JP2007302720A - Polypropylene-based resin pre-foamed particle and molded article obtained by in-mold foaming of the same - Google Patents

Polypropylene-based resin pre-foamed particle and molded article obtained by in-mold foaming of the same Download PDF

Info

Publication number
JP2007302720A
JP2007302720A JP2006129748A JP2006129748A JP2007302720A JP 2007302720 A JP2007302720 A JP 2007302720A JP 2006129748 A JP2006129748 A JP 2006129748A JP 2006129748 A JP2006129748 A JP 2006129748A JP 2007302720 A JP2007302720 A JP 2007302720A
Authority
JP
Japan
Prior art keywords
polypropylene resin
expanded particles
resin
mold
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006129748A
Other languages
Japanese (ja)
Other versions
JP5040167B2 (en
Inventor
Kiyoshi Sadamitsu
清 定光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006129748A priority Critical patent/JP5040167B2/en
Publication of JP2007302720A publication Critical patent/JP2007302720A/en
Application granted granted Critical
Publication of JP5040167B2 publication Critical patent/JP5040167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polypropylene-based pre-foamed particles excellent in melt-bonding property, capable of being molded even by a low molding steam pressure, further capable of shortening its molding cycle and producing a molded article obtained by the in-mold foaming of the same and excellent in dimensional stability. <P>SOLUTION: The polypropylene-based pre-foamed particles are provided by consisting of a polypropylene-based resin composition containing 1 to 8 wt.% ≥1 resin selected from a petroleum resin and terpene-based resin, and having 18 to 32% DSC (differential scanning calorimetry) ratio and 0.5 to 1.5 mg particle weight. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、寸法安定性と表面性に優れた型内発泡成形体を製造することが出来、かつ型内発泡成形に際し、成形サイクルの短縮が可能であるポリプロピレン系樹脂予備発泡粒子及び該ポリプロピレン系樹脂予備発泡粒子からなる型内発泡成形体に関する。   The present invention relates to a polypropylene resin pre-expanded particle capable of producing an in-mold foam molded article excellent in dimensional stability and surface property, and capable of shortening a molding cycle in the in-mold foam molding, and the polypropylene based The present invention relates to an in-mold foam molded body made of resin pre-expanded particles.

ポリプロピレン系樹脂予備発泡粒子は、ポリスチレン系樹脂予備発泡粒子と比較して、耐薬品性能、耐熱性能、緩衝性能、圧縮歪み回復性能に優れ、ポリエチレン系樹脂予備発泡と比較しても、耐熱性能、圧縮強度に優れることから、緩衝包装資材や通い箱、自動車用部材として広く用いられている。   Polypropylene resin pre-expanded particles are superior in chemical resistance, heat resistance, buffer performance, and compression strain recovery performance compared to polystyrene resin pre-expanded particles. Since it is excellent in compressive strength, it is widely used as a buffer packaging material, a returnable box, and an automobile member.

通常ポリプロピレン系樹脂はその軟化温度の高さゆえに、型内発泡成形の際にポリスチレン系樹脂に比べて高い成形蒸気圧を必要とし、その為に成形コストが高くなり、しかも成形サイクルが長くなる欠点がある。一方、成形蒸気圧を下げると発泡粒子間の融着性が不足して、もろい成形体となり、所望の力学特性を発現しない。   Polypropylene resins usually have a higher softening temperature, which requires a higher molding vapor pressure than in the case of polystyrene resins during in-mold foam molding, resulting in higher molding costs and longer molding cycles. There is. On the other hand, when the molding vapor pressure is lowered, the fusibility between the foamed particles is insufficient, resulting in a fragile molded body, and the desired mechanical properties are not exhibited.

このようなポリプロピレン系樹脂予備発泡粒子の実情に鑑みて、成形蒸気圧の低減を目的として、ポリプロピレン系樹脂に石油樹脂等を含有する樹脂組成物からなる発泡体が提案されている(特許文献1〜4)。かかる石油樹脂を含有するポリプロピレン系樹脂予備発泡粒子を型内発泡成形させた場合は、ビーズ表面の融着性が良くなるため、低い成形蒸気圧でも成形が可能で、さらに発泡体の剛性や機械的強度、熱的強度が向上する。   In view of the actual situation of such polypropylene resin pre-expanded particles, a foam made of a resin composition containing a petroleum resin or the like in a polypropylene resin has been proposed for the purpose of reducing the molding vapor pressure (Patent Document 1). ~ 4). When the polypropylene resin pre-expanded particles containing such a petroleum resin are subjected to in-mold foam molding, the bead surface can be fused more easily, so molding is possible even at a low molding vapor pressure. Strength and thermal strength are improved.

しかしながらこれらの石油樹脂は、それ自身の軟化点以上の温度域でポリプロピレン系樹脂に対して可塑化効果を有するため、成形サイクルが長くなったり、成形直後の成形体の剛性が不足して成形体が変形したり、また成形体の寸法が安定化するまでに長時間を要する等、成形生産性を低下させるという問題があった。
特開昭59−68340号公報 特開昭63−145344号公報 特開2005−8850号公報 特開2005−29773号公報
However, these petroleum resins have a plasticizing effect on polypropylene resins in the temperature range above their own softening point, so that the molding cycle becomes long or the molded body immediately after molding lacks rigidity. There is a problem that molding productivity is lowered, such as deformation of the molded body and a long time required to stabilize the size of the molded body.
JP 59-68340 A JP-A 63-145344 JP 2005-8850 A JP 2005-29773 A

本発明の目的は、成形サイクルの短縮が可能で、かつ寸法安定性と表面外観に優れた型内発泡成形体の製造が可能なポリプロピレン系樹脂予備発泡粒子を提供することにある。   An object of the present invention is to provide a polypropylene resin pre-expanded particle capable of shortening a molding cycle and capable of producing an in-mold foam molded article excellent in dimensional stability and surface appearance.

本発明者らは、かかる課題を達成すべく鋭意検討を行った。その結果、石油樹脂、テルペン系樹脂から選ばれる1種以上を1〜8重量%含むポリプロピレン系樹脂組成物からなるプロピレン系樹脂予備発泡粒子を所定のDSC比と粒重量とすることで、成形サイクルの短縮が可能で、かつ寸法安定性と表面性に優れた型内発泡成形体を与えることを見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied to achieve this problem. As a result, by forming the propylene resin pre-expanded particles made of a polypropylene resin composition containing 1 to 8% by weight of one or more selected from petroleum resins and terpene resins with a predetermined DSC ratio and particle weight, a molding cycle It has been found that an in-mold foam-molded article having excellent dimensional stability and surface properties can be obtained, and the present invention has been completed.

即ち本発明の第1は、石油樹脂および/またはテルペン系樹脂を1〜8重量%を含有するポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂予備発泡粒子であって、示差走査熱量測定において、ポリプロピレン系樹脂予備発泡粒子4〜10mgを40℃から200℃まで10℃/分の速度で昇温して、ポリプロピレン系樹脂予備発泡粒子の基材樹脂が本来有している結晶に基づく融解ピークの融解熱量をα(J/g)、かかるピークより高温側に現れる融解ピークの融解熱量をβ(J/g)としたときに、高温側に現れる融解ピークの融解熱量(β)の総融解熱量(α+β)に対する比(以下、DSC比)が18%〜32%、粒重量が0.5mg〜1.5mgであるポリプロピレン系樹脂予備発泡粒子に関する。   That is, the first of the present invention is a polypropylene resin pre-expanded particle comprising a polypropylene resin composition containing 1 to 8% by weight of a petroleum resin and / or a terpene resin, and in the differential scanning calorimetry, 4-10 mg of resin pre-expanded particles are heated at a rate of 10 ° C./min from 40 ° C. to 200 ° C., and the heat of fusion at the melting peak based on the crystals inherent in the base resin of the polypropylene resin pre-expanded particles Is the total heat of fusion (α + β) of the heat of fusion (β) of the melting peak appearing on the high temperature side, where α (J / g) is the heat of fusion of the melting peak appearing on the high temperature side of the peak, and β (J / g). ) (Hereinafter referred to as DSC ratio) is 18% to 32%, and the particle weight is related to polypropylene resin pre-expanded particles of 0.5 mg to 1.5 mg.

好ましい実施態様としては、石油樹脂および/またはテルペン系樹脂の軟化点が135〜145℃である前記記載のポリプロピレン系樹脂予備発泡粒子に関する。   A preferred embodiment relates to the polypropylene resin pre-expanded particles described above, wherein the softening point of the petroleum resin and / or terpene resin is 135 to 145 ° C.

本発明の第2は、前記記載のポリプロピレン系樹脂予備発泡粒子を閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形して得られることを特徴とするポリプロピレン系樹脂型内発泡成形体に関し、本発明の第3は、前記記載のポリプロピレン系樹脂予備発泡粒子を、閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形することを特徴とするポリプロピレン系樹脂型内発泡成形体の製造方法に関する。   According to a second aspect of the present invention, a polypropylene resin mold is obtained by filling the above-described polypropylene resin pre-expanded particles in a mold that can be closed but cannot be sealed, and is molded by heating with water vapor. A third aspect of the present invention relates to the inner foamed molded article, wherein the polypropylene resin pre-foamed particles described above are filled in a mold that can be closed but cannot be sealed, and heated and molded with water vapor. The present invention relates to a method for producing an expanded foam in a polypropylene resin mold.

本発明のプロピレン系樹脂予備発泡粒子によれば、成形サイクルの短縮が出来、かつ寸法安定性と表面性が良好な型内発泡成形体を提供することが出来る。   According to the pre-expanded propylene resin particles of the present invention, it is possible to provide an in-mold expanded molded article that can shorten the molding cycle and has good dimensional stability and surface properties.

本発明のポリプロピレン系樹脂予備発泡粒子は、石油樹脂および/またはテルペン系樹脂を1〜8重量%含むポリプロピレン系樹脂組成物からなる。   The polypropylene resin pre-expanded particles of the present invention are composed of a polypropylene resin composition containing 1 to 8% by weight of petroleum resin and / or terpene resin.

本発明のポリプロピレン系樹脂組成物は、石油樹脂および/またはテルペン系樹脂を1〜8重量%含み、好ましくは2〜5重量%含んでなる。1重量%未満である場合、融着性が不十分な成形体となりやすく、更に表面伸びが悪化して、成形体の外観を損ねる。また8重量%を超える場合は、成形サイクルが急激に延び、さらに離型直後の軟質感が増して変形する。   The polypropylene resin composition of the present invention contains 1 to 8% by weight, preferably 2 to 5% by weight of petroleum resin and / or terpene resin. When the content is less than 1% by weight, a molded product with insufficient fusing property tends to be obtained, and the surface elongation is further deteriorated to deteriorate the appearance of the molded product. On the other hand, when it exceeds 8% by weight, the molding cycle is rapidly extended, and the soft texture immediately after the mold release is increased to cause deformation.

本発明のポリプロピレン系樹脂組成物を構成するポリプロピレン系樹脂としては、単量体として、プロピレンを80重量%以上、より好ましくは85重量%以上、さらに好ましくは90重量%以上含むものであれば、その組成、合成法に特に制限はなく、例えば、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、エチレン−プロピレン−ブテン三元共重合体など、さらにはこれらの変性物が挙げられる。なお、これらのポリプロピレン系樹脂は通常公知の方法、すなわちMgCl2型担持型触媒を用いるBASF法、AMDCD法、UCC法、ハイポール法等の気相重合法の他、高活性なメタロセン触媒を用いた方法や、従来型のTiCl3触媒を利用した方法等で製造できる。 As the polypropylene resin constituting the polypropylene resin composition of the present invention, as a monomer, as long as it contains propylene in an amount of 80% by weight or more, more preferably 85% by weight or more, further preferably 90% by weight or more, There is no particular limitation on the composition and synthesis method. For example, propylene homopolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-butene ternary copolymer. Polymers and the like, as well as these modified products. In addition, these polypropylene resins used a generally known method, that is, a highly active metallocene catalyst in addition to a gas phase polymerization method such as a BASF method, an AMDCD method, a UCC method, a high pole method using an MgCl 2 type supported catalyst. It can be manufactured by a method or a method using a conventional TiCl 3 catalyst.

また、ポリプロピレン系樹脂以外の他の合成樹脂を、本発明の効果を損なわない範囲で添加しても良い。ポリプロピレン系樹脂以外の他の合成樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−酢酸ビニル共重合体エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体等のエチレン系樹脂、或いはポリスチレン、スチレン−無水マレイン酸共重合体等のスチレン系樹脂等が例示される。   Moreover, you may add synthetic resins other than a polypropylene resin in the range which does not impair the effect of this invention. Synthetic resins other than polypropylene resins include high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene-vinyl acetate copolymer ethylene-acrylic acid. Examples thereof include ethylene resins such as copolymers and ethylene-methacrylic acid copolymers, and styrene resins such as polystyrene and styrene-maleic anhydride copolymers.

本発明におけるポリプロピレン系樹脂組成物の融点に特に制限はないが、130℃以上170℃未満が好ましく、135℃以上160℃未満がより好ましく、140℃以上150℃未満がさらに好ましい。   Although there is no restriction | limiting in particular in the melting point of the polypropylene resin composition in this invention, 130 to 170 degreeC is preferable, 135 to 160 degreeC is more preferable, 140 to 150 degreeC is further more preferable.

本発明におけるポリプロピレン系樹脂組成物のメルトインデックスは、かかる予備発泡粒子を製造しうる範囲であれば、特に制限はなく、好ましくは0.2g/10min以上50g/10min以下、より好ましくは1g/10min以上30g/10min以下、さらに好ましくは3g/10min以上12g/10min以下である。メルトインデックスが該範囲である場合、寸法安定性と表面性が良好な予備発泡粒子となる。メルトインデックスが0.2g/10min未満である場合、溶融粘度が高すぎて高発泡の予備発泡粒子が得られにくい傾向にあり、50g/10minより大きい場合、発泡時の樹脂の伸びに対する溶融粘度が低すぎて、破泡しやすい傾向にある。該メルトインデックスは、例えば、有機過酸化物の使用などにより調整する事ができる。   The melt index of the polypropylene resin composition in the present invention is not particularly limited as long as such pre-expanded particles can be produced, preferably 0.2 g / 10 min to 50 g / 10 min, more preferably 1 g / 10 min. It is 30 g / 10 min or less, more preferably 3 g / 10 min or more and 12 g / 10 min or less. When the melt index is within this range, the pre-expanded particles have good dimensional stability and surface properties. When the melt index is less than 0.2 g / 10 min, the melt viscosity tends to be too high and it is difficult to obtain highly expanded pre-expanded particles. When the melt index is greater than 50 g / 10 min, the melt viscosity with respect to the elongation of the resin at the time of expansion is low. It is too low and tends to break. The melt index can be adjusted, for example, by using an organic peroxide.

本発明において石油樹脂とは、いわゆる石油類の熱分解により生成する分解油留分を混合物のままカチオン的に重合して得られる熱可塑性樹脂をいい、シクロペンタジエン等の石油系不飽和炭化水素、高級オレフィン系炭化水素、または芳香族炭化水素等を主原料(50重量%以上)とする樹脂である。これらの石油樹脂の中でも、ポリプロピレン系樹脂への相溶性が高い、水素添加物である水添石油樹脂を使用する事が好ましい。また水添石油樹脂の中でも、水添率80%以上、特に90%以上のものが好ましい。   In the present invention, the petroleum resin refers to a thermoplastic resin obtained by cationically polymerizing a cracked oil fraction generated by so-called pyrolysis of petroleum, with a mixture, petroleum unsaturated hydrocarbon such as cyclopentadiene, It is a resin mainly composed of higher olefinic hydrocarbons or aromatic hydrocarbons (50% by weight or more). Among these petroleum resins, it is preferable to use a hydrogenated petroleum resin which is a hydrogenated product having high compatibility with a polypropylene resin. Among hydrogenated petroleum resins, those having a hydrogenation rate of 80% or more, particularly 90% or more are preferred.

本発明におけるテルペン系樹脂とは、(C58nの組成で表される炭化水素化合物をいい、具体的にはテルペンの単独重合体、またはテルペンと共重合可能なモノマーとテルペンとの共重合体、これらの水素添加物等が挙げられる。通常、前記nは、2〜30の整数であるが、8〜20の整数であることが好ましい。前記組成式(C58nで表されるテルペンとしては、例えば、ピネン、ジペンテン、カレン、ミルセン、オシメン、リモネン、テルピノレン、テルピネン、サビネン、トリシクレン、ビサボレン、ジンギベレン、サンタレン、カンホレン、ミレン、トタレン等が挙げられる。 The terpene resin in the present invention refers to a hydrocarbon compound represented by a composition of (C 5 H 8 ) n , specifically, a terpene homopolymer, or a monomer and a terpene copolymerizable with a terpene. A copolymer, these hydrogenated substances, etc. are mentioned. Usually, the n is an integer of 2 to 30, but is preferably an integer of 8 to 20. Examples of the terpene represented by the composition formula (C 5 H 8 ) n include, for example, pinene, dipentene, karen, myrcene, osymene, limonene, terpinolene, terpinene, sabinene, tricyclene, bisabolen, gingiberene, santalen, camphorene, mylene, Examples include totarene.

これらの中でも、特にピネン及びジペンテンを含んでなる単独重合体或いは共重合体、これらの水素添加物が好ましく、さらには、ポリプロピレン系樹脂への相溶性の高い水素添加物が好ましい。また、水素添加物の中でも、水添率80%以上、特に90%以上のものが好ましい。   Of these, homopolymers or copolymers comprising pinene and dipentene, and hydrogenated products thereof are particularly preferred, and hydrogenated products having high compatibility with polypropylene resins are preferred. Among the hydrogenated products, those having a hydrogenation rate of 80% or more, particularly 90% or more are preferable.

さらに本発明における石油樹脂およびテルペン系樹脂の軟化点は、135℃以上145℃以下であることが好ましい。ここでの軟化点とはJIS−K2207(環球式)に準拠した測定値である。軟化点が135℃未満では、型内発泡成形体の耐熱剛性が低下する場合がある。また軟化点が145℃を超えるとポリプロピレン系樹脂への分散性が劣る場合がある。   Furthermore, the softening point of the petroleum resin and terpene resin in the present invention is preferably 135 ° C. or higher and 145 ° C. or lower. The softening point here is a measured value based on JIS-K2207 (ring and ball type). If the softening point is less than 135 ° C., the heat-resistant rigidity of the in-mold foam molded product may be lowered. Moreover, when a softening point exceeds 145 degreeC, the dispersibility to a polypropylene resin may be inferior.

本発明では、さらに必要に応じて、タルク等のセル造核剤をはじめ酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸などの安定剤または架橋剤、連鎖移動剤、滑剤、可塑剤、充填剤、強化剤、顔料、染料、難燃剤、帯電防止剤等を本発明の効果を損なわない範囲で添加してポリプロピレン系樹脂組成物としてもよい。   In the present invention, if necessary, cell nucleating agents such as talc, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, etc. Stabilizers or crosslinkers, chain transfer agents, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, antistatic agents, etc. are added to the extent that the effects of the present invention are not impaired. It is good also as a thing.

石油樹脂、テルペン系樹脂のポリプロピレン系樹脂への添加方法としては、特に制限はないが、一般的には溶融混練が利用される。例えば押出機を用いて石油樹脂とポリプロピレン系樹脂のドライブレンド物を溶融混練する。また別途溶融混練した石油樹脂、テルペン系樹脂を高濃度で含有するマスターバッチペレットを、融着向上剤が所望の濃度となるようにポリプロピレン系樹脂で希釈混合し、次いで溶融混練しても良い。   The method for adding the petroleum resin or terpene resin to the polypropylene resin is not particularly limited, but melt kneading is generally used. For example, a dry blend of petroleum resin and polypropylene resin is melt-kneaded using an extruder. Alternatively, a master batch pellet containing a high concentration of petroleum resin and terpene resin separately melt kneaded may be diluted and mixed with a polypropylene resin so that the fusion improver has a desired concentration, and then melt kneaded.

本発明にいう予備発泡粒子の粒重量とは、ポリプロピレン系樹脂予備発泡粒子の一粒の重量であり、その範囲は0.5mg〜1.5mgであり、好ましくは0.7mg〜1.2mgである。かかる粒重量が0.5mg未満の場合は、表面伸びが悪化して成形体の外観を損ね、さらに融着性が不十分で脆い成形体となる。また粒重量が1.5mgを超える場合は、成形サイクルが長くなる。   The particle weight of the pre-expanded particles referred to in the present invention is the weight of one pre-expanded polypropylene resin particle, and the range thereof is 0.5 mg to 1.5 mg, preferably 0.7 mg to 1.2 mg. is there. When the particle weight is less than 0.5 mg, the surface elongation is deteriorated and the appearance of the molded product is impaired, and further, the molded product becomes brittle with insufficient fusibility. On the other hand, when the grain weight exceeds 1.5 mg, the molding cycle becomes long.

かかる粒重量の調整は、ポリプロピレン系樹脂粒子の粒重量を調整することで行うことができ、その方法としては、例えば、ポリプロピレン系樹脂組成物を押出機内で溶融混練した後に、押出機先端に取り付けた微小穴を有する口金より溶融混練物を紐状に押出し、次いで引き取り機を備えた切断機で切断する際に、樹脂粒子の粒重量が0.5〜1.5mg/粒、好ましくは0.7〜1.2mgの重量に切断することにより得ることができる。   Such adjustment of the particle weight can be performed by adjusting the particle weight of the polypropylene resin particles. For example, the polypropylene resin composition is melt-kneaded in the extruder and then attached to the tip of the extruder. When the melt-kneaded product is extruded in a string shape from a die having fine holes and then cut with a cutting machine equipped with a take-up machine, the resin particles have a particle weight of 0.5 to 1.5 mg / particle, preferably 0.8. It can be obtained by cutting to a weight of 7-1.2 mg.

前記ポリプロピレン系樹脂粒子を発泡させ、予備発泡粒子とする方法としては、例えば、該ポリプロピレン系樹脂粒子を揮発性発泡剤と共に耐圧容器内で水中に分散させ、該分散物を該ポリプロピレン系樹脂粒子の融点−20℃から+20℃の範囲の温度に加熱して該ポリプロピレン系樹脂粒子内に発泡剤を含浸させ、該発泡剤の示す蒸気圧以上の加圧下で容器内の温度、圧力を一定に保持しながら、該ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出する方法が挙げられる。   As a method of foaming the polypropylene resin particles to obtain pre-foamed particles, for example, the polypropylene resin particles are dispersed in water together with a volatile foaming agent in a pressure-resistant container, and the dispersion is dispersed into the polypropylene resin particles. Heating to a temperature in the range of -20 ° C to + 20 ° C, impregnating the polypropylene resin particles with a foaming agent, keeping the temperature and pressure inside the container constant under a pressure higher than the vapor pressure indicated by the foaming agent. However, there is a method in which a dispersion of the polypropylene resin particles and water is released under a lower pressure atmosphere than in the container.

前記分散物の調製に際しては、分散剤として、例えば第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム等の無機系分散剤と、例えばドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等の分散助剤を使用されることが好ましい。これらの中でも第三リン酸カルシウムとn−パラフィンスルホン酸ソーダの併用が更に好ましい。分散剤や分散助剤の使用量は、その種類や、用いる樹脂の種類と使用量によって異なるが、通常、水100重量部に対して分散剤0.2〜3重量部を配合することが好ましく、分散助剤0.001〜0.1重量部を配合することが好ましい。また、ポリプロピレン系樹脂粒子の水中での分散性を良好なものとするために、通常、水100重量部に対してポリプロピレン系樹脂粒子を20〜100重量部使用するのが好ましい。   In the preparation of the dispersion, as a dispersant, for example, an inorganic dispersant such as tricalcium phosphate, basic magnesium carbonate, calcium carbonate, and so on, for example, sodium dodecylbenzenesulfonate, sodium n-paraffinsulfonate, α-olefin sulfone. It is preferable to use a dispersion aid such as acid soda. Among these, the combined use of tricalcium phosphate and sodium n-paraffin sulfonate is more preferable. The amount of dispersant and dispersion aid used varies depending on the type and type and amount of resin used, but it is usually preferable to add 0.2 to 3 parts by weight of dispersant to 100 parts by weight of water. It is preferable to add 0.001 to 0.1 part by weight of a dispersion aid. In order to improve the dispersibility of the polypropylene resin particles in water, it is usually preferable to use 20 to 100 parts by weight of polypropylene resin particles with respect to 100 parts by weight of water.

前記発泡剤としては、沸点が、−50〜120℃の炭化水素またはハロゲン化炭化水素が挙げられ、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ジクロロジフルオロメタン、ジクロロテトラフルオロエタン、トリクロロトリフルオロエタン、メチルクロライド、メチレンクロライド、エチルクロライド等があげられ、これらは単独または2種以上組み合わせて使用される。これらの発泡剤の使用量に限定はなく、発泡剤の種類、容器内の樹脂量と容器内空間容積との比率を考慮して設定すれば良く、その使用量はポリプロピレン系樹脂粒子100重量部に対して好ましくは5〜50重量部である。   Examples of the blowing agent include hydrocarbons or halogenated hydrocarbons having a boiling point of −50 to 120 ° C., and specifically, propane, butane, pentane, hexane, dichlorodifluoromethane, dichlorotetrafluoroethane, trichlorotrimethyl. Fluoroethane, methyl chloride, methylene chloride, ethyl chloride and the like can be mentioned, and these are used alone or in combination of two or more. The amount of these foaming agents is not limited, and may be set in consideration of the type of foaming agent and the ratio between the amount of resin in the container and the space volume in the container, and the amount used is 100 parts by weight of polypropylene resin particles. The amount is preferably 5 to 50 parts by weight.

前記発泡剤を利用する以外にも、経済的にポリプロピレン系樹脂予備発泡粒子を製造する方法として、ポリプロピレン系樹脂中に親水性化合物を含有させることにより、分散媒に使用する水を発泡剤として利用する方法(例えば特開平10−306179号公報、特開平11−106576号公報)も利用可能である。   Besides using the foaming agent, as a method of economically producing polypropylene resin pre-expanded particles, by using a hydrophilic compound in the polypropylene resin, water used for the dispersion medium is used as the foaming agent. (For example, JP-A-10-306179 and JP-A-11-106576) can also be used.

水を発泡剤として使用するばあいには、ポリプロピレン系樹脂組成物に親水性ポリマー、トリアジン骨格を有する化合物のうち1種以上の化合物を添加することが好ましい。本発明で親水性ポリマーとは、エチレン−アクリル酸−無水マレイン酸三元共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸共重合体を金属イオンで架橋したアイオノマー樹脂などのカルボキシル基含有ポリマー等があげられる。これらは単独で用いてもよく、2種以上を併用しても良い。特にエチレン−(メタ)アクリル酸共重合体をナトリウムイオン、カリウムイオンなどのアルカリ金属イオンで架橋させたエチレン系アイオノマー樹脂が良好な含水率を与え、良好な発泡性を与えることから好ましい。さらにはエチレン−(メタ)アクリル酸共重合体をカリウムイオンで架橋させたエチレン系アイオノマー樹脂がより大きな平均セル径を与えることから、より好ましい。   When water is used as a foaming agent, it is preferable to add one or more compounds among the hydrophilic polymer and the compound having a triazine skeleton to the polypropylene resin composition. In the present invention, the hydrophilic polymer refers to an ethylene-acrylic acid-maleic anhydride terpolymer, an ethylene- (meth) acrylic acid copolymer, and an ethylene- (meth) acrylic acid copolymer crosslinked with a metal ion. Examples thereof include carboxyl group-containing polymers such as ionomer resins. These may be used alone or in combination of two or more. In particular, an ethylene ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid copolymer with an alkali metal ion such as sodium ion or potassium ion is preferable because it provides a good water content and good foamability. Further, an ethylene ionomer resin obtained by crosslinking an ethylene- (meth) acrylic acid copolymer with potassium ions is more preferable because it gives a larger average cell diameter.

前記親水性ポリマーの使用量は、親水性ポリマーの種類にもより、特に限定されないが、通常ポリプロピレン系樹脂100重量部に対して、0.01重量部以上20重量部以下が好ましく、0.5重量部以上5重量部以下がより好ましい。0.01重量部未満では、高発泡倍率の予備発泡粒子が得られにくく、20重量部を超えては耐熱性、機械強度の低下が大きくなる場合がある。   The amount of the hydrophilic polymer used is not particularly limited depending on the kind of the hydrophilic polymer, but is usually 0.01 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the polypropylene resin. More preferred is 5 parts by weight or more. If it is less than 0.01 part by weight, it is difficult to obtain pre-expanded particles having a high expansion ratio, and if it exceeds 20 parts by weight, the heat resistance and the mechanical strength may be greatly reduced.

本発明でトリアジン骨格を有する化合物とは、単位トリアジン骨格あたりの分子量が300以下のものが好ましい。ここで、トリアジン骨格あたりの分子量とは、1分子中に含まれるトリアジン骨格数で分子量を除した値である。単位トリアジン骨格あたりの分子量が300を超えると発泡倍率ばらつき、セル径ばらつきが目立つ場合がある。単位トリアジン骨格あたりの分子量が300以下の化合物としては、例えば、メラミン(化学名1、3,5−トリアジン−2,4,6−トリアミン)、アンメリン(同1,3,5−トリアジン−2−ヒドロキシ−4,6−ジアミン)、アンメリド(同1,3,5−トリアジン−2,4−ヒドロキシ−6−アミン)、シアヌル酸(同1,3,5−トリアジン−2,4,6−トリオール)、トリス(メチル)シアヌレート、トリス(エチル)シアヌレート、トリス(ブチル)シアヌレート、トリス(2−ヒドロキシエチル)シアヌレート、メラミン・イソシアヌル酸縮合物などがあげられる。これらは単独で用いてもよく、2種以上併用しても良い。これらの内、高発泡倍率の予備発泡粒子を発泡倍率ばらつき、セル径ばらつきが少なく得るためには、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物を使用することが好ましい。   In the present invention, the compound having a triazine skeleton preferably has a molecular weight per unit triazine skeleton of 300 or less. Here, the molecular weight per triazine skeleton is a value obtained by dividing the molecular weight by the number of triazine skeletons contained in one molecule. When the molecular weight per unit triazine skeleton exceeds 300, variation in foaming ratio and variation in cell diameter may be noticeable. Examples of the compound having a molecular weight per unit triazine skeleton of 300 or less include melamine (chemical name 1,3,5-triazine-2,4,6-triamine), ammelin (1,3,5-triazine-2- Hydroxy-4,6-diamine), ammelide (1,3,5-triazine-2,4-hydroxy-6-amine), cyanuric acid (1,3,5-triazine-2,4,6-triol) ), Tris (methyl) cyanurate, tris (ethyl) cyanurate, tris (butyl) cyanurate, tris (2-hydroxyethyl) cyanurate, melamine isocyanuric acid condensate and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use melamine, isocyanuric acid, and melamine / isocyanuric acid condensate in order to obtain pre-expanded particles having a high expansion ratio with small variations in expansion ratio and cell diameter.

前記トリアジン骨格を有する化合物の使用量は、種類にもより、一概に限定されないが、通常ポリプロピレン系樹脂100重量部に対して、0.001重量部以上10重量部以下が好ましく、0.01重量部以上1重量部以下がより好ましい。0.001重量部未満では、高発泡倍率の予備発泡粒子が得られにくく、1重量部を超えては耐熱性、機械強度の低下が大きくなる場合がある。   The amount of the compound having a triazine skeleton is not generally limited depending on the type, but is usually preferably 0.001 part by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polypropylene resin, and 0.01% by weight. More preferred is 1 part by weight or more and 1 part by weight or less. If it is less than 0.001 part by weight, it is difficult to obtain pre-expanded particles having a high expansion ratio, and if it exceeds 1 part by weight, the heat resistance and mechanical strength may be greatly reduced.

以上のようにして得られたポリプロピレン系樹脂予備発泡粒子の発泡倍率に特に制限はなく、好ましくは5倍以上40倍以下であり、さらに好ましくは8倍以上20倍以下である。また、ポリプロピレン系樹脂予備発泡粒子のセル径は50μm以上800μmであることが好ましく、より好ましくは100μm以上500μm以下であり、さらに好ましくは、150μm以上300μmである。セル径がかかる範囲内であると、予備発泡粒子の伸びが良好で表面外観に優れた成形体を得やすい。   There is no restriction | limiting in particular in the expansion ratio of the polypropylene resin pre-expanded particle obtained as mentioned above, Preferably they are 5 times or more and 40 times or less, More preferably, they are 8 times or more and 20 times or less. The cell diameter of the polypropylene resin pre-expanded particles is preferably 50 μm or more and 800 μm, more preferably 100 μm or more and 500 μm or less, and further preferably 150 μm or more and 300 μm. When the cell diameter is within such a range, it is easy to obtain a molded body having excellent surface appearance and excellent expansion of the pre-expanded particles.

本発明のポリプロピレン系樹脂予備発泡粒子は、示差走査熱量測定において、ポリプロピレン系樹脂予備発泡粒子4〜10mgを40℃から200℃まで10℃/分の速度で昇温して、ポリプロピレン系樹脂予備発泡粒子の基材樹脂が本来有している結晶に基づく融解ピークの融解熱量をα(J/g)、かかるピークより高温側に現れる融解ピークの融解熱量をβ(J/g)としたときに、高温側に現れる融解ピークの融解熱量(β)の総融解熱量(α+β)に対する比(以下、DSC比)が18%〜32%である。本発明におけるDSC比は、式1のように表される。
DSC比(%)=100×(β/(α+β)) (式1)
In the differential scanning calorimetry, the polypropylene resin pre-expanded particles of the present invention are heated at a rate of 10 ° C./minute from 40 ° C. to 200 ° C. to 4 to 10 mg of polypropylene resin pre-expanded particles. When the heat of fusion of the melting peak based on the crystals inherent in the base resin of the particles is α (J / g), and the heat of fusion of the melting peak appearing on the higher temperature side than the peak is β (J / g) The ratio (hereinafter referred to as DSC ratio) of the heat of fusion (β) of the melting peak appearing on the high temperature side to the total heat of fusion (α + β) is 18% to 32%. The DSC ratio in the present invention is expressed as Equation 1.
DSC ratio (%) = 100 × (β / (α + β)) (Formula 1)

本発明において、かかるDSC比は18〜32%の範囲であり、好ましくは20〜30%、更に好ましくは22〜28%である。DSC比が18%未満の場合は、成形サイクルが極端に延び、さらに離型直後の成形体の剛性が不足して変形する。またDSC比が32%を超える場合は、表面伸びが悪化して、成形体の外観を損ね、さらに融着性が不十分で脆い成形体となる。図1に前記条件で得られたDSCチャートの模式図を示す。   In the present invention, the DSC ratio is in the range of 18 to 32%, preferably 20 to 30%, and more preferably 22 to 28%. When the DSC ratio is less than 18%, the molding cycle is extremely extended, and the molded body immediately after mold release is insufficient in rigidity and deforms. On the other hand, when the DSC ratio exceeds 32%, the surface elongation is deteriorated, the appearance of the molded product is impaired, and the molded product becomes brittle with insufficient fusibility. FIG. 1 shows a schematic diagram of a DSC chart obtained under the above conditions.

かかるDSC比はポリプロピレン系樹脂予備発泡粒子を製造する際の発泡時の温度および圧力に依存して変化するため、発泡温度及び発泡圧力を適宜調整する事によりDSC比18%〜32%となる予備発泡粒子を得る事ができる。一般的には、発泡温度及び発泡圧力を上げるとDSC比は低下する傾向にあり、ポリプロピレン系樹脂の種類、石油樹脂の含有量及び発泡剤の種類にも依存するが、具体的には、発泡温度を1℃上昇させるとDSC比は概ね8〜15%程度減少し、発泡圧力を0.1MPa上昇させると5〜10%程度減少する。   Since the DSC ratio varies depending on the temperature and pressure at the time of foaming when producing the polypropylene resin pre-foamed particles, the DSC ratio is 18% to 32% by appropriately adjusting the foaming temperature and the foaming pressure. Expanded particles can be obtained. In general, when the foaming temperature and pressure are increased, the DSC ratio tends to decrease, and it depends on the type of polypropylene resin, the content of petroleum resin, and the type of foaming agent. When the temperature is raised by 1 ° C., the DSC ratio is reduced by about 8 to 15%, and when the foaming pressure is raised by 0.1 MPa, the DSC ratio is reduced by about 5 to 10%.

本発明のポリプロピレン系樹脂型内発泡成形体は、前記ポリプロピレン系樹脂予備発泡粒子を用いて、閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形することにより得られる。   The polypropylene resin-in-mold foam-molded article of the present invention is obtained by filling the mold that can be closed but cannot be sealed with the polypropylene resin pre-foamed particles, and heating and molding with steam.

本発明のポリプロピレン系樹脂予備発泡粒子を型内発泡成形体にするには、ポリプロピレン系樹脂予備発泡粒子を閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形する。具体的には、例えば、イ)発泡粒子を無機ガスで加圧処理して粒子内に無機ガスを含浸させ所定の粒子内圧を付与した後、金型に充填し、蒸気等で発泡及び加熱融着させる方法(特公昭51−22951号)、ロ)発泡粒子をガス圧力で圧縮して金型に充填し発泡粒子の回復力を利用して、蒸気等で発泡及び加熱融着させる方法(特公昭53−33996号)、さらにハ)金型にわずかな隙間がある状態で発泡粒子を充填して、次いで金型を閉じて圧縮することにより発泡粒子に回復力を付与し、蒸気等で発泡及び加熱融着させる方法が利用しうる。かかる成形蒸気圧は、好ましくは1.5〜4.5kgf/cm2であり、さらに好ましくは2〜4kgf/cm2、より好ましくは2〜3kgf/cm2である。成形蒸気圧が4.5kgf/cm2を超えると蒸気コストが増すばかりでなく、加熱過多により成形体に収縮が生じる場合がある。1.5kgf/cm2未満では、本発明の効果の限界を超え、融着性が損なわれる傾向がある。こうして水蒸気により加熱発泡させることにより、型内発泡成形体を得ることができる。 In order to make the polypropylene resin pre-expanded particles of the present invention into an in-mold foam molded product, the polypropylene resin pre-expanded particles are filled in a mold that can be closed but cannot be sealed, and heated and molded with steam. Specifically, for example, a) The foamed particles are pressurized with an inorganic gas to impregnate the particles with an inorganic gas to give a predetermined internal pressure, then filled into a mold, and foamed and heated and melted with steam or the like. (B) A method in which foamed particles are compressed by gas pressure and filled in a mold, and the foaming particles are foamed and heat-sealed by utilizing the recovery force of the foamed particles (special Japanese Patent Publication No. 51-22951). No. 53-33996), and c) filling the foamed particles with a slight gap in the mold, and then closing and compressing the mold to give the foamed particles a resilience and foaming with steam or the like And a method of heat-sealing can be used. Such molding vapor pressure is preferably 1.5~4.5kgf / cm 2, more preferably 2~4kgf / cm 2, more preferably 2~3kgf / cm 2. When the molding vapor pressure exceeds 4.5 kgf / cm 2 , not only the steam cost increases, but the compact may shrink due to excessive heating. If it is less than 1.5 kgf / cm < 2 >, the limit of the effect of this invention is exceeded and there exists a tendency for a melt | fusion property to be impaired. In this way, an in-mold foam molded article can be obtained by heating and foaming with water vapor.

本発明における型内発泡成形体の密度に特に制限なく、一般的には0.015〜0.150g/cm3の範囲である。 There is no restriction | limiting in particular in the density of the in-mold foaming molding in this invention, Generally it is the range of 0.015-0.150 g / cm < 3 >.

ポリプロピレン系樹脂予備発泡粒子の発泡倍率と型内発泡成形時の2次発泡倍率を適宜調整することで所望とする密度の型内発泡成形体を得ることが出来る。   An in-mold foam molded article having a desired density can be obtained by appropriately adjusting the expansion ratio of the polypropylene resin pre-expanded particles and the secondary expansion ratio at the time of in-mold foam molding.

次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples.

〈DSC比の測定〉
予備発泡粒子4〜10mgを40℃から200℃まで10℃/分の速度で昇温した時に、ポリプロピレン系樹脂予備発泡粒子の基材樹脂が本来有していた結晶に基づく融解ピークの融解熱量をα(J/g)、かかるピークより高温側に現れる融解ピークの融解熱量をβ(J/g)としたときに、式1で表される高温側ピークの融解熱量の総融解熱量に対する割合をDSC比(%)とした。
DSC比(%)=100×(β/(α+β)) (式1)
<Measurement of DSC ratio>
When 4-10 mg of pre-expanded particles were heated from 40 ° C. to 200 ° C. at a rate of 10 ° C./min, the melting heat amount of the melting peak based on the crystals originally possessed by the base resin of the polypropylene resin pre-expanded particles was α (J / g), where β (J / g) is the heat of fusion of the melting peak appearing on the higher temperature side than this peak, the ratio of the heat of fusion of the high temperature side peak represented by Formula 1 to the total heat of fusion. DSC ratio (%) was used.
DSC ratio (%) = 100 × (β / (α + β)) (Formula 1)

〈メルトフローインデックス測定〉
メルトフローインデックスの測定はJIS−K7210に準拠して、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、加重2160g、230±0.2℃の条件下で測定した。
<Melt flow index measurement>
The melt flow index was measured under the conditions of orifice 2.0959 ± 0.005 mmφ, orifice length 8.000 ± 0.025 mm, load 2160 g, 230 ± 0.2 ° C. in accordance with JIS-K7210.

〈予備発泡粒子の発泡倍率測定〉
試料となる予備発泡粒子重量と、該試料をメスフラスコ中のエタノールに水没させてえられる容積から予備発泡粒子密度を算出し、基材樹脂密度を除して発泡倍率とした。
<Measurement of expansion ratio of pre-expanded particles>
The pre-foamed particle density was calculated from the weight of the pre-foamed particles used as a sample and the volume obtained by immersing the sample in ethanol in a volumetric flask, and the base resin density was divided to obtain the expansion ratio.

〈型内発泡成形及び成形サイクル〉
縦×横×厚みがそれぞれ400×300×50mmの直方体形状の金型及び金型内の成形体の発泡圧を検知できる圧力センサーを備えた型内発泡成形機を用いて成形を実施した。まず、(1)金型が開いた状態から、(2)厚み方向の金型隙間が15mmになるまで金型を閉じた後、(3)予備発泡粒子を金型系外へ流出させることなく充填した。次いで(4)金型隙間が0mmとなるように金型を閉じることにより、予備発泡粒子を圧縮して、(5)ゲージ圧2.5kgf/cm2の成形蒸気圧を与えた後、(6)水冷し、(7)金型内部の成形体の発泡圧が0.5kgf/cm2に達した時点で成形体を離型した。(1)〜(7)までの一連の成形工程は自動運転され、工程(6)を除くその他の工程の所要時間は一定である。工程(1)から(7)までの所要時間をカウントして成形サイクルとした。
<In-mold foam molding and molding cycle>
Molding was performed using an in-mold foam molding machine equipped with a rectangular parallelepiped mold having a length × width × thickness of 400 × 300 × 50 mm and a pressure sensor capable of detecting the foaming pressure of the molded body in the mold. First, after (1) the mold is opened, (2) after the mold is closed until the mold gap in the thickness direction becomes 15 mm, (3) without causing the pre-expanded particles to flow out of the mold system. Filled. Next, (4) the pre-expanded particles are compressed by closing the mold so that the gap between the molds becomes 0 mm, and (5) after applying a molding vapor pressure of a gauge pressure of 2.5 kgf / cm 2 , (6 ) Cooled with water, (7) When the foaming pressure of the molded body inside the mold reached 0.5 kgf / cm 2 , the molded body was released. The series of molding steps from (1) to (7) are automatically operated, and the time required for the other steps except step (6) is constant. The required time from step (1) to (7) was counted to form a molding cycle.

〈寸法安定性評価〉
成形体を離型した直後から成形体長手方向の対金型収縮率の計測を開始して、該収縮率が、平衡収縮率の90%に達するまでの所要時間を求めた。なお平衡収縮率とは室温で24時間静置後の成形体長手方向の収縮率である。かかる時間が短いほど寸法の安定化が速く、寸法安定性が良い。
<Dimensional stability evaluation>
Immediately after releasing the molded body, measurement of the mold shrinkage ratio in the longitudinal direction of the molded body was started, and the time required until the shrinkage ratio reached 90% of the equilibrium shrinkage ratio was determined. The equilibrium shrinkage rate is the shrinkage rate in the longitudinal direction of the molded article after standing at room temperature for 24 hours. The shorter the time, the faster the dimensional stabilization and the better the dimensional stability.

〈型内発泡成形体の表面外観〉
得られた成形体の表面外観を以下の基準に準じて評価し、合否判定を行った。
○: 表面の間隙が少なく、凹凸も少ない表面外観が優れた成形体。
×: 表面の間隙が多い又は表面凹凸が多い表面外観不良の成形体。
<Surface appearance of in-mold foam molding>
The surface appearance of the obtained molded body was evaluated according to the following criteria, and a pass / fail judgment was performed.
○: A molded article with a small surface gap and excellent surface appearance with few irregularities.
X: A molded article having a poor surface appearance with many surface gaps or many surface irregularities.

〈融着性〉
型内成形体を割断して、その断面における粒子破壊(材料破壊)の数と粒子間破壊(界面破壊)の数を目視にて計測し、両者の合計数に対する粒子破壊の割合(%)を融着性とし、該融着性80%以上を合格品、80%未満を不合格品とした。
<Fusibility>
Cleaving the molded body in the mold, visually measuring the number of particle breaks (material breaks) and the number of inter-particle breaks (interface breaks) in the cross section, and the ratio (%) of particle breakage to the total number of both The fusion property was defined as 80% or more as acceptable product and less than 80% as unacceptable product.

(実施例1)
エチレン−プロピレンランダム共重合体(樹脂密度0.90g/cm3、メルトフローインデックス4.8g/10分、結晶融点146℃)100重量部に対して、石油樹脂である荒川化学(株)製アルコンP−140(軟化点140℃)を3重量部、さらにパウダー状タルク及びステアリン酸カルシウムをそれぞれ0.05重量部及び0.1重量部配合した樹脂混合物をドライブレンドし、該ブレンド物を口径1.8mmのダイスを備えた50mm単軸押出機を用いて樹脂温度240℃で押し出し、引き取り後、カットして粒重量0.75mgのペレットを得た。水150kg、該ペレット50kg、第3リン酸カルシウム(大平化学産業社製)800g、n−パラフィンスルホン酸ソーダ38gを250L容の耐圧容器に仕込み、分散させた。該分散液を攪拌しながらイソブタン4.5kgを加え、146.3℃まで加熱した。さらにガス状のイソブタンを追加して、該耐圧容器の内圧を1.44MPaになるように調整した。次いで該耐圧容器内の圧力をガス状のイソブタンで維持しながら、耐圧容器下部の放出バルブの後方端に取り付けた直径3.6mmの円形オリフィスを通して、該分散液を大気中に放出して、発泡倍率13倍、DSC比26%の予備発泡粒子を得た。該予備発泡粒子を型内発泡成形に供したところ、成形サイクルは100秒と短く、寸法安定性、表面外観及び融着性に優れた成形体を得た。評価結果を表1に示す。
Example 1
Alcon manufactured by Arakawa Chemical Co., Ltd., which is a petroleum resin, with respect to 100 parts by weight of an ethylene-propylene random copolymer (resin density 0.90 g / cm 3 , melt flow index 4.8 g / 10 min, crystal melting point 146 ° C.) A resin mixture containing 3 parts by weight of P-140 (softening point 140 ° C.) and 0.05 parts by weight and 0.1 parts by weight of powdered talc and calcium stearate, respectively, was dry-blended. Extrusion was carried out at a resin temperature of 240 ° C. using a 50 mm single-screw extruder equipped with an 8 mm die, taken out, and cut to obtain pellets having a particle weight of 0.75 mg. 150 kg of water, 50 kg of the pellets, 800 g of tricalcium phosphate (manufactured by Ohira Chemical Industry Co., Ltd.), and 38 g of sodium n-paraffin sulfonate were charged into a 250 L pressure vessel and dispersed. While stirring the dispersion, 4.5 kg of isobutane was added and heated to 146.3 ° C. Further, gaseous isobutane was added to adjust the internal pressure of the pressure vessel to 1.44 MPa. Next, while maintaining the pressure in the pressure vessel with gaseous isobutane, the dispersion is discharged into the atmosphere through a circular orifice with a diameter of 3.6 mm attached to the rear end of the discharge valve at the bottom of the pressure vessel, and foamed. Pre-expanded particles having a magnification of 13 times and a DSC ratio of 26% were obtained. When the pre-expanded particles were subjected to in-mold foam molding, a molding cycle was as short as 100 seconds, and a molded article excellent in dimensional stability, surface appearance and fusion property was obtained. The evaluation results are shown in Table 1.

Figure 2007302720
(実施例2)
実施例1において石油樹脂の代わりにテルペン系樹脂であるヤスハラケミカル社製のクリアロンP−125(軟化点125℃)を用いた以外は実施例1と同様の方法により、発泡倍率13倍、DSC比28%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、成形サイクルは95秒と短く、寸法安定性、表面外観及び融着性に優れた成形体を得た。評価結果を表1に示す。
Figure 2007302720
(Example 2)
In Example 1, instead of petroleum resin, a terpene-based resin, Clearon P-125 (softening point 125 ° C.) manufactured by Yashara Chemical Co., was used. % Of pre-expanded particles. When the pre-expanded particles were subjected to in-mold molding, a molding cycle was as short as 95 seconds, and a molded article excellent in dimensional stability, surface appearance and fusion property was obtained. The evaluation results are shown in Table 1.

(実施例3)
実施例1において石油樹脂をExxonMobil Chemical社製のOPPERA PR100Aに代えた以外は実施例1と同様の方法により、発泡倍率13倍、DSC比22%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、成形サイクルは106秒と短く、寸法安定性、表面外観及び融着性に優れた成形体を得た。評価結果を表1に示す。
(Example 3)
Pre-expanded particles having an expansion ratio of 13 times and a DSC ratio of 22% were obtained in the same manner as in Example 1 except that the petroleum resin was replaced with OPPERA PR100A manufactured by ExxonMobil Chemical in Example 1. When the pre-expanded particles were subjected to in-mold molding, the molding cycle was as short as 106 seconds, and a molded article excellent in dimensional stability, surface appearance and fusion property was obtained. The evaluation results are shown in Table 1.

(実施例4)
粒重量を1.2mgとした以外は実施例1と同様の方法により、発泡倍率13倍、DSC比23%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、成形サイクルは105秒と短く、寸法安定性、表面外観及び融着性に優れた成形体を得た。評価結果を表1に示す。
Example 4
Pre-expanded particles having an expansion ratio of 13 times and a DSC ratio of 23% were obtained in the same manner as in Example 1 except that the particle weight was 1.2 mg. When the pre-expanded particles were subjected to in-mold molding, a molding cycle was as short as 105 seconds, and a molded article excellent in dimensional stability, surface appearance and fusion property was obtained. The evaluation results are shown in Table 1.

(実施例5)
アルコンP−140を5重量部に増量した以外は実施例1と同様の方法により、発泡倍率13倍、DSC比25%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、成形サイクルは102秒と短く、寸法安定性、表面外観及び融着性に優れた成形体を得た。評価結果を表1に示す。
(Example 5)
Pre-expanded particles having an expansion ratio of 13 times and a DSC ratio of 25% were obtained in the same manner as in Example 1 except that Alcon P-140 was increased to 5 parts by weight. When the pre-expanded particles were subjected to in-mold molding, the molding cycle was as short as 102 seconds, and a molded article excellent in dimensional stability, surface appearance and fusion property was obtained. The evaluation results are shown in Table 1.

(比較例1)
石油樹脂、或いは、テルペン系樹脂を配合しなかった以外は実施例1と同様の方法により、発泡倍率13倍、DSC比26%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、融着性及び表面外観に劣る結果であった。評価結果を表1に示す。
(Comparative Example 1)
Pre-expanded particles having an expansion ratio of 13 times and a DSC ratio of 26% were obtained in the same manner as in Example 1 except that no petroleum resin or terpene resin was added. When the pre-expanded particles were subjected to in-mold molding, the results were poor in fusibility and surface appearance. The evaluation results are shown in Table 1.

(比較例2)
アルコンP−140を10重量部に増量した以外は実施例1と同様の方法により、発泡倍率13倍、DSC比26%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、成形サイクルは170秒と長く、寸法安定性に劣る結果であった。評価結果を表1に示す。
(Comparative Example 2)
Pre-expanded particles having an expansion ratio of 13 times and a DSC ratio of 26% were obtained in the same manner as in Example 1 except that Alcon P-140 was increased to 10 parts by weight. When the pre-expanded particles were subjected to in-mold molding, the molding cycle was as long as 170 seconds, resulting in poor dimensional stability. The evaluation results are shown in Table 1.

(比較例3)
予備発泡粒子製造時の発泡温度及び発泡圧力を調整してDSC比を15%とした以外は実施例1と同様の方法により、発泡倍率13倍の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、成形サイクルは180秒と長く、寸法安定性に劣る結果であった。評価結果を表1に示す。
(Comparative Example 3)
Pre-expanded particles having an expansion ratio of 13 times were obtained in the same manner as in Example 1 except that the DSC ratio was adjusted to 15% by adjusting the foaming temperature and the foaming pressure during the production of the pre-expanded particles. When the pre-expanded particles were subjected to in-mold molding, the molding cycle was as long as 180 seconds, resulting in poor dimensional stability. The evaluation results are shown in Table 1.

(比較例4)
予備発泡粒子製造時の発泡温度及び発泡圧力を調整してDSC比を35%とした以外は実施例1と同様の方法により、発泡倍率13倍の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、融着性及び表面外観に劣る結果であった。評価結果を表1に示す。
(Comparative Example 4)
Pre-expanded particles having an expansion ratio of 13 times were obtained in the same manner as in Example 1 except that the DSC ratio was adjusted to 35% by adjusting the foaming temperature and the foaming pressure during the production of the pre-expanded particles. When the pre-expanded particles were subjected to in-mold molding, the results were poor in fusibility and surface appearance. The evaluation results are shown in Table 1.

(比較例5)
粒重量を0.4mgとした以外は実施例1と同様の方法により、発泡倍率13倍、DSC比26%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、融着性及び表面外観に劣る結果であった。評価結果を表1に示す。
(Comparative Example 5)
Pre-expanded particles having an expansion ratio of 13 times and a DSC ratio of 26% were obtained in the same manner as in Example 1 except that the particle weight was 0.4 mg. When the pre-expanded particles were subjected to in-mold molding, the results were poor in fusibility and surface appearance. The evaluation results are shown in Table 1.

(比較例6)
粒重量を1.8mgとした以外は実施例1と同様の方法により、発泡倍率13倍、DSC比26%の予備発泡粒子を得た。該予備発泡粒子を型内成形に供したところ、成形サイクルは180秒と長く、寸法安定性に劣る結果であった。評価結果を表1に示す。
(Comparative Example 6)
Pre-expanded particles having an expansion ratio of 13 times and a DSC ratio of 26% were obtained in the same manner as in Example 1 except that the particle weight was 1.8 mg. When the pre-expanded particles were subjected to in-mold molding, the molding cycle was as long as 180 seconds, resulting in poor dimensional stability. The evaluation results are shown in Table 1.

実施例1〜5および比較例1〜6に示すとおり、本発明のポリプロピレン系樹脂予備発泡粒子は、融着性、低い成形蒸気圧での成形性を有しながらも、成形サイクルが短く、寸法安定性、表面性に優れた成形体を提供できることがわかる。   As shown in Examples 1 to 5 and Comparative Examples 1 to 6, the polypropylene resin pre-expanded particles of the present invention have a fusion cycle and a molding property with a low molding vapor pressure, but have a short molding cycle and dimensions. It turns out that the molded object excellent in stability and surface property can be provided.

本発明のポリプロピレン系樹脂予備発泡粒子のDSCチャートの模式図を示したものである。The schematic diagram of the DSC chart of the polypropylene resin pre-expanded particles of the present invention is shown.

符号の説明Explanation of symbols

α 低温融解ピーク熱量
β 高温融解ピーク熱量
α Low temperature melting peak heat β High temperature melting peak heat

Claims (4)

石油樹脂および/またはテルペン系樹脂を1〜8重量%を含有するポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂予備発泡粒子であって、示差走査熱量測定において、ポリプロピレン系樹脂予備発泡粒子4〜10mgを40℃から200℃まで10℃/分の速度で昇温して、ポリプロピレン系樹脂予備発泡粒子の基材樹脂が本来有している結晶に基づく融解ピークの融解熱量をα(J/g)、かかるピークより高温側に現れる融解ピークの融解熱量をβ(J/g)としたときに、高温側に現れる融解ピークの融解熱量(β)の総融解熱量(α+β)に対する比(以下、DSC比)が18%〜32%、粒重量が0.5mg〜1.5mgであるポリプロピレン系樹脂予備発泡粒子。   A polypropylene resin pre-expanded particle comprising a polypropylene resin composition containing 1 to 8% by weight of a petroleum resin and / or a terpene resin, wherein 4 to 10 mg of the polypropylene resin pre-expanded particles are measured in differential scanning calorimetry. The temperature is increased from 40 ° C. to 200 ° C. at a rate of 10 ° C./min, and the heat of fusion of the melting peak based on the crystals inherent to the base resin of the polypropylene resin pre-expanded particles is α (J / g), When the heat of fusion of the melting peak appearing on the higher temperature side than the peak is β (J / g), the ratio of the heat of fusion (β) of the melting peak appearing on the higher temperature side to the total heat of fusion (α + β) (hereinafter referred to as DSC ratio) ) 18% to 32%, and polypropylene resin pre-expanded particles having a particle weight of 0.5 mg to 1.5 mg. 前記石油樹脂および/またはテルペン系樹脂の軟化点が135〜145℃である請求項1記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene resin pre-expanded particles according to claim 1, wherein the petroleum resin and / or the terpene resin has a softening point of 135 to 145 ° C. 請求項1または2に記載のポリプロピレン系樹脂予備発泡粒子を閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形して得られることを特徴とするポリプロピレン系樹脂型内発泡成形体。   The polypropylene resin pre-expanded foam according to claim 1 or 2, which is obtained by filling a mold which can be closed but cannot be sealed, and molded by heating with water vapor. Molded body. 請求項1または2に記載のポリプロピレン系樹脂予備発泡粒子を、閉塞しうるが密閉しえない金型に充填し、水蒸気で加熱して成形することを特徴とするポリプロピレン系樹脂型内発泡成形体の製造方法。   The polypropylene resin pre-expanded particles according to claim 1 or 2 are filled in a mold that can be closed but cannot be sealed, and molded by heating with water vapor and molded in a polypropylene resin mold. Manufacturing method.
JP2006129748A 2006-05-09 2006-05-09 Polypropylene resin pre-expanded particles and in-mold foam moldings thereof Expired - Fee Related JP5040167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129748A JP5040167B2 (en) 2006-05-09 2006-05-09 Polypropylene resin pre-expanded particles and in-mold foam moldings thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129748A JP5040167B2 (en) 2006-05-09 2006-05-09 Polypropylene resin pre-expanded particles and in-mold foam moldings thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012119356A Division JP2012177135A (en) 2012-05-25 2012-05-25 Polypropylene-based resin pre-foamed particle and in-mold foamed molding of the same

Publications (2)

Publication Number Publication Date
JP2007302720A true JP2007302720A (en) 2007-11-22
JP5040167B2 JP5040167B2 (en) 2012-10-03

Family

ID=38836932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129748A Expired - Fee Related JP5040167B2 (en) 2006-05-09 2006-05-09 Polypropylene resin pre-expanded particles and in-mold foam moldings thereof

Country Status (1)

Country Link
JP (1) JP5040167B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302784A (en) * 2006-05-11 2007-11-22 Kaneka Corp Polypropylene resin pre-expanded particle and in-mold expansion molded product
JP2009249431A (en) * 2008-04-02 2009-10-29 Kaneka Corp Polypropylene-based resin prefoamed particle and polypropylene-based resin foam molded article using the same
JP2010209145A (en) * 2009-03-06 2010-09-24 Kaneka Corp Flame-retardant polypropylene resin expandable particle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291133A (en) * 1988-09-28 1990-03-30 Kanegafuchi Chem Ind Co Ltd Prefoamed polypropylene resin particle and preparation thereof
WO2003097728A1 (en) * 2002-05-21 2003-11-27 Kaneka Corporation Method of in-mold foam molding for polyolefin based resin foamed article
JP2005029773A (en) * 2003-04-18 2005-02-03 Jsp Corp Polypropylene-based resin composition, foamed particle, and in-mold product
JP2006022138A (en) * 2004-07-06 2006-01-26 Kaneka Corp Preliminary expanded polypropylene-based resin particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291133A (en) * 1988-09-28 1990-03-30 Kanegafuchi Chem Ind Co Ltd Prefoamed polypropylene resin particle and preparation thereof
WO2003097728A1 (en) * 2002-05-21 2003-11-27 Kaneka Corporation Method of in-mold foam molding for polyolefin based resin foamed article
JP2005029773A (en) * 2003-04-18 2005-02-03 Jsp Corp Polypropylene-based resin composition, foamed particle, and in-mold product
JP2006022138A (en) * 2004-07-06 2006-01-26 Kaneka Corp Preliminary expanded polypropylene-based resin particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302784A (en) * 2006-05-11 2007-11-22 Kaneka Corp Polypropylene resin pre-expanded particle and in-mold expansion molded product
JP2009249431A (en) * 2008-04-02 2009-10-29 Kaneka Corp Polypropylene-based resin prefoamed particle and polypropylene-based resin foam molded article using the same
JP2010209145A (en) * 2009-03-06 2010-09-24 Kaneka Corp Flame-retardant polypropylene resin expandable particle

Also Published As

Publication number Publication date
JP5040167B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5041812B2 (en) Polypropylene resin pre-expanded particles and in-mold foam molding
JP5518349B2 (en) Flame retardant polypropylene resin foam particles
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5365901B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5188144B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP4779330B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP4965163B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5040167B2 (en) Polypropylene resin pre-expanded particles and in-mold foam moldings thereof
JP5175221B2 (en) Non-crosslinked polypropylene resin pre-expanded particles and in-mold expanded molding
JP5910626B2 (en) Polypropylene-based resin pre-expanded particles, polypropylene-based in-mold foam-molded article, and method for producing the same
JP5022094B2 (en) Polypropylene resin pre-expanded particles, method for producing the same, and in-mold foam molded article
JP5475149B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP6038479B2 (en) Polypropylene resin in-mold foam molding
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP2009161749A (en) Method for producing pre-expanded particle of styrene modified polyethylene-based resin and foamed molding
JP5177247B2 (en) Polypropylene-based resin pre-expanded particles, in-mold foam molded product, and method for producing the same
JP2012177135A (en) Polypropylene-based resin pre-foamed particle and in-mold foamed molding of the same
JP5460227B2 (en) Polypropylene resin in-mold foam molding
JP4907118B2 (en) Method for producing polypropylene resin pre-expanded particles
JP5384028B2 (en) Method for producing polypropylene resin pre-expanded particles
JP5248939B2 (en) Polypropylene resin foam particles
JP7269220B2 (en) Expanded polypropylene resin particles and method for producing the same
JP5256823B2 (en) Method for producing polypropylene resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees