JPS5932300B2 - Method for manufacturing molded foam - Google Patents

Method for manufacturing molded foam

Info

Publication number
JPS5932300B2
JPS5932300B2 JP50070966A JP7096675A JPS5932300B2 JP S5932300 B2 JPS5932300 B2 JP S5932300B2 JP 50070966 A JP50070966 A JP 50070966A JP 7096675 A JP7096675 A JP 7096675A JP S5932300 B2 JPS5932300 B2 JP S5932300B2
Authority
JP
Japan
Prior art keywords
particles
mold
temperature
pressure
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50070966A
Other languages
Japanese (ja)
Other versions
JPS51147567A (en
Inventor
宏 清水
信雄 三浦
宏 佐藤
浩 渡部
正夫 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP50070966A priority Critical patent/JPS5932300B2/en
Publication of JPS51147567A publication Critical patent/JPS51147567A/en
Publication of JPS5932300B2 publication Critical patent/JPS5932300B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、エチレン系樹脂発泡粒子を型内で加熱成形し
型物発泡成形体を経済的に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for economically producing a molded foamed article by heat-molding expanded ethylene resin particles in a mold.

エチレン系樹脂発泡粒子を用いて型物発泡成形体を得る
方法の研究が近年数多くなされている。
In recent years, many studies have been conducted on methods for obtaining molded foamed articles using expanded ethylene resin particles.

しかし、すでに確立されているスチレン系樹脂型物発泡
成形の技術をそのままエチレン系樹脂の発泡成形に応用
出来ないこと、更には、既成のエチレン系樹脂型物発泡
成形技術では、市場要求を満す品質の成形体が得られな
いかあるいはあまりにも不経済になりすぎることのため
に、末だ企業化に値する技術は開発されていない。例え
ば、特公昭48−34591号ならびに特開昭49−8
5158号に開示されたエチレン系樹脂の型物発泡技術
では、成形時に用いる発泡粒子の内圧を高めるために、
高価な発泡剤を用いたり、あるいは多大な耐圧装置を用
い高圧長時間のガス充填を行なう必要があり、更にいず
れの場合にも、高められた発泡粒子の内圧は、常態下で
、ごく短時間しか持続出来ないために、経済的な成形が
出来ない欠点がある。
However, the already established foam molding technology for styrene resin molds cannot be directly applied to ethylene resin foam molding, and furthermore, the existing foam molding technology for ethylene resin molds does not meet market requirements. No technology worthy of commercialization has been developed, either because high-quality molded bodies cannot be obtained or because it is too uneconomical. For example, Japanese Patent Publication No. 48-34591 and Japanese Patent Publication No. 49-8
In the ethylene resin mold foaming technology disclosed in No. 5158, in order to increase the internal pressure of foamed particles used during molding,
It is necessary to use an expensive blowing agent or to carry out gas filling at high pressure for a long period of time using a large amount of pressure-resistant equipment, and in both cases, the increased internal pressure of the foamed particles remains for a very short time under normal conditions. It has the disadvantage that economical molding is not possible because it can only last for a long time.

また、他の技術として、エチレン系発泡粒子を気体の圧
力で圧縮し、これを型内で発泡成形する方法も知られて
いる。
Furthermore, as another technique, a method is known in which ethylene-based foamed particles are compressed by gas pressure and then foam-molded in a mold.

例えば、米国特許第3504068号では、発泡粒子を
元の嵩容積の90〜40C$(嵩容積圧縮率10〜60
%)に、特開昭49−−9574号では、発泡粒子を元
の嵩容積の80%以下(嵩容積圧縮率20%以上)に、
いずれも圧縮し、加熱発泡して成形体にする方法が開示
されている。
For example, in U.S. Pat.
%), in JP-A-49-9574, the foamed particles are reduced to 80% or less of the original bulk volume (bulk volume compression ratio of 20% or more),
All of them disclose a method of compressing, heating and foaming to form a molded product.

本発明者らは上記二つの方法を追試した。The present inventors tried the above two methods.

その結果をまとめて第1表に示した。この第1表は、本
発明で用いる発泡粒子の粒子圧縮率と、上記嵩容積圧縮
率との違いを明らかにすると共に、成形時の発泡粒子の
圧縮率(あるいは、嵩容積圧縮率)と得られた成形体の
品質との関係を明確にしたものである。本発明でいう発
泡倍率とは、水没法で測つた発泡体(発泡粒子、発泡成
形体)の真の体積を発泡体の重量で除した値(Cc/9
)で示す。
The results are summarized in Table 1. This Table 1 clarifies the difference between the particle compression ratio of the expanded particles used in the present invention and the above-mentioned bulk volume compression ratio, and also shows the difference between the compression ratio (or bulk volume compression ratio) of the expanded particles during molding and the gain. This clarifies the relationship between the quality of the molded product and the quality of the molded product. The expansion ratio in the present invention is the value obtained by dividing the true volume of the foam (foamed particles, foamed molded product) by the weight of the foam (Cc/9) measured by the submersion method.
).

本発明で用いる粒子圧縮率には、元の発泡粒子の真体積
をV1とし圧縮後の発泡粒子の真体積をV2としたとき
次式で定義される。
The particle compression ratio used in the present invention is defined by the following formula, where the true volume of the original expanded particles is V1 and the true volume of the expanded particles after compression is V2.

また、嵩容積圧縮率とは、元の発泡粒子の単位重量当り
の嵩体積t、圧縮後の発泡粒子の単位重量当りの嵩体積
V夕としたとき、次式で定義される。
The bulk compression ratio is defined by the following equation, where t is the bulk volume per unit weight of the original foamed particles, and V is the bulk volume per unit weight of the foamed particles after compression.

こ\で、一般に単位重量当りの嵩体積Vは、容積Vの金
型に通常用いられている空気輸送式充填装置により金型
内に充填された発泡粒子の重量をwとすると、となる。
Here, in general, the bulk volume V per unit weight is as follows, where w is the weight of foamed particles filled into a mold by a pneumatic filling device commonly used for molds having a volume of V.

なお圧縮粒子の単位重量当りの嵩体積は、充填装置用の
輸送空気圧および金型内圧を所定の圧力に維持しつつ充
填し、充填された圧縮粒子の重量を測定することによつ
て求められる。第1表でまず問題になる部分は、嵩容積
圧縮率と最終成形品との関係において、米国特許第35
04068号の発明の範囲では嵩容積圧縮率で10〜6
0%もの範囲が成形出来る旨の記載があるのに対し第1
表では嵩容積の圧縮率で25以上の範囲でしか良好な成
形体が得られていない点である。
The bulk volume per unit weight of the compressed particles is determined by filling the mold while maintaining the transport air pressure for the filling device and the internal pressure of the mold at predetermined pressures, and measuring the weight of the filled compressed particles. The first problem in Table 1 is the relationship between the bulk compression ratio and the final molded product.
In the scope of the invention of No. 04068, the bulk compression ratio is 10 to 6.
Although it is stated that a range of 0% can be molded, the first
The table shows that good molded products were obtained only when the bulk compression ratio was 25 or higher.

しかしこの矛盾を客観的に分析すると、米国特許第35
04068号の明細書には、嵩容積圧縮率の最適条件は
40〜50%(元の嵩容積の60〜50%)である旨の
記載がある事実、および特開昭49−9574号では、
嵩容積圧縮率で28(f)、62%の実施例を記載し、
そのクレームに20%以上(嵩容積圧縮率)と限定して
いる事実と併せ考慮すると、米国特許第3504068
号の記載と第1表追試結果との間に生じた差は成形品に
対する評価の尺度が本発明の方が厳格になつていること
から生じたものであることが判る。次に第1表の結果を
本発明の評価尺度で総合的に検討すると、米国特許第3
504068号および特開昭49〜9574号に開示さ
れた技術の欠点は、1得られる最終成形体の発泡倍率が
当初の発泡粒子の発泡倍率に比べ低い発泡倍率のものし
か得られない。
However, if we objectively analyze this contradiction, we find that the US Patent No. 35
The specification of No. 04068 states that the optimum condition for bulk volume compression ratio is 40 to 50% (60 to 50% of the original bulk volume), and JP-A-49-9574 states that
Describes an example with a bulk compression ratio of 28 (f) and 62%,
Considering the fact that the claim is limited to 20% or more (bulk volume compression ratio), U.S. Patent No. 3504068
It can be seen that the difference between the description in No. 1 and the supplementary test results in Table 1 is due to the fact that the evaluation scale for molded products is stricter in the present invention. Next, when the results in Table 1 are comprehensively examined using the evaluation scale of the present invention, it is found that
The disadvantage of the techniques disclosed in No. 504068 and Japanese Patent Application Laid-open Nos. 49-9574 is that the final molded article obtained has a lower expansion ratio than that of the initial foamed particles.

2嵩容積の圧縮率を成形直前まで持続させるのに、少な
くとも、2.0k9/dゲージ以上の圧力を必要とする
が、この圧力は通常の金型の耐圧の限界を上廻るもので
、設備が非経済的となる。
In order to maintain the compression ratio of 2 bulk volume until immediately before molding, a pressure of at least 2.0k9/d gauge is required, but this pressure exceeds the pressure limit of a normal mold, and the equipment is not suitable. becomes uneconomical.

3反面、2.0kg/d未満の圧力の圧縮では、得られ
る成形体の収縮変形が大きいかあるいは少なくとも粒子
間の融着が不充分で商品価値のない成形品しか得られな
い。
On the other hand, if the compression is carried out under a pressure of less than 2.0 kg/d, the shrinkage deformation of the resulting molded product will be large, or at least the fusion between the particles will be insufficient, resulting in a molded product with no commercial value.

等にあることが理解されるであろう。etc. will be understood.

本発明はこのような現状に鑑みてなされたもので、特に
米国特許第3504068号および特開昭49〜957
4号の技術では対象にされなかつた、低圧縮率の発泡粒
子を用いて、型内成形技術を完成し、良質の発泡成形体
を、経済的にしかも容易に製造可能としたものである。
The present invention has been made in view of the current situation, and is particularly based on U.S. Pat.
The in-mold molding technology was completed using foamed particles with a low compression rate, which was not covered by the technology No. 4, and it became possible to economically and easily produce high-quality foamed molded products.

すなわち、本発明は、エチレン系樹脂発泡粒子を型内に
充填し加熱成形する方法において、気体の圧力を用いて
発泡粒子に粒子圧縮率で30%以下(但しOは除く)の
圧縮を与え、圧縮状態のまま型内に充填して加熱成形し
、少なくとも成形体の表面温度が基材樹脂の軟化温度以
下になるまで冷却して取出し、次に成形体を基材樹脂軟
化温度以下乃至60℃以上の温度雰囲気下に置き、その
後常温迄の冷却に3時間以上の時間をかけて徐冷するこ
とを特徴とするエチレン系樹脂型物発泡体の製造方法に
提供することにある。
That is, the present invention provides a method in which foamed ethylene resin particles are filled into a mold and heated and molded, using gas pressure to compress the foamed particles to a particle compression rate of 30% or less (excluding O), The molded product is filled into a mold in a compressed state and heated and molded, cooled until the surface temperature of the molded product becomes at least the softening temperature of the base resin or lower, and then taken out.Then, the molded product is heated to a temperature of 60°C or lower than the softening temperature of the base resin. It is an object of the present invention to provide a method for producing an ethylene resin mold foam, which is characterized in that the foam is placed in an atmosphere at the above temperature, and then slowly cooled to room temperature over a period of 3 hours or more.

以下本発明の内容を更に詳しく説明する。The contents of the present invention will be explained in more detail below.

第1図は本発明(特にその実施例)に用いる徐冷プログ
ラム例、第2図は比較の場合の徐冷プログラム例を示し
たものである。
FIG. 1 shows an example of a slow cooling program used in the present invention (particularly its embodiments), and FIG. 2 shows an example of a slow cooling program for comparison.

本発明の最も重要な要部は、成形時に用いる発泡粒子を
粒子圧縮率で30%以下に圧縮すること、と、圧縮した
ままの発泡粒子を型内で膨張させること、ならびに得ら
れた成形体を一旦、基材樹脂軟化温度以下乃至60℃以
上の温度雰囲気下において調温すること、および以降常
温迄の冷却に3時間以上の時間をかけて徐冷すること、
の四つの要件を有機的に結合させることにある。
The most important parts of the present invention are compressing the foamed particles used during molding to a particle compression rate of 30% or less, expanding the compressed foamed particles in a mold, and the molded product obtained. Once the temperature is controlled in a temperature atmosphere from below the base resin softening temperature to 60°C or above, and then slowly cooling to room temperature over a period of 3 hours or more,
The goal is to organically combine the four requirements of

以下、その理由を判り易くする為に個々の要件について
説明する。
The individual requirements will be explained below to make the reason easier to understand.

先ず、粒子圧縮率の限定は、第1表の結果で明らかにし
たように、本発明では従来優れた発泡体が得られないた
めに除外されていた低圧縮率の発泡粒子を用いて、そこ
に秘められている利点を有効に活用しながら、優れた発
泡体にする手段を開発したことによるものである。
First, the limitation of the particle compressibility is, as clarified by the results in Table 1, in the present invention, by using foamed particles with a low compression rate, which have been excluded because conventionally excellent foams cannot be obtained. This is due to the development of a method to make an excellent foam while effectively utilizing the advantages hidden in the foam.

すなわち、粒子圧縮率で30(f)以下の粒子は、発泡
粒子の圧縮時およびその成形時に至るまでに必要な気体
圧力が極力小さくてすむ結果、それにともなつて金型や
充填装置等が極力簡素化出来、操作し易すくなる利点を
有する。従つて最も望ましい範囲は粒子圧縮率で15%
以下である。但し、圧縮率0の部分は、別の発明として
先に開発され、すでに特願昭50〜16038号として
出願した関係で本発明から除外した。上記粒子の圧縮は
、気体の圧力で行なうことが必要である。
In other words, particles with a particle compressibility of 30(f) or less require as little gas pressure as possible during the compression of the expanded particles and up to the time of molding, and as a result, molds, filling equipment, etc. It has the advantage of being simple and easy to operate. Therefore, the most desirable range is 15% particle compression ratio.
It is as follows. However, the part with a compression ratio of 0 was excluded from the present invention because it was previously developed as a separate invention and has already been filed as Japanese Patent Application No. 16038. It is necessary to compress the particles using gas pressure.

その理由は、粒子の変形を極力異方性にさせない為のも
ので、異方性の強い粒子では、型内への充填率が変化し
たり、膨張が部分的に片寄つたりして、優れた成形体が
得られ難くなるからである。また粒子の圧縮は、型内に
充填する以前に行なうことが望ましいが、型の形状が単
純な場合は型内に粒子を充填させながら型内で圧縮する
ことも出来る。
The reason for this is to prevent particle deformation from becoming anisotropic as much as possible. Particles with strong anisotropy may change the filling rate in the mold, or the expansion may be localized, making it difficult to This is because it becomes difficult to obtain a molded body. Further, it is preferable to compress the particles before filling them into the mold, but if the shape of the mold is simple, it is also possible to compress the particles inside the mold while filling the particles inside the mold.

型内への圧縮発泡粒子の充填率は容積比で普通約50〜
70%の範囲で行なうのが望ましい。
The filling rate of compressed foam particles into the mold is usually about 50 to 50% by volume.
It is desirable to do this within a range of 70%.

次に型内の圧縮発泡粒子は、少なくとも型の閉鎖が完了
するまでその圧縮状態が維持されて居ると充分その目的
は達成されるが、更に望ましくは加熱膨張が開始する直
前までその圧縮状態が維持されていることが望ましい。
その理由は本発明の発泡膨張は、粒子内に含まれる物質
の気化膨張力や一定値の圧力迄高められて充填されてい
る気体の膨張圧等によるものでなく、むしろ粒子内に含
まれる常圧に近い気体の加熱膨張圧といつた比較的小さ
い力で膨張するにすぎないものであるから、その上に圧
縮されていることで生じる膨張力が相乗的に作用したと
き、粒子の膨張が型内粒子相互の間隙をうずめ且つ粒子
間の融着を高める等の効果が一段と高められるものと考
へられている。得られた成形体は、まず冷却され、次に
調温される。この場合の冷却条件には急冷、徐冷のいず
れを用いても良いが、一般には工程時間の短縮のため急
冷されることが多い。いずれにしろ少なくとも成形体の
表面温度が基材樹脂の軟化温度以下に冷却されることが
まず必要である。その理由は、型から取出された成形体
が外力や、自己の収縮力を受けて復元出来ない変形を起
すことを防ぐためのもので、必要によつては常温迄ある
いはそれ以下の温度迄冷却する場合や、次の調温工程の
温度にまで冷却する場合もあり得る。この場合、冷却を
過度に進めると、以下の調温一徐冷工程を独立した別の
工程として分割出来る利点を生じるが、反面調温工程で
の成形体の昇温に時間がかかる欠点を生じる。
Next, the purpose of the compressed foamed particles in the mold can be sufficiently achieved if the compressed state is maintained at least until the closure of the mold is completed, but it is more desirable that the compressed foam particles remain in the compressed state until just before heating and expansion begins. It is desirable that it be maintained.
The reason for this is that the foaming expansion of the present invention is not due to the vaporization expansion force of the substance contained in the particles or the expansion pressure of the gas filled to a certain pressure, but rather due to the normal gas contained in the particles. Since it only expands with a relatively small force such as the heating expansion pressure of a gas close to the pressure, when the expansion force caused by being compressed acts synergistically, the expansion of the particles will occur. It is believed that the effect of filling the gaps between the particles in the mold and increasing the fusion between the particles is further enhanced. The obtained molded body is first cooled and then its temperature is controlled. In this case, the cooling conditions may be either rapid cooling or slow cooling, but generally rapid cooling is often used to shorten the process time. In any case, it is first necessary that at least the surface temperature of the molded body be cooled to below the softening temperature of the base resin. The reason for this is to prevent the molded product taken out of the mold from undergoing irreversible deformation due to external forces or its own contraction force, and if necessary, it is cooled to room temperature or lower. In some cases, the temperature may be cooled to the temperature for the next temperature control step. In this case, if cooling is allowed to proceed excessively, there will be an advantage that the following temperature control and slow cooling steps can be separated into separate processes, but on the other hand, there will be a disadvantage that it will take time to raise the temperature of the molded product in the temperature control step. .

従つて、通常連続工程を用い工程時間の短縮を図る場合
は、成形体を基材樹脂軟化温度以下乃至60℃迄の調温
温度のむしろ下限側に迄冷却し、次の調温工程に移すこ
とが望ましい。調温工程は成形体を基材樹脂軟化温度以
下、乃至60℃以上の温度雰囲気下に置くことで完成す
る。
Therefore, when using a continuous process to shorten the process time, the molded body is cooled to the lower limit of the temperature control temperature, which is below the softening temperature of the base resin to 60°C, and then transferred to the next temperature control process. This is desirable. The temperature control step is completed by placing the molded body in an atmosphere at a temperature below the softening temperature of the base resin and above 60°C.

この調温工程の必要性は冷却された成形体の温度のバラ
ツキを最少限に止め、かつ、次の徐冷条件を安定化させ
、あるいは一旦収縮している成形体を、再び元の形に膨
張させる役割をする上で重要である。従つて、例えば調
温条件を、成形体の温度が基材樹脂軟化温度を越えて高
くなるような温度では、次の徐冷工程で成形体が再び収
縮を起してしまうし、反面、成形体の温度が60℃未満
にしかならない温度では、収縮した成形体の再膨張を計
ることが出来ない欠点を生じる。上記調温工程は、上述
の範囲内のある温度に調整された雰囲気内に適当な時間
、置くことで完成し、具体的には例えば調温されたトン
ネル内を成形体が必要時間を要し連続的に移動する方法
や、台車に乗せた成形体を調温室内に必要時間停滞させ
る方法等を用いることが出来る。
The necessity of this temperature control process is to minimize the variation in the temperature of the cooled molded product and to stabilize the subsequent slow cooling conditions, or to restore the once contracted molded product to its original shape. It is important in its role of expanding. Therefore, for example, if the temperature control conditions are such that the temperature of the molded object exceeds the softening temperature of the base resin, the molded object will shrink again in the next slow cooling process, and on the other hand, the molding If the temperature of the molded body is only below 60°C, there is a disadvantage that it is not possible to measure the re-expansion of the contracted molded body. The above-mentioned temperature control process is completed by placing the molded body in an atmosphere adjusted to a certain temperature within the above-mentioned range for an appropriate period of time. It is possible to use a method in which the molded product is moved continuously, a method in which the molded product placed on a trolley is stagnated in a conditioning chamber for a necessary period of time, and the like.

次に徐冷工程は、成形体の温度を上記調温温度から常温
(約25℃以下)の温度にまでにする温度差を少なくと
も3時間以上の時間を要して徐冷することが必要である
Next, in the slow cooling step, it is necessary to slowly cool the molded body over a period of at least 3 hours to bring the temperature of the compact from the above-mentioned temperature control temperature to room temperature (approximately 25°C or less). be.

この場合の徐冷プログラムは例えば第1図に例示してい
るように比較的小さな温度差づつを段階を設けて冷却す
ることが必要で、例えば冷却所要時間が3時間以上であ
つても、冷却内容が急冷または急冷に近い冷却は不適当
であるし、更に例えば冷却所要時間が3時間以上であつ
ても、過冷や昇温をくり返し、常温迄の温度にするよう
な冷却は不適当である。本発明の徐冷には、ひけのない
成形体を得るために3時間以上の時間を要するが、所要
時間を必要最少限に止めるには冷却工程に移す成形体の
温度を低く(但し60℃以上)しておくこと、および徐
冷時は成形体が高温側にあるときは、比較的温度差をこ
きざみに、段階を多くして徐冷し、成形体の温度が常温
側に近ずくほど冷却温度差を大きくする徐冷プログラム
を選ぶと良い。
In this case, the slow cooling program requires cooling in stages with relatively small temperature differences, as illustrated in Figure 1. For example, even if the cooling time is 3 hours or more, the cooling Rapid cooling or cooling that is close to rapid cooling is inappropriate, and even if the cooling time is 3 hours or more, cooling that repeatedly subcools or raises the temperature to reach room temperature is inappropriate. . The slow cooling of the present invention requires 3 hours or more to obtain a molded product without sink marks, but in order to keep the required time to the minimum necessary, the temperature of the molded product transferred to the cooling process is kept low (however, 60°C (above), and when the molded product is on the high temperature side during slow cooling, the temperature difference is made relatively small and the temperature is gradually cooled in many stages, so that the temperature of the molded product approaches the room temperature side. It is better to choose a gradual cooling program that increases the cooling temperature difference as the temperature increases.

上述の具体的な温度・時間の条件は使用する基材樹脂の
種類や成形体の肉厚等に応じ、上記条件範囲の中で適宜
選ばれる。また上述の冷却方法の具体例としては、例え
ば段階的に冷却勾配をもつ複数個の調温された室内に必
要な帯留時間をもつて成形体を移動させる方法および1
つの室内に成形体をおき、室温を冷却プログラムにそつ
て順次変更して行く等の方法等が有効である。
The above-mentioned specific temperature and time conditions are appropriately selected within the above-mentioned range of conditions depending on the type of base resin used, the thickness of the molded article, and the like. Further, specific examples of the above-mentioned cooling method include, for example, a method in which the molded body is moved in a plurality of temperature-controlled rooms having a cooling gradient in stages for a necessary residence time;
An effective method is to place the molded body in one room and gradually change the room temperature according to a cooling program.

本発明に於ける一連の工程の作用効果については末だ充
分な解明がなされていないが現象的にはおよそ次のよう
な作用機能と予想される。
Although the effects of the series of steps in the present invention have not yet been fully elucidated, the functions are expected to be as follows.

すなわち本発明で見られる発泡粒子の型内発泡は、前述
のように発泡を終えた後に末だ粒子に残存するごく少量
の発泡用ガスおよび(または)発泡以降に発泡粒子中に
大気から浸透した常圧に近い気体の熱膨張に基づく発泡
力によるものと考へられる。
In other words, the in-mold foaming of expanded particles observed in the present invention is caused by a very small amount of foaming gas remaining in the final particles after foaming and/or by infiltration from the atmosphere into the expanded particles after foaming, as described above. This is thought to be due to the foaming force based on the thermal expansion of gas at near normal pressure.

従つてこれを急冷したりすると、気泡内の気体の容積が
急激に著るしく減少するために成形体が収縮するであろ
う。
Therefore, if the molded product is rapidly cooled, the volume of gas within the bubbles will rapidly and significantly decrease, causing the molded product to shrink.

しかしながらこの冷却時、成形体の温度を少なくともそ
の表面が基材樹脂の軟化点以下にまで冷却するまでは、
極力成形体に外力を与えないようにして冷却するように
すれば、成形体はここで後工程条件による復元力が与え
られる。更に冷却後の成形体の経時は、成形体の気泡内
への大気ガスの浸透を進め、更に気泡内の発泡剤ガスの
存在は、気泡内のガス圧を1気圧以上にする効果を生じ
るであろう。
However, during this cooling, at least until the temperature of the molded body is cooled to below the softening point of the base resin,
If the molded product is cooled while minimizing the application of external force to the molded product, the molded product will be given a restoring force depending on the post-process conditions. Furthermore, as the molded product ages after being cooled, the penetration of atmospheric gas into the cells of the molded product progresses, and the presence of the blowing agent gas within the cells has the effect of increasing the gas pressure within the cells to 1 atmosphere or more. Probably.

これ等の気泡内のガス圧は、いずれにしろ調温時(再加
熱時)の熱膨張における発泡力に関係する。次に徐冷工
程において、冷却が進行しきれない間の成形体の持つ剛
性力に比べ、同じ成形体に生じる収縮変形力が少なくと
もそれを上廻らない状態を保つ程度に冷却することが出
来れば、成形体の持つ剛性力によつて収縮は生じないで
あろうし、夏に大気からの気体の浸透が促進されれば、
一段と収縮変形力は減少するであろうから、この双方が
相挨つて段階的な次の冷却を可能にする結果、一連の徐
冷プログラムが形成できる。
The gas pressure within these bubbles is related to the foaming power during thermal expansion during temperature control (reheating). Next, in the slow cooling process, if cooling can be done to such an extent that the shrinkage deformation force generated in the same molded product does not at least exceed the rigidity of the molded product while cooling has not progressed. , shrinkage will not occur due to the rigidity of the molded body, and if the infiltration of gas from the atmosphere is promoted in summer,
Since the shrinkage deformation force will be further reduced, both of these together enable the next cooling in stages, so that a series of slow cooling programs can be formed.

本発明を実施する場合の装置上で、通常困難性が大きい
と考へられる部分は、圧縮状態にある発泡粒子を圧縮状
態のまま型内に充填したり、乃至は加熱膨張が始まる前
までその状態を維持させる為の装置の部分にある。
The parts of the equipment used to carry out the present invention, which are usually considered to be difficult, include filling the compressed foamed particles into a mold in a compressed state, or keeping the foamed particles in a compressed state until they begin to heat and expand. It is part of the device that maintains the state.

しかしながら本発明の場合は圧縮に用いる気体の圧力も
低く、粒子の圧縮率も小さいことから、比較的簡単な装
置および方法で実施出来る利点がある。すなわち1例を
挙げると、発泡粒子を耐圧ホツパ一内で気体圧力を用い
て圧縮し、その粒子を前記と同じ気体圧力雰囲気下に置
かれている粒子充填口を備えた型内に、同じ圧力の気体
を用いて気体輸送する。
However, in the case of the present invention, since the pressure of the gas used for compression is low and the compressibility of the particles is low, there is an advantage that it can be carried out using a relatively simple device and method. That is, to give one example, foamed particles are compressed using gas pressure in a pressure-resistant hopper, and the particles are placed in a mold equipped with a particle filling port placed under the same gas pressure atmosphere as described above. The gas is transported using the following gas.

圧縮粒子によつて型内が所定の充填度に達したところで
型を閉鎖し、粒子充填口を閉じれば、型内および型が置
かれている加圧雰囲気の部分が他の部分から独立して粒
子を膨張させない圧力の気体下にあることになる。従つ
て型が置かれている加圧雰囲気の圧力を解放しながらこ
れに加熱用の水蒸気を導入すれば、圧縮粒子はその圧縮
状態を、少なくとも型内充填完了時迄維持したことにな
り、他方、型が置かれている加圧雰囲気の圧力を解放し
ないで、これと同じ圧力下の加熱用水蒸気等と置換え加
熱すれば、圧縮粒子は少なくとも加熱膨張を始めるまで
、その圧縮状態を保つことになる。本発明に用いるエチ
レン系樹脂とはエチレン成分が60%以上含有するホモ
ポリマー、コポリマー、ブレンドポリマーを総称し、例
えば高圧法ポリエチレン、低圧法ポリエチレン、エチレ
ンープロピレンコポリマーエチレン一酢酸ビニルコポリ
マー、エチレン−エチルメタアクリル酸コポリマー、エ
チレン系アイオノマー等およびこれ等の混合物、または
これ等と他樹脂とのブレンドポリマーなどである。
When the inside of the mold reaches a predetermined degree of filling with compressed particles, the mold is closed and the particle filling port is closed, allowing the inside of the mold and the pressurized atmosphere area where the mold is placed to become independent from other parts. The particles will be under a gas pressure that does not cause them to expand. Therefore, if heating steam is introduced into the pressurized atmosphere in which the mold is placed while releasing the pressure, the compressed particles will maintain their compressed state at least until the completion of filling the mold. If the pressure of the pressurized atmosphere in which the mold is placed is not released, but instead is heated by replacing it with heating steam under the same pressure, the compressed particles will maintain their compressed state at least until they begin to heat and expand. Become. The ethylene resin used in the present invention is a general term for homopolymers, copolymers, and blend polymers containing 60% or more of ethylene, such as high-pressure polyethylene, low-pressure polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, and ethylene-ethyl Examples include methacrylic acid copolymers, ethylene ionomers, mixtures thereof, and blend polymers of these and other resins.

中でも特に顕著な効果を発揮する樹脂として、軟化温度
が84℃以上のものを選ぶと、徐冷時間を短縮したり、
調温・徐冷条件の最適範囲を大巾に広げる得る等の利点
がある。上記エチレン系樹脂は、本発明の場合、架橋改
質して用いられる。その理由は発泡粒子の発泡倍率を1
0倍以上にする為のものである。架橋方法は従来公知の
、例えば有機過酸化物を樹脂粒子内に含有させ、これを
加熱する方法や、樹脂および発泡体樹脂に電離性放射線
を照射する方法およびこれ等を適宜組合せた方法等が用
いられる。本発明の発泡粒子は上記架橋したエチレン系
樹脂を発泡させることによつて得られる。この発泡方法
は例えば樹脂粒子を揮発性発泡剤の蒸気あるいは液と直
接接触させるか、または樹脂粒子を懸濁液中に分散させ
、該発泡剤と間接的に接触させるかして樹脂粒子内に該
発泡剤を含浸せしめ、その後、この粒子を加熱して発泡
させる方法が用いられる。また特定の条件を選べば押出
発泡法を用いて発泡粒子を作ることも出来る。揮発性発
泡剤としては、例えばプロパン、ブタン、メチルクロラ
イド、メチレンタロライド、ジクロロジフロロメタン、
トリクロロモノフロロメタン、モノクロロトリフロロメ
タン、ジクロロテトラフロロエタン等が用いられる。
Among them, choosing a resin with a softening temperature of 84°C or higher that exhibits particularly remarkable effects can shorten the annealing time,
It has the advantage of widening the optimum range of temperature control and slow cooling conditions. In the case of the present invention, the above-mentioned ethylene resin is used after being crosslinked and modified. The reason is that the expansion ratio of the foamed particles is 1.
This is to increase the number by 0 times or more. The crosslinking method is conventionally known, such as a method of incorporating an organic peroxide into resin particles and heating it, a method of irradiating the resin and foam resin with ionizing radiation, and a method of appropriately combining these methods. used. The foamed particles of the present invention are obtained by foaming the crosslinked ethylene resin. This foaming method can be carried out, for example, by directly contacting the resin particles with the vapor or liquid of a volatile blowing agent, or by dispersing the resin particles in a suspension and indirectly contacting the blowing agent. A method is used in which the particles are impregnated with the foaming agent and then heated and foamed. Furthermore, if specific conditions are selected, foamed particles can also be produced using an extrusion foaming method. Volatile blowing agents include, for example, propane, butane, methyl chloride, methylenetalolide, dichlorodifluoromethane,
Trichloromonofluoromethane, monochlorotrifluoromethane, dichlorotetrafluoroethane, etc. are used.

これ等の発泡剤の使用量は、エチレン系樹脂100重量
部に対し、5〜30重量部で、目標とする発泡倍率およ
び使用する発泡剤の発泡能力等により適宜きめられる。
発泡粒子の発泡倍率は通常5〜40倍のものが用いられ
る。発泡粒子の形状は球形、擬球形、用筒形、擬円筒形
等の形状で球体積に換算して得る直径の値で2〜10m
Iのものが一般に使用し易いが、中でも球形のものが気
体による移送、型内充填が円滑に行ない得る点で最も使
用し易い。本発明で用いる型には、その壁面に気体を通
過させる多数の小穴を持つ閉鎖できる型を使用すること
が望ましい。この小穴は加熱用熱源に水蒸気を用いる場
合、直線的に型内の樹脂を加熱することが出来、熱効率
の上で有効になる。本発明は発泡粒子の中に積極的に発
泡剤または発泡用ガスを含有させない、所謂、発泡粒子
の内圧が大気圧に近い粒子の型内成形を可能にしたもの
であるが、発明の内容から見てこの発明を大気圧を越え
て大きい内圧を持つ発泡粒子の型内成形にも応用出来る
ことは当然である。
The amount of these blowing agents to be used is 5 to 30 parts by weight per 100 parts by weight of the ethylene resin, and is appropriately determined depending on the target expansion ratio and the foaming ability of the blowing agent used.
The foamed particles usually have an expansion ratio of 5 to 40 times. The shape of the foamed particles is spherical, pseudo-spherical, cylindrical, pseudo-cylindrical, etc., and the diameter obtained by converting to the spherical volume is 2 to 10 m.
The type I is generally easy to use, and the spherical type is the easiest to use because it allows smooth transfer by gas and filling in the mold. It is preferable that the mold used in the present invention be a closable mold having a large number of small holes in its wall to allow gas to pass through. When steam is used as the heating heat source, the small holes can linearly heat the resin in the mold, which is effective in terms of thermal efficiency. The present invention enables in-mold molding of so-called foamed particles whose internal pressure is close to atmospheric pressure without actively containing a blowing agent or foaming gas in the foamed particles. It goes without saying that this invention can also be applied to in-mold molding of expanded particles having an internal pressure greater than atmospheric pressure.

以下実施例を挙げて本発明を説明するが、本発明はこれ
らに限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

実施例 1 高圧法ポリエチレン(密度0.9219/Cc.MI3
.O.二融点113℃、軟化温度92℃)にジクミルパ
ーオキサイドを含有させ、これを加熱して架橋度60%
の架橋ポリエチレン粒子を得た。
Example 1 High pressure polyethylene (density 0.9219/Cc.MI3
.. O. dicumyl peroxide (melting point: 113°C, softening temperature: 92°C) is heated to achieve a crosslinking degree of 60%.
crosslinked polyethylene particles were obtained.

この粒子にジクロロジフロロメタン液を耐圧器内で8『
C1時間直接接触含浸させ、冷却取出し、予備発泡機に
移し、110℃の水蒸気で加熱発泡させて、発泡倍率2
0cc/9直径7mIの球状の発泡粒子とした。
Add dichlorodifluoromethane solution to these particles in a pressure vessel for 8 minutes.
Direct contact impregnation for 1 hour, cooled, taken out, transferred to a pre-foaming machine, heated and foamed with steam at 110°C, foaming ratio 2
0cc/9 spherical foam particles with a diameter of 7 mI were obtained.

この発泡粒子をホツパータンクに移し、空気圧で圧縮し
た後、その圧縮状態を維持したまま空気輸送して型内に
約69%の充填率で充填した。
The foamed particles were transferred to a hopper tank, compressed using air pressure, and then transported by air while maintaining the compressed state to fill the mold at a filling rate of about 69%.

型を閉鎖後、型をとりまく雰囲気を元圧1.01<g/
d(ゲージ圧)の水蒸気で置換し、約20秒加熱し、発
泡粒子を膨張成形させ、一旦調温温度に迄冷却し、調温
して温度をととのえた後、各温度に調節したケージ内を
コンベアー移送しながら常温まで徐冷した。このときの
それぞれの条件は下表に示す通りであり、使用した型は
外寸法20CrrLX20CTnX7(1−JモV!内寸
法15(7L×15CTIL×5礪の箱型であり、使用
した成形機は、東洋機械金属社製エコー120型自動成
形機である。
After closing the mold, the atmosphere surrounding the mold is reduced to an original pressure of 1.01<g/
d (gauge pressure), heated for about 20 seconds to expand and mold the expanded particles, cooled once to the controlled temperature, and then placed inside the cage adjusted to each temperature. was gradually cooled down to room temperature while being transferred on a conveyor. The conditions at this time are as shown in the table below, and the mold used was a box type with outer dimensions of 20CrrLX20CTnX7 (1-JMoV! inner dimensions of 15 (7L x 15CTIL x 5cm), and the molding machine used was , an ECHO 120 automatic molding machine manufactured by Toyo Kikai Kinzoku Co., Ltd.

得られた成形体の評価は第2表の通りである。The evaluation of the obtained molded bodies is shown in Table 2.

実施例 2高圧法ポリエチレン(密度0.922多TC
.MllO軟(ヒ温度94℃)を押出機に供給し、押出
機の中間域にジクロロテトラフロロエタンを圧入して溶
融したポリエチレンと混練したのち、攪拌式冷却装置を
通過させながら溶融樹脂温を110℃に調整し、直径1
mmのノズルから大気中に放出し、直径5翻、発泡倍率
25cc/Jの発泡線条を押出した。
Example 2 High pressure polyethylene (density 0.922 poly TC
.. MllO soft (temperature: 94°C) was supplied to the extruder, and dichlorotetrafluoroethane was pressurized into the middle region of the extruder and kneaded with the molten polyethylene.Then, the molten resin was cooled to 110°C while passing through a stirring cooling device. Adjust to ℃, diameter 1
The foam was discharged into the atmosphere from a nozzle with a diameter of 5 mm and a foamed filament with a foaming ratio of 25 cc/J was extruded.

この線条連続体に500KV出力の電子線加速機で加速
した電子線で連続的に4Mradの照射線を照射し、後
線条体を長さ5m7!Lに切断して、架橋したポリエチ
レン発泡粒子を得た。この発泡粒子の架橋度は59%で
あつた。この発泡粒子を用い下表に示す条件以外は実施
例1と同じ方法を用いて発泡成形、調温、徐冷を行ない
、優れた成形体を得た。
This filament continuum was continuously irradiated with 4 Mrad radiation using an electron beam accelerated by an electron beam accelerator with an output of 500 KV, and the length of the posterior striae was 5 m7! It was cut into L to obtain crosslinked polyethylene foam particles. The degree of crosslinking of the expanded particles was 59%. Using these expanded particles, foam molding, temperature control, and slow cooling were performed in the same manner as in Example 1 except for the conditions shown in the table below to obtain an excellent molded product.

尚、本実施例で用・いた調温徐冷前の成形体は収縮した
状態の発泡体であつた。得られた成形体の評価は第2表
の通りである。
Note that the molded product used in this example before temperature controlled slow cooling was a foamed product in a contracted state. The evaluation of the obtained molded bodies is shown in Table 2.

比較例 1下表に示す条件のみを表記載通りに変更し、
実施例1の方法を実施した。
Comparative Example 1 Only the conditions shown in the table below were changed as stated in the table,
The method of Example 1 was carried out.

その結果は第3表にまとめる。得られた成形体の評価は
第3表の通りである。
The results are summarized in Table 3. The evaluation of the obtained molded bodies is shown in Table 3.

本発明は上述の構成をもつことにより、高圧下で長時間
の発泡剤の圧入を行なわくても、発泡粒子の発泡倍率よ
りの高倍率の成形体が歪み、ひけ等の欠点を持たない状
態で製造出来、しかも、工程中で取扱う気体が低圧側に
あるため、製造、操作方法がきわめて簡素化できる等の
利点を有する産業界に有効な発明である。
The present invention has the above-described structure, so that even if the blowing agent is press-fitted under high pressure for a long time, the molded product with a higher expansion ratio than the foamed particles will not have defects such as distortion and sink marks. It is an invention that is effective in industry and has the advantage that it can be manufactured by using a method of manufacturing, and since the gas handled during the process is on the low pressure side, manufacturing and operating methods can be extremely simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる徐冷プログラム例を示し、第2
図は比較のための徐冷プログラム例を示す。
FIG. 1 shows an example of a slow cooling program used in the present invention;
The figure shows an example slow cooling program for comparison.

Claims (1)

【特許請求の範囲】[Claims] 1 エチレン系樹脂発泡粒子を型内に充填し加熱成形す
る方法において、気体の圧力を用いて発泡粒子に粒子圧
縮率で30%以下(但し0は除く)の圧縮を与え、圧縮
状態のまま型内に充填して加熱成形し、少なくとも成形
体の表面温度が基材樹脂の軟化温度以下になるまで冷却
して取出し、次に成形体を基材樹脂軟化温度以下乃至6
0℃以上の温度雰囲気下に置き、その後常温迄の冷却に
3時間以上の時間をかけて徐冷することを特徴とするエ
チレン系樹脂型物発泡体の製造方法。
1 In a method of filling foamed ethylene resin particles into a mold and heat forming them, the foamed particles are compressed to a particle compression ratio of 30% or less (excluding 0) using gas pressure, and then placed in the mold in the compressed state. The molded body is filled with heat and molded, cooled until the surface temperature of the molded body becomes at least below the softening temperature of the base resin, and then taken out.
1. A method for producing an ethylene resin mold foam, which comprises placing it in an atmosphere at a temperature of 0° C. or higher, and then gradually cooling it to room temperature over a period of 3 hours or more.
JP50070966A 1975-06-13 1975-06-13 Method for manufacturing molded foam Expired JPS5932300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50070966A JPS5932300B2 (en) 1975-06-13 1975-06-13 Method for manufacturing molded foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50070966A JPS5932300B2 (en) 1975-06-13 1975-06-13 Method for manufacturing molded foam

Publications (2)

Publication Number Publication Date
JPS51147567A JPS51147567A (en) 1976-12-17
JPS5932300B2 true JPS5932300B2 (en) 1984-08-08

Family

ID=13446760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50070966A Expired JPS5932300B2 (en) 1975-06-13 1975-06-13 Method for manufacturing molded foam

Country Status (1)

Country Link
JP (1) JPS5932300B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215928U (en) * 1985-07-16 1987-01-30
JPS6218439A (en) * 1985-07-17 1987-01-27 Japan Styrene Paper Co Ltd Production of foamed-in-place molding of crosslinked polyethylene resin
JPH0757498B2 (en) * 1986-06-26 1995-06-21 三菱化学ビーエーエスエフ株式会社 Molding method of olefin resin foam particles
WO2015133619A1 (en) * 2014-03-07 2015-09-11 株式会社カネカ Method for manufacturing polyolefin resin in-mold-expansion-molded article

Also Published As

Publication number Publication date
JPS51147567A (en) 1976-12-17

Similar Documents

Publication Publication Date Title
US4443393A (en) Method of pressurizing treatment of pre-foamed particles of polyolefin resin
US4399087A (en) Process for producing foamed polyolefin articles from aged pre-foamed particles of polyolefin resins
WO2005019310A2 (en) Process for processing expandable polymer particles and foam article thereof
EP0075897A2 (en) Process for producing pre-foamed particles of polyolefin resin
JPH0313057B2 (en)
US3963816A (en) Process for molding expandable thermoplastic material
JPS5932300B2 (en) Method for manufacturing molded foam
EP0109458B1 (en) Pressurization and storage of thermoplastic resin foams prior to secondary expansion
JPS5912455B2 (en) Method and apparatus for producing polyolefin synthetic resin foam moldings
JPS6111253B2 (en)
JPH0365259B2 (en)
IE800185L (en) Pre-expanding thermoplastic resin.
JPS5849384B2 (en) Manufacturing method of ethylene resin foam molded product
JPH02233233A (en) Manufacture of latex foam
JP3696146B2 (en) Manufacturing method of polystyrene foam resin molded product
US3590105A (en) Method of manufacture of a foamed polystyrene body
JP3536875B2 (en) Foam molding method
JPS5851019B2 (en) Method for manufacturing polyolefin resin foam moldings
JPS61111338A (en) Preparation of granular foamed crosslinked polyolefin resin molding
JPH0657431B2 (en) Method for producing foamed resin molded body of polyolefin resin
JPS63276530A (en) Foaming method for thermoplastic synthetic resin block
JPS63178029A (en) Method for in-mold molding of thermoplastic resin foaming particle
JPS5938035A (en) Manufacture of polyethylene resin foam molding in mold
JPS5987134A (en) Manufacture of flexible foamed styrene type resin molded item
JPS62174135A (en) Manufacture of thermoplastic resin in-mold foam molded body