JPS5849384B2 - Manufacturing method of ethylene resin foam molded product - Google Patents

Manufacturing method of ethylene resin foam molded product

Info

Publication number
JPS5849384B2
JPS5849384B2 JP50016037A JP1603775A JPS5849384B2 JP S5849384 B2 JPS5849384 B2 JP S5849384B2 JP 50016037 A JP50016037 A JP 50016037A JP 1603775 A JP1603775 A JP 1603775A JP S5849384 B2 JPS5849384 B2 JP S5849384B2
Authority
JP
Japan
Prior art keywords
mold
temperature
pressure
molded product
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50016037A
Other languages
Japanese (ja)
Other versions
JPS5190367A (en
Inventor
宏 清水
浩 渡部
正夫 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP50016037A priority Critical patent/JPS5849384B2/en
Publication of JPS5190367A publication Critical patent/JPS5190367A/ja
Publication of JPS5849384B2 publication Critical patent/JPS5849384B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 本発明は、架橋エチレン系樹脂発泡粒子を閉鎖型内に充
填し加熱することにより型物発泡或形品を戊形する方法
、さら(ご詳しくいえば架橋エチレン系樹脂発泡粒子の
気泡内圧で高めることなく或形しうる方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a foamed molded article by filling a closed mold with foamed particles of a crosslinked ethylene resin and heating it, and furthermore, This invention relates to a method that allows foamed particles to be shaped into a certain shape without increasing the internal pressure of the cells.

架橋エチレン系樹脂発泡粒子から型物発泡或形品を戊形
する方法としては、特開昭47 34458公報、特開昭49−85158公報、特開昭
49−128065公報(こ記載されている方法が知ら
れている。
Methods for forming foamed molded products from crosslinked ethylene resin foam particles are disclosed in JP-A-47-34458, JP-A-49-85158, and JP-A-49-128,065 (methods described therein). It has been known.

これらの技術は、工業的(こ実施するQこは致命的とも
いえる欠陥を有している。
These techniques have some fatal flaws in their industrial implementation.

すなわち、これらの技術ではいずれも発泡粒子を有機ガ
スや無機ガスの高圧雰囲気中に長時間保持することによ
り、発泡粒子中の気泡内圧の加圧状態にしたものを型内
(こ充填しなけれはならない。
In other words, in all of these technologies, the foamed particles are kept in a high-pressure atmosphere of organic or inorganic gas for a long time, so that the internal pressure of the cells in the foamed particles is pressurized, and then the foamed particles are placed inside the mold (which must be filled). No.

したがって或形加工工場ごと(こ高耐圧、かつ大容量の
圧力容器を備える必要があり、しかも、気泡内のガスの
逃散が早く耐圧容器から取り出された発泡粒子はただち
{こ戊形に供さなければ或形不可能になるため、工業的
規模で生産する場合には大きな設備投資が要求され、か
つ危険性も高くなり、かつ製品の品質が不安定(どなる
といった致命的欠陥を有していた。
Therefore, it is necessary for each shape processing factory to be equipped with a pressure vessel with high pressure resistance and large capacity. Moreover, the gas inside the bubbles escapes quickly, and the foamed particles taken out from the pressure vessel are immediately supplied to the shape. Otherwise, it will become impossible to produce the product, so if it is produced on an industrial scale, large capital investment is required, the risk is high, and the quality of the product is unstable (it may have fatal defects such as snarling). was.

本発明はこのような従来法の欠点を解決し、高い圧力で
の保持工程を経なくても或形できる技術を確立すべく鋭
意研究の結果なされたものである。
The present invention was made as a result of intensive research in order to solve the drawbacks of the conventional methods and to establish a technique that allows shaping without going through a holding process at high pressure.

すなわち本発明は、エチレン系樹脂発泡粒子を閉鎖型に
充填し加熱することにより発泡戊形品を得る方法(ごお
いて、架橋エチレン系樹脂発泡粒子を閉鎖型中(ご充填
し加熱し発泡粒子をたがい(こ融着せしめ一体としたの
ち、該戊形品に変形が生じない程度の減圧雰囲気に維持
しつつ基材樹脂の軟化温度以下に冷却したのち、大気圧
雰囲気まで昇圧し、該基材樹脂軟化温度より50’C以
上低くない温度(ごおいて熟或することを特徴とする架
橋エチレン系樹肪或形品の製造方法を提供するものであ
る。
That is, the present invention provides a method for obtaining a foamed molded article by filling a closed mold with foamed ethylene resin particles and heating. After this is fused together and integrated, the molded product is cooled to below the softening temperature of the base resin while maintaining a reduced pressure atmosphere that does not cause deformation, and then the pressure is increased to atmospheric pressure, and the base material is cooled to below the softening temperature of the base resin. The object of the present invention is to provide a method for producing a crosslinked ethylene resin or shaped article, which is characterized by ripening at a temperature not more than 50'C lower than the softening temperature of the resin.

本発明において架橋エチレン系樹脂発泡粒子としては、
エチレン系樹脂粒子に有機過酸化物を含浸するかあるい
は練り込み、ついであるいは同時に加熱すること(こよ
り得られる架橋エチレン系樹脂粒子、あるいはエチレン
系樹脂(ご電子線などの電離性放射線を照射することQ
こよって得られる架橋エチレン系樹脂粒子を化学発泡剤
あるいは沸点が基材樹脂の軟化温度以下の揮発性発泡剤
を用いて公知方法により発泡せしめたものが用いられる
In the present invention, the crosslinked ethylene resin foam particles include:
Impregnating or kneading organic peroxide into ethylene resin particles and then or simultaneously heating them (crosslinked ethylene resin particles obtained thereby, or ethylene resin particles (irradiating with ionizing radiation such as electron beams) Q
The thus obtained crosslinked ethylene resin particles are foamed by a known method using a chemical foaming agent or a volatile foaming agent whose boiling point is below the softening temperature of the base resin.

また、上記架橋方法、発抱方法の適当な組み合わせQこ
より架橋と発泡を同時に行うこともできるし、発泡させ
たのち架橋させることもできる。
Further, by appropriately combining the above-mentioned crosslinking method and incorporation method, crosslinking and foaming can be carried out simultaneously, or crosslinking can be carried out after foaming.

発泡粒子の形状は特(ご限定はないができるだけ型内へ
の充填度の高い形状、すなわち球状に近いものがよい。
The shape of the foamed particles is not particularly limited, but it is preferable to have a shape that allows for as high a degree of filling in the mold as possible, that is, a shape that is close to a spherical shape.

また粒子の大きさは、小さい方が粒子間の空隙が戊形品
に生じ(こくいので望ましく、通常は直径ICrfL以
下のものが用いられる。
Furthermore, the smaller the particle size is, the more voids between the particles will form in the shaped product, so it is desirable, and those with a diameter of less than ICrfL are usually used.

本発明における特徴点の1つは架橋エチレン系樹脂発泡
粒子の気泡内圧をわざわざ高めることなく良好な発泡戊
形品が得られることである。
One of the features of the present invention is that a good foamed molded product can be obtained without taking the trouble of increasing the internal pressure of the cells of the foamed crosslinked ethylene resin particles.

したがって本発明に用いられる発泡粒子としては、発泡
性粒子を予備発泡したのち大気中(こ放置しておいて気
泡内の圧力が大気圧とほぼ同じになった発泡粒子を使用
できるので工業的に実施する場合(こは従来技術(こ比
し極めて有利である。
Therefore, as the foamed particles used in the present invention, it is possible to use foamed particles that have been pre-foamed and then left in the atmosphere so that the pressure inside the bubbles becomes almost the same as atmospheric pressure. When implemented, this is extremely advantageous compared to the prior art.

しかしながら、本発明の方法を気泡内圧が大気圧以上の
発泡粒子を用いて実施しても何ら問題なく良好な戊形品
が得られることはいうまでもない。
However, it goes without saying that even if the method of the present invention is carried out using foamed particles having a cell internal pressure equal to or higher than atmospheric pressure, a good shaped article can be obtained without any problem.

しかも従来技術(こおいては或形不可能とされていた気
泡内圧1.18気圧未満の発泡粒子でも使用しうるとい
う利点がある。
Furthermore, there is an advantage that foamed particles having a bubble internal pressure of less than 1.18 atmospheres, which was considered impossible in the prior art (herein), can be used.

なお本発明でいう気泡内圧とは、次式(こより定義され
るものである。
Note that the bubble internal pressure in the present invention is defined by the following equation.

発泡粒子は、次いで閉鎖型に充填されるが、本発明でい
う閉鎖型とは、ポリスチレンビーズの分野で一般に用い
られている。
The expanded particles are then filled into a closed mold, and the closed mold as referred to in the present invention is generally used in the field of polystyrene beads.

小孔あるいは細隙スリットがつけられていて戊形品取出
しtこ便利なよう(こ2つに割れ、合わせれば閉鎖でき
る型のことをいう。
It is a type of mold that has a small hole or slit for convenient removal of the shaped item (this is a type of mold that can be broken into two pieces and closed by putting them together).

型への発泡粒子の充填は空気流(ごよる充填が最も一般
的に用いられる。
Air flow is most commonly used to fill the mold with foamed particles.

型への充填度を高くするために型内を大気圧以上(こ加
圧し、かつ発泡粒子の輸送系内も加圧しながら充填を行
う方法もある。
In order to increase the degree of filling of the mold, there is also a method in which the inside of the mold is pressurized to above atmospheric pressure and the inside of the expanded particle transport system is also pressurized while filling.

このようにすると、発泡粒子が圧力により圧縮された状
態で充填されているので充填度は高くなる。
In this case, the degree of filling is increased because the expanded particles are compressed by pressure.

型内に均一に充填された発泡粒子は次いで加熱される。The foamed particles uniformly filled into the mold are then heated.

加熱温度は基材樹脂の軟化温度以上、好ましくは基材樹
脂の融点ないし該融点より30゜C高い温度にするとよ
い。
The heating temperature is preferably at least the softening temperature of the base resin, preferably at or 30°C higher than the melting point of the base resin.

加熱温度は高い程粒子間の融着が強固(どなり、かつ粒
子間の間隙が少ない優れた威形品が得られるがあまり高
すぎると樹脂が過度(ど流動しやすくなり気泡構造をく
ずす原因(どなり粗悪な戊形品を生じる上(こ、戊形サ
イクルも長く、また必要以上の高温は型その他装置部分
の耐圧耐熱性を上げなければならなくなる等の不利を伴
う。
The higher the heating temperature is, the stronger the fusion between the particles will be, and the better the shape of the product with less gaps between the particles. However, if the heating temperature is too high, the resin will flow excessively, causing the cell structure to collapse ( Not only does this result in poor-quality molded products, but also the molding cycle is long, and higher temperatures than necessary require increased pressure and heat resistance of the mold and other parts of the equipment, among other disadvantages.

加熱媒体としては水蒸気が最も工業的Qこ有利であるが
、その他加熱空気、加熱水、過熱蒸気なども用いること
ができる。
As the heating medium, steam is most advantageous for industrial purposes, but heated air, heated water, superheated steam, etc. can also be used.

加熱を終了した或形品{ζ対する引続いて行われる処理
が本発明の最も大きな特徴である。
The most significant feature of the present invention is the subsequent treatment of a shaped article {ζ that has been heated.

従来の威形方法では、加熱が終了するとただち(ご大気
圧下で冷却を行ない、型から取出したとき(こ変形が生
じない程度まで戊形品の温度を下げ続けるのであるが、
本発明においては加熱終了後の冷却を大気圧以下の減圧
下で行う。
In the conventional molding method, the temperature of the molded product is lowered immediately after heating (under atmospheric pressure), and the temperature of the molded product is continued to be lowered to the point where deformation does not occur when removed from the mold.
In the present invention, cooling after heating is performed under reduced pressure below atmospheric pressure.

減圧圧力は冷却中Qこ型内の威形品(ご収縮が生じない
程度Cこ維持できればよく不必要に汲圧度を高くするこ
ともない。
As long as the reduced pressure can be maintained at a level that does not cause shrinkage in the mold during cooling, the pumping pressure will not be increased unnecessarily.

したがって冷却当初は減圧度を低くし、徐々に減圧度を
高くしていくのが好ましい。
Therefore, it is preferable to lower the degree of pressure reduction at the beginning of cooling and gradually increase the degree of pressure reduction.

減圧工程中の最大減圧度の必要最低値は、戊形に供した
発泡粒子の気泡内圧、基材樹脂の軟化温度、冷却温度(
こよって異なるが、通常−5 0 mmHj;l な
いし−50QmmH9 の範囲、好ましくは−1 0
0 mmH& ないし−3 0 0 mmH.9
である。
The required minimum value of the maximum degree of pressure reduction during the pressure reduction process is determined by the internal pressure of the foamed particles subjected to molding, the softening temperature of the base resin, and the cooling temperature (
Although it varies depending on the situation, it is usually in the range of -50 mmHj;l to -50QmmH9, preferably -10
0 mmH & -300 mmH. 9
It is.

減圧工程は加熱工程が終了した直後から開始してもよい
し、またしばらく放置後開始してもよい。
The decompression step may be started immediately after the heating step is completed, or may be started after being left for a while.

また、加熱終了後型内の或形品(ご著しい収縮が生じな
い範囲内で冷却を行ってから、減圧工程を開始してもよ
い。
Further, after the completion of heating, the depressurization process may be started after cooling the shaped product in the mold (within a range that does not cause significant shrinkage).

必要なことは戊形品が収縮変形した状態で軟化温度以上
の温度から軟化温度以下の温度{こ冷却することがない
ようにすることである。
What is necessary is to prevent the hollow part from being cooled from a temperature above the softening temperature to a temperature below the softening temperature in a contracted and deformed state.

なおここでいう収縮変形とは、金型容積に対する戊形品
の体積の割合が80%以下になっている程度の状態をい
う。
Note that the term "shrinkage deformation" as used herein refers to a state in which the ratio of the volume of the molded product to the volume of the mold is 80% or less.

減圧工程を成形品の温度が基材樹脂の軟化温度以上のと
き行った場合Qこは、或形加熱時(こは完全{こ満たし
きれなかった粒子間の間隙をざら(こ少くする効果があ
るので、特に外観の優れた戊形品を得たい場合に有利で
ある。
If the decompression process is carried out when the temperature of the molded product is higher than the softening temperature of the base resin, the effect of reducing the gap between particles that could not be completely filled during heating may be reduced. Therefore, it is particularly advantageous when it is desired to obtain a shaped product with an excellent appearance.

減圧工程中の冷却は戊形品の少なくとも表面部分が軟化
温度以下、好ましくは軟化温度より1o゜C以上低い温
度ないし常温迄冷却するとよい。
During the decompression step, at least the surface portion of the molded product is preferably cooled to a temperature below the softening temperature, preferably at least 1°C lower than the softening temperature, to room temperature.

もし冷却が不充分であると最終的(ご得られる威形品に
変形が残ってしまい型物戊形品としての商品価値を著し
く損なうこと(こなる。
If the cooling is insufficient, the final product will remain deformed and its commercial value as a molded product will be significantly impaired.

減圧下に戊形品を冷却する手段には特に制限はなく型を
囲む密閉可能な加熱室を減圧に維持しながら、冷却水を
型Qこ向って散布する方法や、また簡単な方法として、
水蒸気で加熱終了後型を囲む蒸気室を密閉し型及び蒸気
室を水冷すること(こより型及び蒸気室内の水蒸気を凝
縮せしめ減圧雰囲気を得る方法などが用いられる。
There are no particular restrictions on the means for cooling the shaped product under reduced pressure, and there are methods such as spraying cooling water over the mold Q while maintaining a sealable heating chamber surrounding the mold at reduced pressure, or a simple method.
After heating with water vapor, the steam chamber surrounding the mold is sealed, and the mold and the steam chamber are cooled with water.

いずれにしても戊形品が型内にあるとき行う方法が実用
性が高いが、型から取り出すときに有害な変形が与えら
れなければ、いったん型から取り出したのち減圧雰囲気
(どもたらして冷却を行ってもよい。
In any case, the most practical method is to carry out the process while the molded product is still in the mold, but if no harmful deformation occurs when the product is removed from the mold, it must be cooled by bringing it under a reduced pressure atmosphere (such as a You may go.

減圧・冷却工程を終了したのち、大気圧まで解放し型よ
り取出すか、あるいはさらに冷却を続けてから型より取
出す。
After completing the depressurization and cooling process, it is released to atmospheric pressure and taken out from the mold, or it is further cooled and taken out from the mold.

型より取出された戊形品は一般{こ収縮していることが
多いが、威形{こ供した発泡粒子の内圧や軟化温度、冷
却温度などの選び方によっては収縮が生じない場合もあ
る。
Generally, the shaped product removed from the mold is often shrunk, but depending on the selection of the internal pressure, softening temperature, cooling temperature, etc. of the foamed particles, shrinkage may not occur in some cases.

いずれの場合にも或形品は、大気圧力下(こおいて、軟
化温度未満、軟化温度より50’C以上低くない温度の
雰囲気中で熟威を行う。
In either case, the shaped article is ripened in an atmosphere under atmospheric pressure (wherein the temperature is below the softening temperature and not more than 50'C below the softening temperature).

この熟生工程は型から取出された戊形品の気泡内の圧力
と外部との差Qこより生じた収縮を回復せしめ、あるい
はそのとき収縮しなかった威形品も室温まで完全fこ冷
却してくると必然的(こ発生してくる収縮を防ぐ目的で
行われる。
This ripening process recovers the shrinkage caused by the difference between the pressure inside the bubbles of the shaped product taken out of the mold and the outside, or completely cools the shaped products that did not shrink to room temperature. This is done to prevent the contraction that inevitably occurs.

熟戊温度は上記温度範囲内で一定の温度で保ってもよい
し、また徐々(こ温度を下げてもよい。
The ripening temperature may be maintained at a constant temperature within the above temperature range, or may be gradually lowered.

いずれの場合(こも熟或時間は1時間以上(こすること
か好ましく、熟戊時間が短か過ぎると熟或を完了しても
戊形品の収縮が残るので好ましくない。
In either case, the ripening time is preferably 1 hour or more (rubbing is preferred; if the ripening time is too short, the molded product will still shrink even after ripening is completed, which is not preferred).

しかし同一温度から熟或を開始する場合は、徐々に温度
を下げる熟戊法が著しく熟威時間を短縮できるので有利
である。
However, if ripening is started at the same temperature, a method of gradually lowering the temperature is advantageous because it can significantly shorten the ripening time.

熟威温度が軟化温度以上になったり、あるいは軟化温度
以上で長時間熟或された或形品は、熟或中に樹脂自体の
収縮が起こり、得られる或形品の寸法が型の寸法より著
しく小さいもの(こなってしまう。
If the ripening temperature is higher than the softening temperature, or if the molded product is aged for a long time at a temperature higher than the softening temperature, the resin itself will shrink during ripening, and the dimensions of the resulting molded product will be larger than the dimensions of the mold. Something extremely small

また軟化温度より50℃以上低い温度で熟威したのでは
収縮のない戊形品を得る(こは工業的(こはまず実施不
可能な程長時間の熟或が必要となったり、あるいはどの
よう(こ長時間熟或しても収縮をなすことができなくな
る。
Furthermore, ripening at a temperature 50°C or more lower than the softening temperature would result in a molded product without shrinkage (this would require an impractically long ripening time, or (It becomes impossible to contract even if it is left to ripen for a long time.)

本発明に用いるエチレン系樹脂としては、エチレン戊分
が60%以上含有するホモボリマー、コポリマー、ブレ
ンドポリマーが用いられ、高圧法ポリエチレン、低圧法
ポリエチレン、エチレンプロピレンコポリマー、エチレ
ンー酢酸ビニルコポリマー、エチレン−エチルメタクリ
ル酸コポリマー、エチレン系アイオノマーなど、あるい
はこれらの混合物、またはこれらの樹脂と他の樹脂との
ブレンドポリマーなどがある。
As the ethylene resin used in the present invention, homobolymers, copolymers, and blend polymers containing 60% or more of ethylene fraction are used, such as high-pressure polyethylene, low-pressure polyethylene, ethylene propylene copolymer, ethylene-vinyl acetate copolymer, and ethylene-ethyl methacrylate. Examples include acid copolymers, ethylene ionomers, mixtures thereof, and blend polymers of these resins and other resins.

特に本発明の方法を用いることにより顕著な効果を発揮
する樹脂は、軟化温度が84℃以上のものである。
In particular, resins that exhibit remarkable effects by using the method of the present invention have a softening temperature of 84°C or higher.

軟化温度が84゜C未満の樹脂を用いた場合には、熟戊
時間{こ比較的長時間を要し工業的には若干不利になる
When a resin with a softening temperature of less than 84°C is used, the aging time is relatively long, which is somewhat disadvantageous from an industrial perspective.

なお、スチレン系樹脂発泡粒子から型物発泡威形品を戊
形する際(ご本発明の方法を適用したところ、減圧冷却
工程から取出された或形品(こ生じた収縮は熟或によっ
ても回復させることができないか、たとえ回復したとし
ても得られる戊形品の緩衝性能は著しく低下してしまい
型物戊形品の主要用途分野である緩衝包装材としては、
使用不可能になる。
It should be noted that when molded foamed articles are formed from expanded styrene resin particles (when the method of the present invention is applied, some shaped articles taken out from the vacuum cooling process (this shrinkage may occur due to aging). Either it cannot be restored, or even if it can be recovered, the cushioning performance of the obtained molded product will be significantly reduced.
becomes unusable.

この原因は、スチレン系樹脂の脆さによるものと思われ
る。
This seems to be caused by the brittleness of the styrene resin.

したがって本発明の方法は、靭性の高いエチレン系樹脂
発泡粒子(こおいて始めて効果を発揮するものといえる
Therefore, it can be said that the method of the present invention is effective only when using foamed ethylene resin particles with high toughness.

次に実施例(こよって本発明をざら(ご詳細に説明する
Next, Examples (thereby, the present invention will be explained in detail).

実施例 1 高圧法ポリエチレン(密度−0.9189/cc、MI
−1.0、融点113℃、軟化温度85℃)をジクミル
パーオキサイドを用いて架橋度60%(ご架橋したのち
、ジクロロジフロ口メタン液を耐圧容器中で80℃1時
間接触させたのち、冷却し取出してコンベア一式予備発
泡機(こ供給して100゜Cの水蒸気で発泡した。
Example 1 High pressure polyethylene (density -0.9189/cc, MI
-1.0, melting point 113℃, softening temperature 85℃) using dicumyl peroxide to a degree of crosslinking of 60% (after crosslinking, dichlorodifluoromethane solution was contacted at 80℃ for 1 hour in a pressure container, then The mixture was cooled, taken out, fed to a pre-foaming machine with a conveyor set, and foamed with steam at 100°C.

得られた発泡粒子の発泡倍率は18CC/gであり、粒
子の大きさは直径7朋で球形であった。
The expansion ratio of the obtained expanded particles was 18 CC/g, and the particle size was spherical with a diameter of 7 mm.

この発泡粒子を24時間室内で放置して気泡内圧を大気
圧(こ戻したのち、型を加熱するための蒸気室を減圧す
るようQこ真空タンクを連結して改造したECHO−1
20型或形機(東洋機械金属製)で戊形を行った。
The foamed particles were left indoors for 24 hours to bring the internal pressure of the bubbles back to atmospheric pressure (ECHO-1), which was modified by connecting a Q-vacuum tank to reduce the pressure in the steam chamber used to heat the mold.
The shape was made using a type 20 shape machine (manufactured by Toyo Machinery and Metals).

用いた型は、内寸1 5X1 5X8 (m)、外寸2
0X20X12(m)のます状の型であった。
The mold used had an inner dimension of 1 5X1 5X8 (m) and an outer dimension of 2.
It was a rectangular mold measuring 0x20x12 (m).

加熱時の蒸気として圧1. 5 kg/itこ調節され
た蒸気を用い、加熱時間の調節(こより蒸気室内の蒸気
圧は最高1. 0 kg/cr?tになるよう(こした
The pressure of steam during heating is 1. Using steam adjusted to 5 kg/it, the heating time was adjusted so that the steam pressure in the steam chamber was at a maximum of 1.0 kg/crt.

加熱に要した時間は、合計20秒であった。The total time required for heating was 20 seconds.

加熱終了後、ただち(ご真空タンクQこより蒸気室内を
減圧すると同時(こ蒸気室内に水を散水し冷却を行ない
、この冷却時間を変えること{こより或形品の表面温度
を種々選択した。
Immediately after heating, the pressure in the steam chamber is reduced from the vacuum tank Q (at the same time as water is sprinkled into the steam chamber to cool it down, and the cooling time is varied. Therefore, various surface temperatures of the shaped product were selected).

戊形品の表面温度は、型内の威形品の表面から55mm
の位置の温度が測定できるよう{こ取付けられた熱電対
により測定した。
The surface temperature of the shaped product is 55mm from the surface of the shaped product in the mold.
A thermocouple was installed so that the temperature at the location could be measured.

所定温度まで冷却が行われたとき減圧を解放し大気圧と
し型を開き戊形品を取出した。
When the mold was cooled to a predetermined temperature, the reduced pressure was released and the mold was brought to atmospheric pressure, and the mold was opened and the molded product was taken out.

次いて空気加熱式熟戊室にいれ所定の温度、時間を経過
させたのち取出し、戊形品が常温(どなってから(ほぼ
3時間経過後)収縮状態を測定した。
Next, the molded product was placed in an air-heated ripening chamber for a predetermined temperature and time, and then taken out, and the state of shrinkage was measured after the molded product reached room temperature (after approximately 3 hours had elapsed).

第1表(ご種々選択したこれらの条件と、得られる戊形
品の収縮状態を示した。
Table 1 (various selections of these conditions and the state of shrinkage of the obtained hollow parts) is shown.

実施例 2 実施例1で用いた発泡粒子を容器(こ入れ20’Cの空
気でlkg/ail(ゲージ)で30分加圧して取出し
たところ、その気泡内圧は、1,15気圧であった。
Example 2 When the foamed particles used in Example 1 were taken out of a container (in a container) and pressurized with air at 20'C for 30 minutes at lkg/ail (gauge), the internal pressure of the bubbles was 1.15 atm. .

この発泡粒子を実施例1で用いた戊形機、型、威形加熱
条件で威形したのち、実験A62の減圧冷却を経て60
゜Cで熟威したところ、1.5時間の熟或で収縮状態良
の戊形品が得られた。
The foamed particles were shaped using the shaping machine, mold, and shaping heating conditions used in Example 1, and then cooled under reduced pressure in Experiment A62 for 60 minutes.
When aged at 1.5 hours, a molded product with good shrinkage was obtained.

実施例 3 実施例1で用いた発泡粒子を実施例1と同様{こして戊
形加熱終了後蒸気室を密閉したままの状態で蒸気室内に
冷却水を投入し型及び蒸気室を冷却したところ或形品表
面温度が90’Cfこなるまで(こ7秒要しその間{ご
蒸気室内の圧力は−300mmH& まで減圧された。
Example 3 The foamed particles used in Example 1 were heated in the same manner as in Example 1. After the round-shaped heating was completed, cooling water was poured into the steam chamber while the steam chamber remained sealed to cool the mold and the steam chamber. It took 7 seconds until the surface temperature of a certain molded product reached 90'Cf, during which time the pressure inside the steam chamber was reduced to -300mmH&.

そのままの状態で30秒放置し或形品表面温度は50’
Cfどなったところで大気圧(こもどし、型を開き威形
品を取り出した。
Leave it as it is for 30 seconds, and the surface temperature of the molded product will be 50'.
Atmospheric pressure (returning to normal), the mold was opened and the impressive item was taken out.

この時点(こおける威形品の体積は金型容積の60%で
あった。
At this point, the volume of the shaped product was 60% of the mold volume.

この収縮した或形品を実施例1の実験/%1と同じ熟戊
工程に供したところ収縮状態は良となった。
When this shrunken shaped product was subjected to the same drying process as in the experiment/%1 of Example 1, the shrinkage state was good.

実施例 4 ポリエチレン(密度−0.9 2 1 9 /CC,
MI30、融点115゜C軟化温度92゜C)直径2m
rnのペレットに出力IMVの竃子線加速機で15Mr
adの電子線を照射したところ架橋5.0%の架橋ペレ
ットが得られた。
Example 4 Polyethylene (density -0.9 2 1 9 /CC,
MI30, melting point 115°C, softening temperature 92°C) diameter 2m
Output 15Mr to rn pellets using IMV's furnace beam accelerator.
When irradiated with ad electron beam, crosslinked pellets with 5.0% crosslinking were obtained.

この架橋ペレットをジクロロジフロロメタンとトリクロ
口モノフロロメタンとを2:1に混合した液に耐圧容器
中で60’C:1時間含浸した。
The crosslinked pellets were immersed in a 2:1 mixture of dichlorodifluoromethane and trichloromonofluoromethane at 60'C for 1 hour in a pressure vessel.

この発泡性ペレットを0. 5 ky/CIIL(ゲー
ジ)の水蒸気で20秒加熱すると発泡倍率1 6cc/
,pの発泡粒子を得た。
0.0% of this foamable pellet. When heated for 20 seconds with 5ky/CIIL (gauge) steam, the foaming ratio is 16cc/
, p were obtained.

この発泡粒子を201h Ocの室内で24時間放置し
たのち実施例1で用いた戊形機、金型、或形加速条件で
戒形した。
The foamed particles were left in a room at 201 h Oc for 24 hours, and then shaped using the same molding machine, mold, and certain acceleration conditions as used in Example 1.

加速終了後ただちに水により冷却を行い型内の戊形品表
面温度が95℃になったとき蒸気室内を−130mmH
Elに減圧し冷却を続け戊形品表面温度が40゜Cにな
ったとき取出したところ戊形品に収縮は認められなかっ
た。
Immediately after the acceleration is finished, the mold is cooled with water, and when the surface temperature of the molded part in the mold reaches 95℃, the temperature in the steam chamber is reduced to -130mmH.
The pressure was reduced to El and cooling was continued, and when the surface temperature of the molded product reached 40°C, it was taken out, and no shrinkage was observed in the molded product.

この戊形品を5時間、20℃の室内(こ放置しておいた
ところ収縮が生じ始めたので実施例1の実、験/163
と同じ熟戊を行ったところもはや収縮が生じることはな
く、収縮状態の評価は良であった。
When this molded product was left in a room at 20°C for 5 hours, it began to shrink.
When the same ripening process as above was performed, no shrinkage occurred anymore, and the state of shrinkage was evaluated as good.

比較例 実施例1で用いた発泡粒子、威形機、型、戊形加熱条件
を用いて、本発明方法の範囲外の条件で戊形したところ
、第2表(こ示す結果が得られた。
Comparative Example Using the expanded particles, shaping machine, mold, and shaping heating conditions used in Example 1, shaping was carried out under conditions outside the scope of the method of the present invention, and the results shown in Table 2 were obtained. .

Claims (1)

【特許請求の範囲】[Claims] 1 エチレン系樹脂発泡粒子を閉鎖型に充填し加熱する
ことにより発泡戊形品を得る方法(こおいて架橋エチレ
ン系発泡粒子を閉鎖型中に充填し、加熱し発泡粒子をた
がいに融着せしめて一体としたのち、該戒形品Qこ変形
が生じない程度の減圧雰囲気に維持しつつ基材樹脂の軟
化温度以下(こ冷却したのち、大気圧雰囲気まで昇圧し
、該基材樹脂の軟化温度未満でかつ、該軟化温度より5
0’C以上低くない温度において熟戊することを特徴と
するエチレン系樹脂発泡戊形品の製造方法。
1 A method of obtaining a foamed shaped product by filling a closed mold with foamed ethylene resin particles and heating (here, crosslinked ethylene resin foam particles are filled into a closed mold and heated to fuse the foamed particles to each other) After the molded product is assembled into one piece, it is cooled to below the softening temperature of the base resin while maintaining a reduced pressure atmosphere that does not cause deformation (after cooling, the pressure is increased to atmospheric pressure to soften the base resin). 5 below the softening temperature and above the softening temperature.
A method for producing an ethylene-based resin foam product, which comprises ripening at a temperature not lower than 0'C.
JP50016037A 1975-02-07 1975-02-07 Manufacturing method of ethylene resin foam molded product Expired JPS5849384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50016037A JPS5849384B2 (en) 1975-02-07 1975-02-07 Manufacturing method of ethylene resin foam molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50016037A JPS5849384B2 (en) 1975-02-07 1975-02-07 Manufacturing method of ethylene resin foam molded product

Publications (2)

Publication Number Publication Date
JPS5190367A JPS5190367A (en) 1976-08-07
JPS5849384B2 true JPS5849384B2 (en) 1983-11-04

Family

ID=11905374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50016037A Expired JPS5849384B2 (en) 1975-02-07 1975-02-07 Manufacturing method of ethylene resin foam molded product

Country Status (1)

Country Link
JP (1) JPS5849384B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646735A (en) * 1979-09-25 1981-04-28 Japan Styrene Paper Co Ltd Freparation of polyolefin series resin foamed molding body
JPS60166442A (en) * 1984-02-10 1985-08-29 Kanegafuchi Chem Ind Co Ltd Curing method of polyolefin expansion molded shape
JPS60155441A (en) * 1984-11-09 1985-08-15 Sekisui Plastics Co Ltd Method for foamed molding
JPS6215928U (en) * 1985-07-16 1987-01-30
JP5315152B2 (en) * 2009-07-17 2013-10-16 積水化成品工業株式会社 Foam molded body manufacturing method, foam molded body, and vehicle luggage box comprising the foam molded body

Also Published As

Publication number Publication date
JPS5190367A (en) 1976-08-07

Similar Documents

Publication Publication Date Title
US4443393A (en) Method of pressurizing treatment of pre-foamed particles of polyolefin resin
JPS5943492B2 (en) Manufacturing method of polypropylene resin foam molding
JPH0313057B2 (en)
CA2534846A1 (en) Process for processing expandable polymer particles and foam article thereof
US2525966A (en) Treatment of expanded articles
US2531665A (en) Manufacture of expanded thermoplastic materials
US3963816A (en) Process for molding expandable thermoplastic material
JPS5849384B2 (en) Manufacturing method of ethylene resin foam molded product
US4631159A (en) Method of aging expansion-molded body of polyolefin
JPH0421698B2 (en)
JPS6113972B2 (en)
IE800185L (en) Pre-expanding thermoplastic resin.
JPS6111253B2 (en)
JPS5932300B2 (en) Method for manufacturing molded foam
JP3696146B2 (en) Manufacturing method of polystyrene foam resin molded product
JPS5851019B2 (en) Method for manufacturing polyolefin resin foam moldings
US3590105A (en) Method of manufacture of a foamed polystyrene body
JPS5938035A (en) Manufacture of polyethylene resin foam molding in mold
KR100632146B1 (en) process for producing expanded polystyrene form
KR830002181B1 (en) Method for producing expanded particles of polyolefin resin
JP2742609B2 (en) Method for pre-expanding expandable thermoplastic resin particles
JPH03128951A (en) Method for expanding shrinked, foamable material particle comprising propylene polymer
JPS60151029A (en) Foamed molding method in mold of foamable synthetic resin material
JPH0657431B2 (en) Method for producing foamed resin molded body of polyolefin resin
JPS5841186B2 (en) Hatsupou Seikei Tai no Seizou Hohou