Regarding the obtained single-stage expanded particles, the expansion ratio, the calculation of the ratio of the high-temperature side fusion heat amount, and the presence / absence of the maximum value of the differential curve of the DSC curve were read. The results are shown in Table 1.
<Preparation of expanded polypropylene resin particles (two-stage expanded particles)>
The obtained single-stage expanded particles were dried at 80 ° C. for 6 hours, and then impregnated with pressurized air in a pressure-resistant container to adjust the internal pressure to 0.37 MPa (absolute pressure), and then 0.08 MPa (gauge Pressure) was brought into contact with water vapor to effect two-stage foaming.
With respect to the obtained two-stage expanded particles, the expansion ratio, the calculation of the ratio of the high-temperature side heat of fusion, the presence / absence of the maximum value of the differential curve of the DSC curve, and the temperature of the maximum value were read. The results are shown in Table 1.
<Preparation of in-mold foam molding>
An in-mold foam molded article was produced under the conditions shown in (Measurement of minimum molding heating steam pressure), and the minimum molding heating steam pressure was evaluated.
Further, the molded body obtained at the lowest molding heating steam pressure was dried at 75 ° C. for 16 hours and then cured at 23 ° C. for 24 hours, and the surface property evaluation and compressive strength of the molded body were measured. The results are shown in Table 1.

(実施例2〜3)
1−ブテン含量、エチレン含量を変更したポリオレフィン系樹脂[プライムポリマー(株)製]を用い、表1に示したように各種条件を変更した以外は、実施例1と同様の操作をして、ポリプロピレン系樹脂粒子、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
(Examples 2-3)
1-butene content, using a polyolefin resin having changed ethylene content [manufactured by Prime Polymer Co., Ltd.], except that various conditions were changed as shown in Table 1, the same operation as in Example 1, Polypropylene resin particles, one-stage expanded particles, two-stage expanded particles, and in-mold expanded molded articles were obtained and evaluated. The results are shown in Table 1.

(実施例4)
<樹脂粒子の作製>時の親水性化合物をメラミン0.2重量部に変更し、表1に示したように各種条件を変更した以外は、実施例1と同様の操作をして、ポリプロピレン系樹脂粒子、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
Example 4
<Preparation of resin particles> The hydrophilic compound was changed to 0.2 parts by weight of melamine, and various conditions were changed as shown in Table 1. Resin particles, one-stage expanded particles, two-stage expanded particles, and in-mold expanded molded articles were obtained and evaluated. The results are shown in Table 1.

(実施例5〜6)
実施例1のポリプロピレン系樹脂粒子を用い、表1に示したように各種条件を変更した以外は、実施例1と同様にして、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
実施例5では、二段発泡粒子の高温熱量比が12%、実施例6では、二段発泡粒子の高温熱量比が28%であった。
(Examples 5-6)
Using the polypropylene resin particles of Example 1, except that various conditions were changed as shown in Table 1, single-stage expanded particles, double-stage expanded particles, and in-mold expanded molded articles were obtained in the same manner as Example 1. And evaluated. The results are shown in Table 1.
In Example 5, the high-temperature heat ratio of the two-stage expanded particles was 12%, and in Example 6, the high-temperature ratio of the two-stage expanded particles was 28%.

(実施例7〜8)
実施例1のポリプロピレン系樹脂粒子を用い、表1に示したように各種条件を変更した以外は、実施例1と同様にして、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。
その結果を、表1に示す。
(Examples 7 to 8)
Using the polypropylene resin particles of Example 1, except that various conditions were changed as shown in Table 1, single-stage expanded particles, double-stage expanded particles, and in-mold expanded molded articles were obtained in the same manner as Example 1. And evaluated.
The results are shown in Table 1.

(実施例9)
<二段発泡粒子の作製>時の二段発泡条件を表1記載の条件として二段発泡粒子を得た後、二段発泡粒子に更に加圧空気を含浸させて、内圧を0.35MPa(絶対圧)にし、0.03MPa(ゲージ圧)の水蒸気と接触させることにより、三段発泡粒子を得た。
また、表1に示したように各種条件を変更した以外は、実施例1と同様の操作をして、ポリプロピレン系樹脂粒子、一段発泡粒子、二段発泡粒子、三段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
Example 9
<Preparation of Two-Stage Foamed Particles> After obtaining the two-stage foamed particles with the two-stage foaming conditions at the time described in Table 1, the two-stage foamed particles were further impregnated with pressurized air, and the internal pressure was 0.35 MPa ( Absolute pressure) and contact with water vapor of 0.03 MPa (gauge pressure) to obtain three-stage expanded particles.
Moreover, except having changed various conditions as shown in Table 1, operation similar to Example 1 was carried out, and a polypropylene resin particle, a single-stage expanded particle, a 2-stage expanded particle, a 3-stage expanded particle, in-mold expansion Molded bodies were obtained and evaluated. The results are shown in Table 1.

(実施例10〜12)
1−ブテン含量、エチレン含量および融点を変更したポリオレフィン系樹脂[プライムポリマー(株)製]を用い、表1に示したように各種条件を変更した以外は、実施例1と同様の操作により、ポリプロピレン系樹脂粒子、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
(Examples 10 to 12)
1-butene content, ethylene content, and a polyolefin resin with a changed melting point [manufactured by Prime Polymer Co., Ltd.], except that various conditions were changed as shown in Table 1, the same operation as in Example 1, Polypropylene resin particles, one-stage expanded particles, two-stage expanded particles, and in-mold expanded molded articles were obtained and evaluated. The results are shown in Table 1.

(比較例1〜2)
実施例1のポリプロピレン系樹脂粒子を用いて、表1に示したように各種条件を変更した以外は、実施例1と同様の操作により、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
ここで、比較例1は、得られた二段発泡粒子の高温熱量比が8%、比較例2は高温熱量比が33%であった。
(Comparative Examples 1-2)
By using the polypropylene resin particles of Example 1 and changing various conditions as shown in Table 1, the same procedure as in Example 1 was followed to obtain single-stage foam particles, two-stage foam particles, and in-mold foam moldings. Obtained and evaluated. The results are shown in Table 1.
Here, in Comparative Example 1, the high-temperature heat quantity ratio of the obtained two-stage expanded particles was 8%, and in Comparative Example 2, the high-temperature heat quantity ratio was 33%.

(比較例3)
実施例1のポリプロピレン系樹脂粒子を用い、表1に示したように各種条件を変更した以外は、実施例1と同様の操作により、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
得られた二段発泡粒子のDSC曲線の微分曲線の極大値温度は126℃であった。なお、二段発泡粒子は、粒子間で凝集したアグロメ状態になり、成形できなかった。
(Comparative Example 3)
By using the polypropylene resin particles of Example 1 and changing the various conditions as shown in Table 1, the same steps as in Example 1 were carried out to obtain single-stage foam particles, two-stage foam particles, and in-mold foam moldings. Obtained and evaluated. The results are shown in Table 1.
The maximum value temperature of the differential curve of the DSC curve of the obtained two-stage expanded particles was 126 ° C. The two-stage expanded particles were in an agglomerated state aggregated between the particles and could not be molded.

(比較例4)
実施例1のポリプロピレン系樹脂粒子を用い、発泡剤をiso−ブタンに変更して、表1に示す作製条件にて、発泡倍率30倍の一段発泡粒子を得た以外は、実施例1と同様の操作により、型内発泡成形体を得て、評価した。その結果を、表1に示す。
なお、得られた一段発泡粒子のDSC測定の微分曲線には、極大値が存在しなかった。
(Comparative Example 4)
The same procedure as in Example 1 except that the polypropylene resin particles of Example 1 were used, the foaming agent was changed to iso-butane, and single-stage expanded particles with an expansion ratio of 30 times were obtained under the production conditions shown in Table 1. In this way, an in-mold foam molded article was obtained and evaluated. The results are shown in Table 1.
In addition, the maximum value did not exist in the differential curve of DSC measurement of the obtained single-stage expanded particles.

(比較例5)
1−ブテン含量7.0重量%、エチレン含量3.0重量%のポリプロピレン系樹脂[プライムポリマー(株)製]を用い、表1に示したように各種条件を変更した以外は、実施例1と同様の操作により、ポリプロピレン系樹脂粒子、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
(Comparative Example 5)
Example 1 except that a polypropylene resin (manufactured by Prime Polymer Co., Ltd.) having a 1-butene content of 7.0% by weight and an ethylene content of 3.0% by weight was used and various conditions were changed as shown in Table 1. In the same manner as above, polypropylene resin particles, one-stage expanded particles, two-stage expanded particles, and in-mold expanded molded articles were obtained and evaluated. The results are shown in Table 1.

(比較例6)
ホモポリプロピレン樹脂(1−ブテン含量0重量%、エチレン含量0重量%)[プライムポリマー(株)製]を用い、表1に示したように各種条件を変更した以外は、実施例1と同様の操作により、ポリプロピレン系樹脂粒子、一段発泡粒子、二段発泡粒子、型内発泡成形体を得て、評価した。その結果を、表1に示す。
(Comparative Example 6)
A homopolypropylene resin (1-butene content 0% by weight, ethylene content 0% by weight) [manufactured by Prime Polymer Co., Ltd.] was used, except that various conditions were changed as shown in Table 1, and the same as in Example 1 By operation, polypropylene resin particles, one-stage expanded particles, two-stage expanded particles, and in-mold expanded molded articles were obtained and evaluated. The results are shown in Table 1.

Figure 2012233182
Figure 2012233182

(実施例13)
実施例1で作製した二段発泡粒子を用いて、次のようにして、肉厚部と薄肉部を有する型内発泡成形体評価を行った。ポリプロピレン発泡成形機[東洋機械金属株式会社製、P−300]を用い、以下に示す形状寸法を有する成形体が得られる箱形金型を用いる型内発泡成形により、図4に示す内部底面立ち壁部を有する箱型の型内発泡成形体を得た。この際、予め二段発泡粒子内部の空気圧力が0.30MPa(絶対圧)になるように調整しておき、これを金型に充填し、まず0.1MPaの水蒸気で金型内の空気を追い出し、その後、表2記載の蒸気圧力の加熱蒸気を用いて10秒間加熱成形(両面加熱)させることにより、該型内発泡成形体を得た。
ここで、得られる型内発泡成形体の箱型形状外寸は、縦350mm×横400mm×高さ150mmであり、底面の厚みおよび底面周縁立ち壁部の厚みは全て均一で15mmである。内部底面立ち壁部は、箱型の型内発泡成形体長手方向の底部中央に位置し、内部容積を均等に二分している。内部底面立ち壁部の厚みは50mmであり、内部底面立ち壁部の高さは底面周縁立ち壁部の高さと同じ135mm(=外寸高さ150mm−底面厚み15mm)である。
得られた型内発泡成形体に関して、内部底面立ち壁部の融着性と、底面周縁立ち壁部外面の表面美麗性を評価した。評価結果を表2に示す。
(Example 13)
Using the two-stage expanded particles produced in Example 1, an in-mold foamed molded article having a thick part and a thin part was evaluated as follows. Using a polypropylene foam molding machine [P-300, manufactured by Toyo Machine Metal Co., Ltd.], the inner bottom surface shown in FIG. A box-shaped in-mold foam molded body having a wall portion was obtained. At this time, the air pressure inside the two-stage expanded particles is adjusted in advance to be 0.30 MPa (absolute pressure), and this is filled into a mold, and first, the air in the mold is blown with 0.1 MPa water vapor. The in-mold foam-molded article was obtained by ejecting and then heat-molding (both-side heating) for 10 seconds using heating steam having the steam pressure shown in Table 2.
Here, the box-shaped outer dimensions of the obtained in-mold foam-molded product are 350 mm long × 400 mm wide × 150 mm high, and the thickness of the bottom surface and the bottom peripheral edge standing wall are all uniform and 15 mm. The inner bottom standing wall portion is located at the center of the bottom in the longitudinal direction of the box-shaped in-mold foam molded body, and equally bisects the internal volume. The thickness of the inner bottom surface standing wall portion is 50 mm, and the height of the inner bottom surface standing wall portion is 135 mm (= outside height height 150 mm−bottom surface thickness 15 mm) which is the same as the height of the bottom peripheral edge standing wall portion.
With respect to the obtained in-mold foam molded article, the fusing property of the inner bottom standing wall portion and the surface beauty of the bottom peripheral edge standing wall portion outer surface were evaluated. The evaluation results are shown in Table 2.

(実施例14〜21、比較例7〜15)
表2あるいは表3に記載のポリプロピレン系樹脂粒子、発泡粒子や各種条件とした以外は、実施例13と同様にして、箱型の型内発泡成形体を得て、評価した。
結果を、表2あるいは表3に示す。
(Examples 14 to 21, Comparative Examples 7 to 15)
A box-shaped in-mold foam molded article was obtained and evaluated in the same manner as in Example 13 except that the polypropylene resin particles, foamed particles, and various conditions shown in Table 2 or Table 3 were used.
The results are shown in Table 2 or Table 3.

Figure 2012233182
Figure 2012233182

Figure 2012233182
Figure 2012233182

実施例13〜21では、内部底面立ち壁部の融着性と底面周縁立ち壁部外面の表面美麗性の両方が良好になる成形加熱蒸気圧力条件が存在したが、比較例7〜15においては、内部底面立ち壁部の融着性と底面周縁立ち壁部外面の表面美麗性の両方が良好になる成形加熱蒸気圧力条件は存在しなかった。   In Examples 13 to 21, there was a molding heating steam pressure condition in which both the fusion property of the inner bottom standing wall portion and the surface beauty of the bottom peripheral edge standing wall outer surface were good, but in Comparative Examples 7 to 15 There was no molding heating steam pressure condition in which both the fusing property of the inner bottom standing wall portion and the surface beauty of the bottom peripheral edge standing wall outer surface were good.

(実施例22)
内部底面立ち壁部の厚みを18mmとし、成形加熱蒸気圧力を0.26MPa(ゲージ圧)とした以外は、実施例13と同様の操作により、箱型の型内発泡成形体を得て、評価した。結果を表2に示す。
(Example 22)
A box-shaped in-mold foam molded body was obtained and evaluated by the same operation as in Example 13, except that the thickness of the inner bottom standing wall portion was 18 mm and the molding heating steam pressure was 0.26 MPa (gauge pressure). did. The results are shown in Table 2.

(実施例23)
内部底面立ち壁部の幅を50mmとし、内部底面立ち壁部高さを底面周縁立ち壁部の高さより低い75mmとし、成形加熱蒸気圧力を0.26MPa(ゲージ圧)とした以外は、実施例13と同様の操作により、箱型の型内発泡成形体を得て、評価した。結果を表2に示す。
(Example 23)
Example, except that the width of the inner bottom surface standing wall portion is 50 mm, the height of the inner bottom surface standing wall portion is 75 mm lower than the height of the bottom peripheral edge standing wall portion, and the molding heating steam pressure is 0.26 MPa (gauge pressure). In the same manner as in No. 13, a box-shaped in-mold foam molded article was obtained and evaluated. The results are shown in Table 2.

(実施例24)
箱型形状外寸の高さを390mm、内部底面立ち壁部の厚みを50mmとし、内部底面立ち壁部高さを底面周縁立ち壁部の高さと同じ375mm(=外寸高さ390mm−底面厚み15mm)
とし、成形加熱蒸気圧力を0.30MPa(ゲージ圧)とした以外は、実施例13と同様の操作により、箱型の型内発泡成形体を得て、評価した。結果を表2に示す。
(Example 24)
The height of the box-shaped outer dimensions is 390 mm, the thickness of the inner bottom standing wall is 50 mm, and the height of the inner bottom standing wall is the same as the height of the bottom peripheral wall, which is 375 mm (= outer height 390 mm-bottom thickness) 15mm)
A box-shaped in-mold foam molded article was obtained and evaluated by the same operation as in Example 13 except that the molding heating steam pressure was 0.30 MPa (gauge pressure). The results are shown in Table 2.

(実施例25)
型内発泡成形体の箱型形状外寸を縦350mm×横400mm×高さ310mmとし、底面の厚みおよび底面周縁立ち壁部の厚みは全て均一で10mmとした。また、内部底面立ち壁部の厚みは60mmであり、内部底面立ち壁部高さは底面周縁立ち壁部の高さと同じの300mm(=外寸高さ310mm−底面厚み10mm)とし、成形加熱蒸気圧力を0.30MPa(ゲージ圧)とした以外は、実施例13と同様の操作により、箱型の型内発泡成形体を得て、評価した。結果を表2に示す。
(Example 25)
The box-shaped outer dimensions of the in-mold foam molded body were 350 mm long × 400 mm wide × 310 mm high, and the thickness of the bottom surface and the bottom peripheral edge standing wall were all uniform and 10 mm. Further, the thickness of the inner bottom standing wall portion is 60 mm, and the height of the inner bottom standing wall portion is 300 mm (= outside dimension height 310 mm−bottom surface thickness 10 mm) which is the same as the height of the bottom peripheral edge standing wall portion. A box-shaped in-mold foam molded body was obtained and evaluated by the same operation as in Example 13 except that the pressure was 0.30 MPa (gauge pressure). The results are shown in Table 2.

(比較例16〜18)
表3に記載のポリプロピレン系樹脂粒子、発泡粒子や各種条件とした以外は、実施例22と同様(内部底面立ち壁部の厚みを18mm)の操作により、箱型の型内発泡成形体を得て、評価した。結果を表3に示す。
(Comparative Examples 16-18)
A box-shaped in-mold foam-molded article was obtained by the same operation as in Example 22 (with the thickness of the inner bottom standing wall portion being 18 mm) except that the polypropylene resin particles, foam particles and various conditions described in Table 3 were used. And evaluated. The results are shown in Table 3.

Claims (10)

プロピレンに共重合されるコモノマーとして、1−ブテンおよびエチレンを含み、1−ブテン含量とエチレン含量の総和が1.0重量%以上、且つ、1−ブテン含量が6.0重量%以下、エチレン含量が3.0重量%以下であり、かつ、融点が140℃以上155℃以下であるポリプロピレン系樹脂を基材樹脂とするポリプロピレン系樹脂発泡粒子であって、
発泡倍率20倍以上60倍以下、
10℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解熱量領域(Ql)と高温側融解熱量領域(Qh)の2つの領域を有し、
高温側融解熱量の比率(Qh/(Ql+Qh)×100)(%)が10%以上30%以下であり、且つ、20℃/分の昇温速度にて40℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線の微分曲線中に、105℃以上120℃以下の間に極大値を有することを特徴とする、ポリプロピレン系樹脂発泡粒子。
As comonomer copolymerized with propylene, it contains 1-butene and ethylene, the sum of 1-butene content and ethylene content is 1.0 wt% or more, 1-butene content is 6.0 wt% or less, ethylene content Is a polypropylene resin expanded particle having a base resin of a polypropylene resin having a melting point of 140 ° C. or higher and 155 ° C. or lower, and 3.0% by weight or less,
Foaming ratio 20 times or more and 60 times or less,
In a DSC curve obtained by differential scanning calorimetry (DSC) in which the temperature is raised from 40 ° C. to 220 ° C. at a rate of temperature increase of 10 ° C./minute, the low temperature side melting calorie region (Ql) and the high temperature side melting calorie region (Qh) Have two areas,
The differential in which the ratio (Qh / (Ql + Qh) × 100) (%) of the high temperature side heat of fusion is 10% or more and 30% or less and the temperature is increased from 40 ° C. to 220 ° C. at a temperature increase rate of 20 ° C./min. Polypropylene resin foamed particles having a maximum value between 105 ° C. and 120 ° C. in a differential curve of a DSC curve obtained by scanning calorimetry (DSC).
基材樹脂としてのポリプロピレン系樹脂の融点が147℃以上153℃以下であることを特徴とする、請求項1記載のポリプロピレン系樹脂発泡粒子。   The polypropylene resin expanded particles according to claim 1, wherein the polypropylene resin as the base resin has a melting point of 147 ° C or higher and 153 ° C or lower. 少なくとも2回の発泡工程を経て得られることを特徴とする、請求項1あるいは2に記載のポリプロピレン系樹脂発泡粒子。   The polypropylene-based resin expanded particles according to claim 1, wherein the expanded polypropylene resin particles are obtained through at least two expansion steps. 請求項1〜3の何れか一項に記載のポリプロピレン系樹脂発泡粒子を、型内発泡成形してなることを特徴とする、ポリプロピレン系樹脂型内発泡成形体。   A polypropylene resin-in-mold foam-molded article obtained by foam-molding the polypropylene-based resin foam particles according to any one of claims 1 to 3. 固定型と移動型の金型を用いて得られる型内発泡成形体において、ポリプロピレン系樹脂発泡粒子を金型内に充填した場合にいずれか一方の型のみで形が形成される部位を有することを特徴とする、請求項4記載のポリプロピレン系樹脂型内発泡成形体。   An in-mold foam molded product obtained by using a fixed mold and a movable mold has a portion where the shape is formed by only one of the molds when polypropylene resin foam particles are filled in the mold. The polypropylene resin-in-mold foam-molded article according to claim 4, wherein: 固定型と移動型の金型を用いて得られる型内発泡成形体において、ポリプロピレン系樹脂発泡粒子を金型内に充填した場合にいずれか一方の型のみで形が形成される部位の形状が、前記部位から最も大きく球を切り出す際に、直径20mm以上100mm以下の球を切り出すことのできる形状であることを特徴とする、請求項5記載のポリプロピレン系樹脂型内発泡成形体。   In the in-mold foam molded product obtained by using a fixed mold and a movable mold, when the polypropylene resin expanded particles are filled in the mold, the shape of the part formed by only one of the molds is The polypropylene resin in-mold foam-molded article according to claim 5, which has a shape capable of cutting a sphere having a diameter of 20 mm or more and 100 mm or less when the sphere is cut out most from the portion. 底面と底面周縁立ち壁部からなり、物品収納可能な内部を有するポリプロピレン系樹脂型内発泡成形体であって、
内部底面に少なくとも1つの立ち壁部を有し、
内部底面の立ち壁部の厚みが底面周縁立ち壁部厚みの1.2倍以上5倍以下であり、
内部底面の立ち壁部の高さが、底面の厚みの2倍以上30倍以下であることを特徴とする、請求項5または6記載のポリプロピレン系樹脂型内発泡成形体。
It consists of a bottom surface and a bottom peripheral edge standing wall part, and is a polypropylene-based resin-in-mold foam-molded body having an interior capable of storing articles,
Having at least one standing wall on the inner bottom surface;
The thickness of the standing wall portion of the inner bottom surface is 1.2 times or more and 5 times or less of the bottom peripheral edge standing wall portion thickness,
The polypropylene-based resin-molded in-mold foam-molded article according to claim 5 or 6, wherein the height of the standing wall portion on the inner bottom surface is not less than 2 times and not more than 30 times the thickness of the bottom surface.
内部底面立ち壁部が、物品収納可能な内部を区画する為の立ち壁部であることを特徴とする請求項7記載のポリプロピレン系樹脂型内発泡成形体。   The polypropylene-based resin-in-mold foam-molded article according to claim 7, wherein the inner bottom standing wall portion is a standing wall portion for partitioning an interior in which articles can be stored. 内部底面の立ち壁部の高さ方向の延長線上に、充填機先端の転写跡が残っていることを特徴とする、請求項7または8記載のポリプロピレン系樹脂型内発泡成形体。   9. The polypropylene resin-in-mold foam-molded molded product according to claim 7 or 8, wherein a transfer mark at the tip of the filling machine remains on an extension line in the height direction of the standing wall portion on the inner bottom surface. ポリプロピレン系樹脂型内発泡成形体が、ラゲッジボックスであることを特徴とする、請求項7〜9の何れか一項記載のポリプロピレン系樹脂型内発泡成形体。
The polypropylene resin-in-mold foam-molded product according to any one of claims 7 to 9, wherein the polypropylene-based resin mold-in-mold foam-molded product is a luggage box.
JP2012094537A 2011-04-21 2012-04-18 Polypropylene resin in-mold foam molding Active JP6038479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094537A JP6038479B2 (en) 2011-04-21 2012-04-18 Polypropylene resin in-mold foam molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011095376 2011-04-21
JP2011095376 2011-04-21
JP2012094537A JP6038479B2 (en) 2011-04-21 2012-04-18 Polypropylene resin in-mold foam molding

Publications (2)

Publication Number Publication Date
JP2012233182A true JP2012233182A (en) 2012-11-29
JP6038479B2 JP6038479B2 (en) 2016-12-07

Family

ID=47433792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094537A Active JP6038479B2 (en) 2011-04-21 2012-04-18 Polypropylene resin in-mold foam molding

Country Status (1)

Country Link
JP (1) JP6038479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
WO2016147919A1 (en) * 2015-03-13 2016-09-22 株式会社カネカ Polypropylene resin foamed particles and method for producing same
JP2021001255A (en) * 2019-06-20 2021-01-07 株式会社ジェイエスピー Polypropylene resin foam particles and polypropylene resin foam particle compact

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058474A (en) * 1996-08-15 1998-03-03 Asahi Chem Ind Co Ltd Manufacture of foam molding in polyolefin resin mold
WO2008075503A1 (en) * 2006-12-20 2008-06-26 Kaneka Corporation Pre-expanded noncrosslinked polypropylene resin beads and in-mold expansion moldings
JP2009126914A (en) * 2007-11-21 2009-06-11 Kaneka Corp Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP2009167236A (en) * 2008-01-11 2009-07-30 Kaneka Corp Process for producing expanded polypropylene-based resin bead and expanded polypropylene-based resin bead
JP2009280783A (en) * 2008-04-24 2009-12-03 Kaneka Corp Pre-expanded particle of polypropylene-based resin, and in-mold expansion molded product
JP2010173146A (en) * 2009-01-28 2010-08-12 Kaneka Corp Method for manufacturing polypropylene-based resin in-mold foam molded body
WO2011043032A1 (en) * 2009-10-06 2011-04-14 株式会社カネカ Polypropylene resin expanded particles and polypropylene resin in-mold expanded molded body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058474A (en) * 1996-08-15 1998-03-03 Asahi Chem Ind Co Ltd Manufacture of foam molding in polyolefin resin mold
WO2008075503A1 (en) * 2006-12-20 2008-06-26 Kaneka Corporation Pre-expanded noncrosslinked polypropylene resin beads and in-mold expansion moldings
JP2009126914A (en) * 2007-11-21 2009-06-11 Kaneka Corp Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP2009167236A (en) * 2008-01-11 2009-07-30 Kaneka Corp Process for producing expanded polypropylene-based resin bead and expanded polypropylene-based resin bead
JP2009280783A (en) * 2008-04-24 2009-12-03 Kaneka Corp Pre-expanded particle of polypropylene-based resin, and in-mold expansion molded product
JP2010173146A (en) * 2009-01-28 2010-08-12 Kaneka Corp Method for manufacturing polypropylene-based resin in-mold foam molded body
WO2011043032A1 (en) * 2009-10-06 2011-04-14 株式会社カネカ Polypropylene resin expanded particles and polypropylene resin in-mold expanded molded body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
US9493622B2 (en) 2012-11-27 2016-11-15 Kaneka Corporation Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
JPWO2014084165A1 (en) * 2012-11-27 2017-01-05 株式会社カネカ POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDING AND METHOD FOR PRODUCING THEM
WO2016147919A1 (en) * 2015-03-13 2016-09-22 株式会社カネカ Polypropylene resin foamed particles and method for producing same
JPWO2016147919A1 (en) * 2015-03-13 2017-12-28 株式会社カネカ Polypropylene-based resin expanded particles and method for producing the same
US10017619B2 (en) 2015-03-13 2018-07-10 Kaneka Corporation Polypropylene resin foamed particles and method for producing same
JP2021001255A (en) * 2019-06-20 2021-01-07 株式会社ジェイエスピー Polypropylene resin foam particles and polypropylene resin foam particle compact
JP7225038B2 (en) 2019-06-20 2023-02-20 株式会社ジェイエスピー Expanded polypropylene resin particles and expanded polypropylene resin particles

Also Published As

Publication number Publication date
JP6038479B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6421165B2 (en) Polypropylene-based resin expanded particles and method for producing polypropylene-based resin expanded particles
JP5219375B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
WO2017030124A1 (en) Polypropylene resin foamed particles, method for producing polypropylene resin foamed particles, method for producing polypropylene resin in-mold foam-molded article, and polypropylene resin in-mold foam-molded article
JP6568801B2 (en) Polyolefin resin foam particles and polyolefin resin in-mold foam molding
WO2016060162A1 (en) Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
JP5375613B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP6038479B2 (en) Polypropylene resin in-mold foam molding
JP5909368B2 (en) Polypropylene resin-in-mold foam-molded article and method for producing the same
WO2016098698A1 (en) Polypropylene resin foamed particles
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP2010248341A (en) Polypropylene-based resin prefoamed particle
JPWO2016147919A1 (en) Polypropylene-based resin expanded particles and method for producing the same
WO2016158686A1 (en) Method for manufacturing polyethylene resin foam molded article
JP2005298769A (en) Polypropylenic resin pre-expanded particle and in-mold expansion molded product
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
JP5475149B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP2010180295A (en) Polyolefin resin pre-expanded bead in control of sound of friction
JP5022094B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and in-mold foam molded article
JPWO2017090432A1 (en) Method for producing polypropylene resin expanded particles, polypropylene resin expanded particles and in-mold expanded molded body
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2007302720A (en) Polypropylene-based resin pre-foamed particle and molded article obtained by in-mold foaming of the same
JP5758586B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250