JPH1058474A - Manufacture of foam molding in polyolefin resin mold - Google Patents
Manufacture of foam molding in polyolefin resin moldInfo
- Publication number
- JPH1058474A JPH1058474A JP8215625A JP21562596A JPH1058474A JP H1058474 A JPH1058474 A JP H1058474A JP 8215625 A JP8215625 A JP 8215625A JP 21562596 A JP21562596 A JP 21562596A JP H1058474 A JPH1058474 A JP H1058474A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- particles
- steam
- pressure
- expanded particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、無架橋ポリオレフ
ィン系樹脂予備発泡粒子を金型内に充填し、これを水蒸
気で加熱発泡して粒子相互を融着させて発泡成形体にす
る、無架橋ポリオレフィン系樹脂予備発泡粒子の型内発
泡成形方法の改良技術に関する。とりわけ、肉厚の大型
サイズの成形体或いは肉厚部と薄肉部の共存した複雑形
状の成形体の成形に好適な型内発泡成形方法の改良技術
に関する。The present invention relates to a non-crosslinked polyolefin resin pre-expanded particle, which is filled in a mold and heated and foamed with steam to fuse the particles together to form a foamed molded article. The present invention relates to an improved technique for in-mold foam molding of polyolefin resin pre-expanded particles. In particular, the present invention relates to an improved technique of an in-mold foam molding method suitable for molding a large-sized molded article having a large thickness or a complex-shaped molded article in which a thick portion and a thin portion coexist.
【0002】[0002]
【従来の技術】従来、熱可塑性樹脂の発泡粒子を型内に
充填し発泡させて、隣接する粒子間に生じた間隙を埋
め、且つ発泡粒子相互を密に融着させて、型通りの形状
の発泡成形体を得る製法は広く知られている。この製法
は、ポリスチレン樹脂を基材樹脂とする発泡成形体の製
法として発展してきたものであって、ポリスチレン型内
発泡成形体の製法としては、現在ほとんど完成されたも
のとなっている。2. Description of the Related Art Conventionally, foamed particles of a thermoplastic resin are filled in a mold and foamed to fill gaps formed between adjacent particles, and the foamed particles are closely fused to each other to obtain a shape according to the mold. A method for obtaining a foamed molded product is widely known. This production method has been developed as a method for producing a foamed molded article using a polystyrene resin as a base resin, and has been almost completed as a method for producing a foamed molded article in a polystyrene mold.
【0003】しかしながら、このポリスチレン型内発泡
成形体の製法において、基材樹脂としてポリスチレンの
代わりにポリオレフィン(ポリエチレン、ポリプロピレ
ン)を用いる場合、満足しうる発泡成形体は得られな
い。これは、ポリオレフィン樹脂のもつ本質的な特性、
すなわち樹脂内にガスを発泡能力を有する状態で長時間
保持しておく能力に劣り、樹脂よりガスが短時間内に逸
散するというガスに対する保持性(バリヤー性)が悪
く、その上、該樹脂の流動粘弾特性変化の温度依存性が
著しく大きいことによって、適切な発泡条件を見いだす
ことができないのが主な原因となつている。However, when a polyolefin (polyethylene, polypropylene) is used in place of polystyrene as the base resin in the method for producing a foamed molded article in a polystyrene mold, a satisfactory foamed molded article cannot be obtained. This is an essential property of polyolefin resin,
In other words, the resin has poor ability to retain gas in a resin for a long time in a state of having a foaming ability, and has poor gas retention (barrier property) such that gas escapes in a short time than resin. The main reason for this is that it is not possible to find appropriate foaming conditions due to the remarkably large temperature dependence of the change in the fluid viscoelastic properties.
【0004】したがって、ポリオレフィン樹脂型内発泡
成形体を製造する方法として、予備発泡粒子に型内発泡
させるための膨張能を付与する。この膨張能を付与する
方法としては、例えば、予備発泡粒子を空気や窒素のよ
うな不活性ガスの加圧雰囲気下に置いて、該発泡粒子の
かさ容積を元のかさ容積の80%以下になるように圧縮
し、この圧縮により生じた弾性回復力を型内膨張能の主
力とするガス圧圧縮法(特公昭53−33996号公報
に開示)、或いは予備発泡粒子内に無機ガスを含浸させ
て、該粒子内の気体圧力を1.18気圧以上になるよう
に高め、該気体の膨張力を型内膨張能の主力とするガス
圧追添法(特公昭51−22951号公報に開示)、こ
れらの方法を組合わせた併用法などが知られ採用されて
いる。[0004] Therefore, as a method for producing a polyolefin resin in-mold foam, a pre-expanded particle is provided with expandability for in-mold foaming. As a method of imparting this expansion ability, for example, the pre-expanded particles are placed in a pressurized atmosphere of an inert gas such as air or nitrogen, and the volume of the expanded particles is reduced to 80% or less of the original volume. Gas pressure compression method (disclosed in JP-B-53-33996), in which the elastic recovery force generated by this compression is the main force of the in-mold expansion ability, or impregnated with inorganic gas in the pre-expanded particles. The gas pressure in the particles is increased to 1.18 atmospheres or more, and the gas pressure addition method is used in which the expansion force of the gas is the main force of the in-mold expansion capability (disclosed in Japanese Patent Publication No. 51-22951). A combination method of combining these methods is known and adopted.
【0005】そして更に、特開昭57−174223号
公報及び特開昭62−267129号公報などにいくつ
かの改善成形方法が開示されている。これら公報に記載
された方法は予備発泡粒子を型内に充填し、減圧下装置
に接続された導管を介して型の通気用の小孔を通して減
圧による抜気と蒸気供給管より供給される蒸気による抜
気により型内の空気を排除したのち、型内に蒸気供給管
から蒸気を供給して型内の予備発泡粒子を発泡融着させ
る方法であって、粒子間の融着度を向上し成形体品質の
向上を図ると共に成形サイクルの短縮に効果を有してい
る。Further, some improved molding methods are disclosed in Japanese Patent Application Laid-Open Nos. 57-174223 and 62-267129. In the method described in these publications, pre-expanded particles are filled in a mold, and air is removed by depressurization through a small hole for ventilation of the mold through a conduit connected to a device under reduced pressure, and steam supplied from a steam supply pipe. After removing air in the mold by degassing, a method is used in which steam is supplied from a steam supply pipe into the mold to foam and fuse the pre-expanded particles in the mold, thereby improving the degree of fusion between the particles. It has the effect of improving the quality of the compact and shortening the molding cycle.
【0006】これらの製法により、無架橋ポリオレフィ
ン樹脂予備発泡粒子の型内発泡成形法は技術的に一応完
成の領域に到達したものと見られてきた。しかしなが
ら、上記無架橋ポリオレフィン樹脂予備発泡粒子による
型内発泡成形法の技術は、薄肉の小型サイズの成形品、
コーナーパット等の単純な成形体を対象にして完成され
てきた技術と言って過言ではないのである。しかるに近
年、市場の動向として、例えば液晶モジュールの集合包
装に用いられる緩衝用発泡成形体等に示される如く、型
の形状が凹凸部、厚薄部等の多い、複雑形状化した発泡
成形体の要求が高まっている。また板物については、成
形加工時の生産性向上を目的として、或いは新断熱基準
にそって、厚肉の大型サイズの発泡成形板が増えつつあ
るのが現状である。[0006] By these manufacturing methods, it has been considered that the in-mold foam molding method of non-crosslinked polyolefin resin pre-expanded particles has reached a technically complete area. However, the technology of the in-mold foam molding method using the non-crosslinked polyolefin resin pre-expanded particles is a thin-walled small-sized molded product,
It is not an exaggeration to say that the technology has been completed for simple molded products such as corner pads. However, in recent years, as a trend in the market, for example, as shown in a foamed cushioning molded article used for collective packaging of liquid crystal modules, there is a demand for a foamed molded article having a complicated shape having many irregularities, thick and thin portions, and the like. Is growing. At the present time, with respect to plate objects, there is an increasing number of thick and large-sized foam molded plates for the purpose of improving the productivity at the time of forming processing or in accordance with new heat insulation standards.
【0007】従前の型内発泡成形法を用いて、無架橋ポ
リオレフィン樹脂予備発泡粒子から上述の複雑な形状の
発泡成形体を得るのは困難である。即ち、型内減圧によ
り型内空気が抜気されることにより加熱効率が良くなっ
たとしても、それに拘らず、薄肉部は水蒸気が良く通過
する為に加熱オーバーになりやすく、厚肉部は水蒸気通
過の抵抗が大きい為に温度が上昇し難く、加熱温度斑が
発生しやすい。ここで、水蒸気供給加熱時間を加熱オバ
ーしやすい部分(薄肉部)の膨張力が低下しない時間に
合わせれば、厚肉部分に粒子間の融着不足が生じている
成形品となり、また水蒸気供給加熱時間を温度が上昇し
難い部分に合わせれば、粒子間の空隙が残ったり、圧縮
強度の低いところが部分的(薄肉部)に生じた不良成形
品ができてしまう。また、型内減圧により型内空気が抜
気されるとともに粒子の膨張が起こり、水蒸気流路とな
る粒子間の間隙を小さくする。この現象は特に表面ほど
大きく、その結果、表面から内部へ向かっての加熱の進
行において、表面部の加熱速度を大きくし、内部への水
蒸気流通を少なくして、内部と表面部の融着率を同レベ
ルにすることができず、成形体表面部と内部の融着率の
不均衡を招く。しかも厚みが100mmの大型サイズの
発泡成形板となると減圧しても充分な効果は得られず、
更に成形体表面部と内部との融着率の不均一さも大きく
なり、品質の低下を招くという問題を有していた。It is difficult to obtain a foamed molded article having the above-mentioned complicated shape from non-crosslinked polyolefin resin pre-expanded particles by using the conventional in-mold foam molding method. That is, even if the heating efficiency is improved due to the degassing of the air inside the mold due to the depressurization inside the mold, regardless of this, the thin portion tends to be overheated because the steam passes well, and the thick portion has the steam. Since the resistance to passage is large, the temperature is unlikely to rise, and unevenness in heating temperature is likely to occur. Here, if the steam supply heating time is set to a time during which the expansion force of the portion (thin portion) where heating tends to be over (the thin portion) does not decrease, the molded product will have insufficient fusion between particles in the thick portion, and the steam supply heating If the time is adjusted to a portion where the temperature is unlikely to rise, voids between particles remain, or a defective molded product in which a portion having low compressive strength is partially (thin portion) is formed. In addition, the inside of the mold is evacuated by the decompression inside the mold, and at the same time, the particles expand, and the gap between the particles serving as the steam flow path is reduced. This phenomenon is particularly large on the surface. As a result, as the heating proceeds from the surface to the inside, the heating rate of the surface is increased, the flow of water vapor to the inside is reduced, and the fusion rate between the inside and the surface is reduced. Cannot be at the same level, which causes an imbalance in the fusion rate between the surface of the molded body and the inside. In addition, when a large-sized foam molded plate having a thickness of 100 mm is obtained, a sufficient effect cannot be obtained even if the pressure is reduced.
Further, there has been a problem that the non-uniformity of the fusion ratio between the surface portion and the inside of the molded article is increased, which leads to deterioration of quality.
【0008】これらは前述した如く、無架橋のポリオレ
フィン系樹脂予備発泡粒子の特性であるところの、樹脂
より膨張発泡ガスが短時間に逸散するというガスに対す
る保持性が悪いことと、発泡粒子が融着を開始する温度
と破泡現象を発生し始める温度の差が小さい為に生じる
ものである。[0008] As described above, these are the characteristics of the non-crosslinked polyolefin resin pre-expanded particles, which are inferior in the gas retentivity that the expanded expanded gas escapes from the resin in a short time. This is because the difference between the temperature at which fusion starts and the temperature at which bubble breakage begins to occur is small.
【0009】[0009]
【発明が解決しようとする課題】本発明は、上述の如き
従来の発泡成形方法では良質の成形体が得られなかった
ような成形体、即ち、無架橋ポリオレフィン系樹脂の肉
厚の大型サイズの成形体或いは肉厚部と薄肉部の共存し
た複雑形状の成形体を、より経済的(高サイクル成形)
な状態で成形することができる好適な型内発泡成形体の
製造方法を提供することを目的とするものである。DISCLOSURE OF THE INVENTION The present invention relates to a molded article whose good quality cannot be obtained by the conventional foam molding method as described above, that is, a large-sized molded article having a non-crosslinked polyolefin resin thickness. More economical (high cycle molding) of compacts or complex-shaped compacts in which both thick and thin sections coexist
It is an object of the present invention to provide a suitable method for producing an in-mold foam molded article that can be molded in a proper state.
【0010】[0010]
【課題を解決するための手段】本発明者らは、前記目的
を達成すべく型内発泡成形法の改善研究を行った処、短
時間に多量の水蒸気を供給し、特定の条件範囲下で成形
するのが有効であることを見い出し本発明を完成させた
ものである。即ち、本発明は、閉鎖し得るが密閉し得な
い金型内に予備発泡粒子を充填し、水蒸気を供給して該
予備発泡粒子を加熱し、発泡、融着させて型内発泡成形
体とする無架橋ポリオレフィン系樹脂予備発泡粒子の型
内発泡成形体の製造方法において、 (1)予備発泡粒子を充填後、本加熱時の水蒸気型内圧
力(kg/cm2 G)の20〜60%範囲の水蒸気型内
圧力(kg/cm2 G)に3秒以内に昇圧せしめ、水蒸
気供給開始から12秒間以下の時間で、型内の予備発泡
粒子を予備加熱すること。 (2)次いで、両型内の圧力(kg/cm2 G)を該予
備発泡粒子の基材樹脂の融点−5℃〜+5℃範囲温度に
相当する飽和水蒸気圧力(kg/cm2 G)に3秒以内
に昇圧せしめ、6秒間以下の時間で本加熱して、発泡粒
子の発泡と粒子相互の融着とを行わせること。の各段階
を経ることを特徴とする無架橋ポリオレフィン系樹脂予
備発泡粒子の型内発泡成形体の製造方法に関する。Means for Solving the Problems The inventors of the present invention conducted an improvement study of the in-mold foam molding method to achieve the above-mentioned object. As a result, a large amount of steam was supplied in a short time, It has been found that molding is effective, and the present invention has been completed. That is, the present invention fills the pre-expanded particles in a mold that can be closed but cannot be closed, heats the pre-expanded particles by supplying steam, foams and fuses them to form an in-mold foam molded article. (1) After filling the pre-expanded particles, 20 to 60% of the steam internal pressure (kg / cm 2 G) at the time of main heating. A pressure within a range of steam mold pressure (kg / cm 2 G) within 3 seconds, and preheating of the pre-expanded particles in the mold within 12 seconds or less from the start of steam supply. (2) Next, the pressure (kg / cm 2 G) in both molds is set to a saturated steam pressure (kg / cm 2 G) corresponding to the melting point of the base resin of the pre-expanded particles −5 ° C. to + 5 ° C. The pressure is increased within 3 seconds, and the main heating is performed for a time of 6 seconds or less, so that the expansion of the expanded particles and the fusion of the particles are performed. And a method for producing an in-mold expanded molded article of non-crosslinked polyolefin-based resin pre-expanded particles.
【0011】以下、本発明を図面等を参照しつつ詳述す
る。図1は、本発明の製造方法において使用するところ
の一般的な発泡成形装置の構成の一例を示す概念図であ
る。図1において、所定形状に成形された一対の凸型金
型50aと凹型金型50bとの型合わせから、成形体の
容積形に区画された発泡成形空間51が形成される。該
金型50a、50bには発泡成形空間51に供給された
発泡粒子が水蒸気の直接加熱になるように水蒸気流入ス
リットが配設され、それぞれのマスターフレーム52
a,52bに収められ、その内部にはそれぞれ蒸気室5
3a、53bが形成されている。このように粒子は閉鎖
するが流体は密閉できない、いわゆる「閉鎖し得るが密
閉し得ない型」になっている。各蒸気室53a、53b
には、その下方に排出管54a、54bが取り付けられ
ており、ドレン弁55a、55bにより開閉自在にされ
ている。また、蒸気室53a、53bには、それぞれ蒸
気供給管56a、56bが取り付けられており、それぞ
れの流量は調圧弁57a、57bによって調整されてい
る。この調圧弁57の調整により、蒸気室53への蒸気
供給圧力が設定される。この調圧弁57の開度調節は、
エアー供給源58を介して、三方電磁弁59及び電空レ
ギュレーター60により行われている。Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram showing an example of the configuration of a general foam molding apparatus used in the production method of the present invention. In FIG. 1, a foam molding space 51 partitioned into a volume shape of a molded body is formed from a pair of a convex mold 50a and a concave mold 50b molded into a predetermined shape. The molds 50a and 50b are provided with a steam inflow slit so that the foam particles supplied to the foam molding space 51 are directly heated by steam.
a, 52b, inside each of which a steam chamber 5
3a and 53b are formed. In this manner, the particles are closed, but the fluid cannot be sealed, that is, a so-called “closeable but not sealable type”. Each steam chamber 53a, 53b
The drain pipes 54a and 54b are attached to the bottom of the, and can be opened and closed by drain valves 55a and 55b. Further, steam supply pipes 56a and 56b are attached to the steam chambers 53a and 53b, respectively, and the respective flow rates are adjusted by pressure regulating valves 57a and 57b. By adjusting the pressure regulating valve 57, the steam supply pressure to the steam chamber 53 is set. The opening degree adjustment of the pressure regulating valve 57
The operation is performed by a three-way solenoid valve 59 and an electropneumatic regulator 60 via an air supply source 58.
【0012】かかる装置構成により発泡成形体の製造工
程は大別して充填工程、加熱工程、冷却工程に分けるこ
とができる。加熱工程は通常、金型加熱工程、一方予備
加熱工程、逆一方予備加熱工程(省略しても可)、本加
熱工程(両面加熱工程)のように細分化して行われる。
図1、図2を用いてその一例を説明する。まず、凸型金
型50aと凹型金型50bの昇温を目的に金型加熱が行
われる。この金型加熱工程はドレン弁55を開放したま
ま、調圧弁57を操作し、蒸気供給管56を介して蒸気
供給源64からの蒸気を蒸気室53へ供給し、金型50
を加熱する。次に、金型内への予備発泡粒子の充填が行
われる。この充填工程は膨張能が付与された予備発泡粒
子をオートフィーダー(自動充填器)63を用いて発泡
成形空間51に充填される。充填後、予備発泡粒子を予
熱することとマスターフレーム内及び金型内の空気の排
除の目的で一方予備加熱が行われる。この一方予備加熱
工程は、一方の凹型金型50bのドレン弁55bのみを
閉塞すると共に、その凹型金型50bのみへ蒸気を供給
することにより、発泡成形空間51内の予備発泡粒子間
の間隙に介在する空気を他側の蒸気室50aを通して系
外に排出させる工程である。通常、この工程の終点は入
り口側、即ち、凹型金型50bの蒸気室53bの成形蒸
気圧力が所定の値P1となった時点とこれに続くタイマ
ーの設定時間T1とで制御される。With such an apparatus configuration, the production process of the foam molded article can be roughly divided into a filling process, a heating process, and a cooling process. The heating step is usually performed in a fragmented manner such as a mold heating step, a one-side preheating step, a reverse one-side preheating step (may be omitted), and a main heating step (double-sided heating step).
An example will be described with reference to FIGS. First, mold heating is performed for the purpose of raising the temperature of the convex mold 50a and the concave mold 50b. In this mold heating step, while the drain valve 55 is open, the pressure regulating valve 57 is operated to supply the steam from the steam supply source 64 to the steam chamber 53 through the steam supply pipe 56, and the mold 50
Heat. Next, filling of the pre-expanded particles into the mold is performed. In this filling step, the pre-expanded particles provided with the expansion ability are filled in the foam molding space 51 by using an automatic feeder (automatic filling device) 63. After filling, preheating is performed for the purpose of preheating the pre-expanded particles and eliminating air in the master frame and the mold. The one-side preheating step is performed by closing only the drain valve 55b of the one concave mold 50b and supplying steam only to the concave mold 50b, so that the gap between the pre-expanded particles in the foam molding space 51 is removed. This is a step of discharging the intervening air out of the system through the other-side steam chamber 50a. Normally, the end point of this step is controlled by the entrance side, that is, the point in time when the molding steam pressure in the steam chamber 53b of the concave mold 50b reaches a predetermined value P1, and the subsequent set time T1 of the timer.
【0013】次に、前の一方予備加熱工程により生じた
型内の予備発泡粒子の温度勾配を平衡させるために逆一
方予備加熱が行われる。この逆一方予備加熱工程は蒸気
を逆のルートで即ち凸型金型50aのドレン弁55aの
みを閉塞すると共に、その凸型金型50aのみへ蒸気を
供給することにより、発泡成形空間51、蒸気室50b
を通して系外に排出させる工程である。通常、この工程
の終点は入り口側、即ち、凸型金型50aの蒸気室53
aの成形蒸気圧力が所定の値P2となった時点とこれに
続くタイマーの設定時間T2とで制御される。Next, reverse one-side preheating is performed in order to balance the temperature gradient of the pre-expanded particles in the mold caused by the preceding one-side preheating step. In the reverse preheating step, the steam is supplied in the reverse route, that is, while only the drain valve 55a of the convex mold 50a is closed and the steam is supplied only to the convex mold 50a, the steam molding space 51, the steam Room 50b
This is the step of discharging through the system. Usually, the end point of this step is the entrance side, that is, the steam chamber 53 of the convex mold 50a.
It is controlled by the point in time when the forming steam pressure of a reaches a predetermined value P2 and the set time T2 of the timer following this point.
【0014】本発明において、予備加熱水蒸気圧力とは
X1、X2のことであり、昇圧時間とはt1、t2のこ
とであり、そして予備加熱時間とはt1+T1+t2+
T2のことを意味する。この予備加熱前、あるいは予備
加熱中に、排出管54に連結された真空ポンプ、真空タ
ンク等よりなる減圧化装置(図示されてない)の吸引作
用で型内を減圧状態として加熱時間の短縮化を行っても
良い。この予備加熱後、予備発泡粒子を発泡させて最終
的に粒子同士を融着させる本加熱(両面加熱ともいう)
が行われる。In the present invention, the preheated steam pressure is X1, X2, the pressurization time is t1, t2, and the preheat time is t1 + T1 + t2 +.
It means T2. Before or during this preheating, the inside of the mold is depressurized by the suction action of a decompression device (not shown) including a vacuum pump, a vacuum tank, etc. connected to the discharge pipe 54 to shorten the heating time. May be performed. After this preheating, main heating for expanding the pre-expanded particles and finally fusing the particles together (also called double-sided heating)
Is performed.
【0015】本加熱工程は、両ドレン弁55a、55b
を閉塞して、両蒸気室53a、53bへ蒸気を所定時間
供給して加熱する工程である。この本加熱は、蒸気室5
3の成形蒸気圧力が所定の値P3になった時点とこれに
続くタイマーによって終点T3が設定制御される。本発
明において、本加熱水蒸気圧力とはX3のことであり、
昇圧時間とはt3のことであり、そして本加熱時間とは
t3+T3のことを意味する。In this heating step, the two drain valves 55a, 55b
And heating by supplying steam to both steam chambers 53a and 53b for a predetermined time. This main heating is performed in the steam room 5.
The end point T3 is set and controlled by the point in time when the molding steam pressure of No. 3 reaches a predetermined value P3 and a timer subsequent thereto. In the present invention, the main heating steam pressure is X3,
The boosting time is t3, and the main heating time is t3 + T3.
【0016】発泡成形後は蒸気室53内に水を噴霧(シ
ャワーリング)して冷却される(水冷工程)。この水を
排出させた後(排水工程)、蒸気室内を常圧状態或いは
減圧状態で一定時間放置冷却される(放冷工程)。最後
に、両金型50a、50bを離隔させ、エゼクトピン6
5の作動により、発泡成形体を離型させて取り出す(離
型工程)。After foam molding, water is sprayed (shown) into the steam chamber 53 to be cooled (water cooling step). After discharging the water (draining step), the steam chamber is left to cool for a certain period of time under normal pressure or reduced pressure (cooling step). Finally, the two molds 50a and 50b are separated from each other,
By the operation of 5, the molded foam is released and removed (release step).
【0017】上述した一連の成形工程においての、本発
明の要件について説明する。まず、一つの要件である
「予備発泡粒子を充填後、本加熱時の水蒸気型内圧力
(kg/cm2 G)の20〜60%範囲の水蒸気型内圧
力(kg/cm2 G)に3秒以内に昇圧せしめ、水蒸気
供給開始から12秒間以下の時間で、型内の予備発泡粒
子を予備加熱すること」の必要性について述べる。The requirements of the present invention in the above-described series of molding steps will be described. First, after filling which is one of the requirements "pre-expanded particles, the main heating during steam type pressure inside (kg / cm 2 G) 20~60 % range of steam type pressure inside (kg / cm 2 G) 3 Pressurization within seconds and preheating the pre-expanded particles in the mold within 12 seconds or less from the start of steam supply ".
【0018】予備加熱温度を、本加熱時の水蒸気型内圧
力(kg/cm2 G)の20〜60%範囲の水蒸気型内
圧力(kg/cm2 G)に設定する必要性は、水蒸気型
内圧力が(本加熱圧力の20%未満)低いと、型内の予
備発泡粒子全体への水蒸気通過が起き難く、その結果、
予備発泡粒子の予備加熱と粒子の膨張融着を阻害する処
の気体(主に空気)の排出が部分的なものとなり十分に
出来ず、局所(特に実施例成形体のA部厚肉部)に粒子
の融着不良を残してしまう(実施例3、比較例4との対
比)。また他方、水蒸気型内圧力が(本加熱圧力の60
%以上)高いと、この水蒸気に最初に接触する成形体表
面部の粒子が大きく膨張して内部への蒸気の流通を遮蔽
する結果、加熱不足になった内部粒子が融着しない現象
が生じる(実施例2、比較例3との対比)。The necessity of setting the preheating temperature to a steam type internal pressure (kg / cm 2 G) within a range of 20 to 60% of the steam type internal pressure (kg / cm 2 G) at the time of the main heating depends on the steam type. When the internal pressure is low (less than 20% of the main heating pressure), water vapor does not easily pass through the entire pre-expanded particles in the mold, and as a result,
The preheating of the pre-expanded particles and the discharge of gas (mainly air) which inhibits the expansion and fusion of the particles become partial and cannot be performed sufficiently, so that local (particularly, the A-thick portion of the molded product in the example) is not sufficiently performed. (See Example 3 and Comparative Example 4). On the other hand, the internal pressure of the steam mold is (60% of the main heating pressure).
% Or more), the particles on the surface of the compact that first come into contact with the water vapor expand significantly to block the flow of the vapor to the inside, and as a result, a phenomenon occurs in which the insufficiently heated internal particles do not fuse. Example 2 and comparison with Comparative Example 3).
【0019】本発明で上記の如く予備加熱水蒸気圧力範
囲を規定しながら、尚その水蒸気型内圧力に3秒以内に
昇圧せしめる意味は、予備加熱水蒸気圧力範囲を本加熱
圧力の20〜60%範囲としたのみでは、先行して起こ
る表面部粒子の膨張を抑え、且つ粒子間の空気の排出を
内部まで完全なものとすることが出来ない。特に肉厚の
大型サイズの成形体或いは肉厚部と薄肉部の共存した複
雑形状の成形体を成形する場合、昇圧速度が3秒を越え
ると内部粒子の融着不良が残った成形体にしかならない
(実施例2、比較例1との対比)。In the present invention, the pressure range of the preheating steam is defined within the range of 20 to 60% of the main heating pressure while the preheating steam pressure range is increased within 3 seconds while defining the preheating steam pressure range as described above. However, it is not possible to suppress the expansion of the surface particles that occurs in advance, and to completely exhaust the air between the particles to the inside. In particular, when molding a large-sized molded product having a large thickness or a complex-shaped molded product in which a thick portion and a thin portion coexist, if the pressurizing speed exceeds 3 seconds, only a molded product in which poor fusion of internal particles remains is obtained. No (compared with Example 2 and Comparative Example 1).
【0020】予備加熱時間を水蒸気供給開始から12秒
間以下とする必要性は、12秒間を越える時間水蒸気を
型内に導入し加熱すると、型内予備発泡粒子中の膨張発
泡ガスの逸散が多くなり粒子間の間隙を充分に埋められ
ず、その結果、吸水性の劣る成形体にしかならない(実
施例4、比較例2との対比)。続いて、もう一つの要件
である「両型内の圧力(kg/cm2 G)を該予備発泡
粒子の基材樹脂の融点−5℃〜+5℃範囲温度に相当す
る飽和水蒸気圧力(kg/cm2 G)に3秒以内に昇圧
せしめ、6秒間以下の時間で本加熱して、発泡粒子の発
泡と粒子相互の融着とを行わせること」の必要性につい
て述べる。The necessity of setting the preheating time to 12 seconds or less from the start of the supply of steam is that when steam is introduced into the mold for more than 12 seconds and heated, the expanded foaming gas in the prefoamed particles in the mold often escapes. In other words, the gap between the particles cannot be sufficiently filled, and as a result, the molded article has poor water absorption (compared with Example 4 and Comparative Example 2). Subsequently, another requirement, “the pressure (kg / cm 2 G) in both molds is set to the saturated steam pressure (kg / cm 2 ) corresponding to the melting point of the base resin of the pre-expanded particles −5 ° C. to + 5 ° C. cm 2 G) within 3 seconds, and perform main heating for 6 seconds or less to foam the expanded particles and fuse the particles together. "
【0021】両型内の圧力(kg/cm2 G)を該予備
発泡粒子の基材樹脂の融点−5℃〜+5℃範囲温度に相
当する飽和水蒸気圧力(kg/cm2 G)に設定する必
要性は、予備発泡粒子の膨張と粒子相互の融着とを司る
処の膨張力を有効に利用する為の条件範囲である。即
ち、基材樹脂の融点−5℃よりも低い温度の場合は、粒
子を形成する樹脂の粘度が高過ぎる為か、粒子の融着不
良や成形体の吸水性が高まる現象が生じる(実施例7、
比較例7との対比)。逆に、基材樹脂の融点+5℃を越
える高い温度の場合は、樹脂粘度が低すぎて気泡構造が
崩壊する為か、成形体の吸水率が高く、圧縮強度が低く
なるといった成形体の特性が悪化する現象が観測される
(実施例8、比較例8との対比)。The pressure (kg / cm 2 G) in both molds is set to a saturated steam pressure (kg / cm 2 G) corresponding to the melting point of the base resin of the pre-expanded particles in the range of −5 ° C. to + 5 ° C. The necessity is a condition range for effectively utilizing the expansion force of a portion that controls expansion of the pre-expanded particles and fusion of the particles. That is, when the temperature is lower than the melting point of the base resin −5 ° C., the viscosity of the resin forming the particles is too high, or the phenomenon of poor fusion of the particles or the increase in the water absorption of the molded body occurs (Examples). 7,
Comparison with Comparative Example 7). On the other hand, when the temperature is higher than the melting point of the base resin + 5 ° C., the properties of the molded article are such that the resin viscosity is too low and the cell structure is collapsed, or the water absorption of the molded article is high and the compressive strength is low. Is observed (compared with Example 8 and Comparative Example 8).
【0022】本発明で上記の如く本加熱水蒸気圧力範囲
を規定しながら、尚その水蒸気型内圧力に3秒以内に昇
圧せしめる意味は、本加熱水蒸気圧力条件範囲を設定し
たのみでは、先行して起こる表面部粒子の過熱を抑え
て、表面部粒子と内部粒子とのとの熱履歴差を縮めるこ
とが出来ない。特に肉厚の大型サイズの成形体或いは肉
厚部と薄肉部の共存した複雑形状の成形体を成形する場
合、昇圧速度が3秒を越えると内部粒子の加熱不足によ
る融着不良や表面部の過熱による圧縮強度低下の現象が
生じる(実施例5、比較例5との対比)。In the present invention, while the main heating steam pressure range is defined as described above, the meaning of raising the internal pressure of the steam within 3 seconds is only required to set the main heating steam pressure condition range. It is not possible to suppress the resulting overheating of the surface particles and reduce the difference in heat history between the surface particles and the internal particles. In particular, when molding a large-sized molded product having a large thickness or a complex-shaped molded product in which a thick portion and a thin portion coexist, if the pressure-increasing speed exceeds 3 seconds, poor fusion due to insufficient heating of the internal particles or the surface portion may not be obtained. A phenomenon of a decrease in compressive strength due to overheating occurs (compared with Example 5 and Comparative Example 5).
【0023】本加熱時間を6秒間以下とする必要性は、
6秒間を越える時間水蒸気を型内に導入し加熱すると、
型内予備発泡粒子中の膨張発泡ガスの逸散が多くなり粒
子間の間隙を充分に埋められず、その結果、吸水性が劣
ったり、過剰な熱履歴により予備発泡粒子内中心部まで
過熱され気泡膜の分子配向緩和が起き、その為か圧縮強
度の低い成形体にしかならない(実施例6、比較例6と
の対比)。The necessity of setting the main heating time to 6 seconds or less is as follows.
When steam is introduced into the mold for more than 6 seconds and heated,
Dissipation of the expanded foaming gas in the pre-expanded particles in the mold increases, and the gaps between the particles cannot be filled sufficiently. As a result, the water absorption is poor, and the pre-expanded particles are overheated to the center due to excessive heat history. Relaxation of the molecular orientation of the bubble film occurs, and therefore, the molded product has only a low compressive strength (compared with Example 6 and Comparative Example 6).
【0024】なお、「発泡粒子の発泡と粒子相互の融着
とを行わせる」の意味は、上記所定の温度に加熱(加
圧)した状態の型(両蒸気室)内の圧力を、急激に放圧
状態にして行わせる処の、粒子を一挙に膨張融着させて
する成形の意味である。以上記述した通り、本発明の型
内発泡成形法は、型内の予備発泡粒子を所定の水蒸気圧
力(温度)に急速に加熱昇温し短時間加熱することを特
徴とする。これを具現化する上では短時間に多量の水蒸
気を供給できることが必要であり、本加熱時の水蒸気型
内圧力(kg/cm2 G)の2倍以上の圧力を有する水
蒸気元圧(kg/cm2 G)に設定したり、成形型内へ
の水蒸気供給配管56の断面積を大きくしたり、この断
面積α(cm2)と使用するマスターフレーム内容積β
(cm3)とで定義したα/βの型内昇圧速度係数が1
×10-4以上の値を保有する成形装置を使用することが
望ましい。また、金型の肉厚を許容下限に薄くして熱容
量をできるだけ小さくしたり、金型表面に熱伝導の低い
テフロン等を塗膜したりすることも効果があり望まし
い。The meaning of "expanding the foamed particles and fusing the particles together" means that the pressure in the mold (both steam chambers) heated (pressurized) to the predetermined temperature is rapidly increased. This means that the particles are expanded and fused all at once in a state where the pressure is released. As described above, the in-mold foam molding method of the present invention is characterized in that the pre-expanded particles in the mold are rapidly heated to a predetermined steam pressure (temperature) and heated for a short time. In order to realize this, it is necessary to be able to supply a large amount of steam in a short time, and the steam source pressure (kg / cm 2 ) having a pressure twice or more as high as the pressure in the steam mold (kg / cm 2 G) during the main heating. cm 2 G), the cross-sectional area of the steam supply pipe 56 into the mold is increased, and the cross-sectional area α (cm 2 ) and the internal volume β of the master frame used
(Cm 3 ) and the in-mold pressure rise rate coefficient of α / β defined as 1
It is desirable to use a molding device having a value of × 10 -4 or more. It is also effective to reduce the heat capacity as much as possible by reducing the thickness of the mold to the permissible lower limit, or to coat Teflon or the like having low heat conductivity on the mold surface.
【0025】本発明における無架橋ポリオレフィン系樹
脂予備発泡粒子の基材樹脂としては、低密度ポリエチレ
ン、直鎖状低密度ポリエチレン、高密度ポリエチレン、
ポリプロピレン、エチレンプロピレンランダムコポリマ
ー、エチレンプロピレンブロックコポリマー、エチレン
プロピレンブテンコポリマーポリエチレン酢ビコポリマ
ー、ポリブテン等が用いられる。これらは、2種以上混
合した混合物であってもよい。The base resin of the non-crosslinked polyolefin resin pre-expanded particles in the present invention includes low-density polyethylene, linear low-density polyethylene, high-density polyethylene,
For example, polypropylene, ethylene propylene random copolymer, ethylene propylene block copolymer, ethylene propylene butene copolymer, polyethylene vinegar copolymer, and polybutene are used. These may be a mixture of two or more.
【0026】本発明で言う樹脂の融点(℃)は、測定装
置としてパーキンエルマー(Perkin−Elme
r)社製のDSC−7型を用い、約10mgの試料を1
0℃/minの速度で30℃から200℃まで昇温させ
た後、1分間その温度を保持し、10℃/minの速度
で30℃まで冷却結晶化させ、1分間その温度を保持
し、再び10℃/minの速度で昇温した時の融解カー
ブのピーク値から求めたものである。The melting point (° C.) of the resin referred to in the present invention can be measured by a Perkin-Elme as a measuring device.
r) A sample of about 10 mg was used for 1
After raising the temperature from 30 ° C. to 200 ° C. at a rate of 0 ° C./min, hold the temperature for 1 minute, cool and crystallize to 30 ° C. at a rate of 10 ° C./min, hold the temperature for 1 minute, It was determined from the peak value of the melting curve when the temperature was raised again at a rate of 10 ° C./min.
【0027】[0027]
【発明の実施の形態】以下、実施例及び比較例に基づき
本発明を更に詳しく説明する。各例中で使用した特性値
の評価方法、および評価尺度は次のようにして行った。
尚この評価は、実施例等で得た図3に示す縦、横、高さ
の夫々が約500、500、100mmで、A部(厚み
約100mm)、C部(厚み約25mm)の厚薄部を持
つ型内成形体を対象にした。 (1)融着性 図3の成形体におけるA部(厚み約100mm)、C部
(厚み約25mm)で示される部位より500×100
mmの直方体試験片を切り出し、その中央部に深さ2m
mの切れ目を入れ、切れ目に沿って折り曲げて成形品を
開裂させ、切開断面に存在する全粒子数に対する気泡部
で材料破断して切裂している粒子数の百分率(材破率)
を求めた。 材破率90%以上の場合……○(良好);材破率90%
未満、60%以上の場合……△(やや不良);材破率6
0%未満の場合……×(不良) (2)吸水性 図3の成形体におけるA部(厚み約100mm)、C部
(厚み約25mm)で示される部位より縦、横、厚みが
100、100、20mmの試験片を切り出し、重量を
測定した成形体を約20℃の淡水中の水面下25mmの
位置に水没させ、その時の浮力から成形体の体積を求め
る。水没状態を24時間持続させた後、成形体をエチル
アルコ−ル浴に移し1分間浸して取り出し、40分間風
乾して重量を測定する。水没前後の重量増加分から次の
計算をし評価する。 吸水性(%)=〔重量増加分(g)×100〕÷〔成形
体体積(cm3)×水の密度(g/cm3)〕 0.06%未満の場合……○(良好);0.06%以
上、0.1%未満の場合……△(やや不良);0.1%
以上の場合……×(不良) (3)圧縮応力指数 圧縮応力はその発泡体密度の影響が大きいので、一律評
価とする為に指数化して表現する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to examples and comparative examples. The evaluation method of the characteristic values and the evaluation scale used in each example were performed as follows.
In this evaluation, the vertical, horizontal, and height values shown in FIG. 3 obtained in Examples and the like are about 500, 500, and 100 mm, respectively, and the thick and thin parts of the A part (about 100 mm thick) and the C part (about 25 mm thick) In-mold molded articles with (1) Meltability 500 × 100 from the part indicated by the part A (about 100 mm in thickness) and the part C (about 25 mm in thickness) in the molded article of FIG.
mm rectangular parallelepiped test piece, 2m deep at the center
m is cut and bent along the cut to cleave the molded article, and the percentage of the number of particles that have been torn due to material breakage in the bubble section with respect to the total number of particles present in the cut cross section (material breakage rate)
I asked. When the material fracture rate is 90% or more: ○ (good); material fracture rate 90%
Less than 60% or more △ (slightly poor);
In the case of less than 0% ... × (poor) (2) Water Absorption In the molded article of FIG. 3, the length, width, and thickness are 100, more than those indicated by the portions A (about 100 mm thick) and C (about 25 mm thick). A test piece of 100 or 20 mm is cut out, and the molded body whose weight is measured is submerged at a position 25 mm below the surface of the water in fresh water at about 20 ° C., and the volume of the molded body is determined from the buoyancy at that time. After maintaining the submerged state for 24 hours, the molded body is transferred to an ethyl alcohol bath, immersed for 1 minute, taken out, air-dried for 40 minutes and weighed. The following calculation is made based on the weight increase before and after submersion in water and evaluated. Water absorption (%) = [weight increase (g) × 100] ÷ [molded product volume (cm 3 ) × water density (g / cm 3 )] When less than 0.06%: ○ (good); 0.06% or more and less than 0.1%: ... (somewhat bad); 0.1%
(3) Compressive stress index Since the compressive stress is greatly affected by the foam density, it is expressed as an index for uniform evaluation.
【0028】図3の成形体におけるA部(厚み約100
mm)、C部(厚み約25mm)で示される部位より縦
横100mmの試験片を切り出し、その密度をJIS
K6767の試験方法で求める。次いでその試験片の2
5%圧縮時の圧縮応力を、JIS Z0234(圧縮速
度10mm/分)の試験方法で求め、次の式で係数化
(単位なし)し評価する。 圧縮応力指数=25%圧縮時の圧縮応力(kg/c
m2)÷試験片の密度(g/cm3) 19以上の場合……○(良好);19未満、16以上の
場合……△(やや不良);16以下の場合……×(不
良)Part A (thickness of about 100) in the compact of FIG.
mm), a test piece of 100 mm in length and width was cut out from the portion indicated by the portion C (thickness: about 25 mm), and the density was measured according to JIS.
Determined by the test method of K6767. Then 2 of the test piece
The compressive stress at the time of 5% compression is determined by a test method according to JIS Z0234 (compression speed 10 mm / min), and is evaluated by converting it into a coefficient (no unit) by the following equation. Compressive stress index = Compressive stress at 25% compression (kg / c
m 2 ) ÷ Density of test piece (g / cm 3 ): 19 or more: ○ (good); less than 19, 16 or more: △ (slightly poor);
【0029】[0029]
【実施例1〜8、比較例1〜8】無架橋直鎖状低密度ポ
リエチレン樹脂{密度:0.922g/cm3 、融点
(DSC法結晶融解ピーク):123℃}からなる発泡
倍率27cc/gの予備発泡粒子を圧力容器内に充填
し、2.5kg/cm2 Gの空気にて48時間加圧熟成
した。この加圧処理された予備発泡粒子のガス圧力は
1.85気圧の粒子であった。Examples 1-8, Comparative Examples 1-8 Non-crosslinked linear low-density polyethylene resin (density: 0.922 g / cm 3 , melting point (DSC crystal melting peak): 123 ° C.) g of the pre-expanded particles were charged into a pressure vessel, and pressure-aged with 2.5 kg / cm 2 G of air for 48 hours. The gas pressure of the pre-expanded particles subjected to the pressure treatment was 1.85 atm.
【0030】次いで、この予備発泡粒子を図1に示す成
形機(蒸気供給管口径が100mmφ、断面積αが7
8.5cm2 、マスターフレーム内容積βが18900
0cm 3 、α/β=4.15×10-4)に取付けられた
金型内{雌雄二つの型がはまり合った時その内部空間
が、図3に示す各部の寸法、縦、横、高さの夫々が50
0、500、100mmで、A部(厚み100mm)、
C部(厚み25mm)の厚薄部の内寸を形成させる型
窩、そして雌雄型の内部全表面には、一般に使用されて
いる蒸気流入部材がピッチ20mmで配設されている}
に充填し、表1、2に示す条件に従って加熱成形し、そ
して冷却し、成形金型より取り出し成形発泡体を得た。Next, the pre-expanded particles are formed as shown in FIG.
Forming machine (steam supply pipe diameter is 100mmφ, cross section α is 7
8.5cmTwo, The master frame internal volume β is 18900
0cm Three, Α / β = 4.15 × 10-Four) Mounted on
Inside the mold-when the two molds fit together the internal space
However, the dimensions, length, width, and height of each part shown in FIG.
0, 500, 100 mm, part A (thickness 100 mm),
Mold that forms the inner dimensions of the thick and thin part of part C (thickness 25 mm)
The fossa, and the entire internal surface of the male and female, are commonly used
Steam inflow members are arranged at a pitch of 20 mm.
And molded by heating under the conditions shown in Tables 1 and 2.
Then, the mixture was cooled and taken out from a molding die to obtain a molded foam.
【0031】尚、各々の成形における蒸気元圧を実施例
1、6、7および比較例3、8においては7kg/cm
2 Gに、実施例2、3、4、8および比較例6において
は5kg/cm2 Gに、実施例5および比較例2、4に
おいては3kg/cm2 Gに、比較例1、5、7におい
ては2kg/cm2Gに設定して行った。各々の条件で
得られた成形品を70℃で20時間養生乾燥させ、室温
で3日放置した後、成形体倍率を測定したところ約40
cc/g(=密度0.025g/cc)であった。条件
別に前述記載の評価方法により融着性、吸水性、圧縮応
力指数を測定し、その結果を表2に併記して示す。The steam source pressure in each molding was 7 kg / cm in Examples 1, 6, and 7 and Comparative Examples 3 and 8.
To 2 G, to 5 kg / cm 2 G in Examples 2, 3, 4, 8 and Comparative Example 6 In Example 5 and Comparative Examples 2 and 4 to 3 kg / cm 2 G, Comparative Examples 1 and 5, In No. 7, the test was performed at 2 kg / cm 2 G. The molded article obtained under each condition was cured and dried at 70 ° C. for 20 hours, left at room temperature for 3 days, and then measured for molded article magnification.
cc / g (= density 0.025 g / cc). The fusibility, water absorption, and compressive stress index were measured by the above-described evaluation method for each condition, and the results are shown in Table 2.
【0032】表1、2から分かるように本発明の方法に
より、融着性、吸水性、圧縮強度特性に優れた高品質の
発泡成形体が得られる。As can be seen from Tables 1 and 2, the method of the present invention can provide a high-quality foam molded article having excellent fusibility, water absorption and compressive strength.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【発明の効果】本発明の製造方法によれば、従来の発泡
成形方法では良質の成形体が得られなかったところの肉
厚の大型サイズの成形体或いは肉厚部と薄肉部の共存し
た複雑形状の成形体を提供することができる。即ち、本
発明は、粒子同士の融着性、吸水性に優れ、十分な圧縮
応力(指数)を有し、より経済的(高サイクル成形)な
状態で成形することができる好適な型内発泡成形方法で
ある。According to the production method of the present invention, a large-sized molded body having a large thickness or a complicated structure having a thick part and a thin part coexisted in a conventional foam molding method where a high-quality molded body could not be obtained. A shaped article can be provided. In other words, the present invention provides suitable in-mold foaming that is excellent in fusion between particles and water absorption, has a sufficient compressive stress (index), and can be molded in a more economical (high cycle molding) state. It is a molding method.
【図1】本発明に用いられる発泡成形装置の構成の一例
を示す概念図である。FIG. 1 is a conceptual diagram showing an example of a configuration of a foam molding apparatus used in the present invention.
【図2】成形工程と蒸気供給圧力との関係の一例を示す
グラフである。FIG. 2 is a graph showing an example of a relationship between a forming step and a steam supply pressure.
【図3】本発明によって得られる、市場要求の高い複雑
な形状の発泡成形体の一例である。FIG. 3 is an example of a foamed molded article having a complicated shape and high market demand obtained by the present invention.
50 金型 51 発泡成形空間 52 マスターフレーム 53 蒸気室 56 蒸気供給管 57 調圧弁 58 エアー供給源 62 予備発泡粒子 63 フィーダー 64 蒸気供給源 65 エゼクトピン 66 発泡成形体 67 発泡圧検出器 Reference Signs List 50 mold 51 foaming space 52 master frame 53 steam chamber 56 steam supply pipe 57 pressure regulating valve 58 air supply source 62 pre-expanded particles 63 feeder 64 steam supply source 65 eject pin 66 foam molded body 67 foaming pressure detector
Claims (1)
発泡粒子を充填し、水蒸気を供給して該予備発泡粒子を
加熱し、発泡、融着させて型内発泡成形体とする無架橋
ポリオレフィン系樹脂予備発泡粒子の型内発泡成形体の
製造方法において、 (1)予備発泡粒子を充填後、本加熱時の水蒸気型内圧
力(kg/cm2 G)の20〜60%範囲の水蒸気型内
圧力(kg/cm2 G)に3秒以内に昇圧せしめ、水蒸
気供給開始から12秒間以下の時間で、型内の予備発泡
粒子を予備加熱すること。 (2)次いで、両型内の圧力(kg/cm2 G)を該予
備発泡粒子の基材樹脂の融点−5℃〜+5℃範囲温度に
相当する飽和水蒸気圧力(kg/cm2 G)に3秒以内
に昇圧せしめ、6秒間以下の時間で本加熱して、発泡粒
子の発泡と粒子相互の融着とを行わせること。の各段階
を経ることを特徴とする無架橋ポリオレフィン系樹脂予
備発泡粒子の型内発泡成形体の製造方法。1. A mold that can be closed but cannot be closed is filled with pre-expanded particles, steam is supplied to heat the pre-expanded particles, and the pre-expanded particles are foamed and fused to form an in-mold foam molded article. In the method for producing an in-mold foam molded article of non-crosslinked polyolefin resin pre-expanded particles, (1) after filling the pre-expanded particles, a range of 20 to 60% of a steam mold pressure (kg / cm 2 G) at the time of main heating. The pressure inside the mold (kg / cm 2 G) is raised within 3 seconds, and the pre-expanded particles in the mold are pre-heated within 12 seconds or less from the start of steam supply. (2) Next, the pressure (kg / cm 2 G) in both molds is set to a saturated steam pressure (kg / cm 2 G) corresponding to the melting point of the base resin of the pre-expanded particles −5 ° C. to + 5 ° C. The pressure is increased within 3 seconds, and the main heating is performed for a time of 6 seconds or less, so that the expansion of the expanded particles and the fusion of the particles are performed. A method for producing an in-mold foam molded article of non-crosslinked polyolefin resin pre-expanded particles, characterized by passing through the following steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8215625A JPH1058474A (en) | 1996-08-15 | 1996-08-15 | Manufacture of foam molding in polyolefin resin mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8215625A JPH1058474A (en) | 1996-08-15 | 1996-08-15 | Manufacture of foam molding in polyolefin resin mold |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1058474A true JPH1058474A (en) | 1998-03-03 |
Family
ID=16675506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8215625A Withdrawn JPH1058474A (en) | 1996-08-15 | 1996-08-15 | Manufacture of foam molding in polyolefin resin mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1058474A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008207763A (en) * | 2007-02-28 | 2008-09-11 | Sekisui Plastics Co Ltd | Sound absorption material and its molding method |
JP2012233182A (en) * | 2011-04-21 | 2012-11-29 | Kaneka Corp | Polypropylene-based resin expanded particle, and polypropylene-based resin in-mold expansion molded product |
KR102266503B1 (en) * | 2020-01-31 | 2021-06-22 | 주식회사 국제화학 | Apparatus for forming float |
-
1996
- 1996-08-15 JP JP8215625A patent/JPH1058474A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008207763A (en) * | 2007-02-28 | 2008-09-11 | Sekisui Plastics Co Ltd | Sound absorption material and its molding method |
JP2012233182A (en) * | 2011-04-21 | 2012-11-29 | Kaneka Corp | Polypropylene-based resin expanded particle, and polypropylene-based resin in-mold expansion molded product |
KR102266503B1 (en) * | 2020-01-31 | 2021-06-22 | 주식회사 국제화학 | Apparatus for forming float |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0649795B2 (en) | Method for producing pre-expanded polypropylene resin molded product | |
JPH10180888A (en) | Method and apparatus for manufacturing foam molding | |
JPH0313057B2 (en) | ||
JPH0629334B2 (en) | Method for producing linear low-density polyethylene resin in-mold foam molding | |
JPH1058474A (en) | Manufacture of foam molding in polyolefin resin mold | |
JPH0365259B2 (en) | ||
US5372764A (en) | Method of making olefin synthetic resin expansion molded articles | |
JPH11245928A (en) | Food container | |
JPH11138575A (en) | Manufacture of molding with high density skin layer | |
JP3081722B2 (en) | Method for producing foamed molded article in olefin resin mold | |
JP2886257B2 (en) | In-mold molding method of expanded thermoplastic resin particles | |
JP2000006253A (en) | Manufacture of foamed molded product and apparatus therefor | |
JPS6082333A (en) | Non-crosslinked polypropylene based resin foam container and manufacture thereof | |
JPH0739500B2 (en) | Pre-expanded polypropylene resin particles | |
JP2790791B2 (en) | Method for producing foamed molded article in polypropylene resin mold | |
JPH1034689A (en) | Manufacture of in-mold foamed molding of noncrosslinked polyolefin resin | |
JP2637201B2 (en) | Processing method for expanded polypropylene resin particles | |
JP3504042B2 (en) | Method for producing expanded polypropylene resin particles, and method for molding in a mold using the same | |
JPS62212131A (en) | In-mold molding of thermoplastic resin expandable particle | |
JPS5932300B2 (en) | Method for manufacturing molded foam | |
JPS63276530A (en) | Foaming method for thermoplastic synthetic resin block | |
JP3081723B2 (en) | Manufacturing method of foamed molded products in olefin resin mold | |
JPS63153119A (en) | Method and apparatus for molding cup made of foamed resin | |
JPH0542947B2 (en) | ||
JPH0624778B2 (en) | Foam molding method of thermoplastic synthetic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20031104 |