JPH0873642A - Heat-resistant foamed product - Google Patents

Heat-resistant foamed product

Info

Publication number
JPH0873642A
JPH0873642A JP21246794A JP21246794A JPH0873642A JP H0873642 A JPH0873642 A JP H0873642A JP 21246794 A JP21246794 A JP 21246794A JP 21246794 A JP21246794 A JP 21246794A JP H0873642 A JPH0873642 A JP H0873642A
Authority
JP
Japan
Prior art keywords
foam
propylene
heat
foaming
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21246794A
Other languages
Japanese (ja)
Inventor
Hitoshi Shirato
斉 白土
Eiji Okada
英治 岡田
Hiroshi Abe
弘 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP21246794A priority Critical patent/JPH0873642A/en
Publication of JPH0873642A publication Critical patent/JPH0873642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE: To provide a heat-resistant foam which can be suitably used as a variety of heat insulating materials, cushioning materials and sealants because of its high heat resistance, insulation and flexibility. CONSTITUTION: This foam comprises a gel-free propylene resin having the relation represented by the formula, ηB/ηA=3.0-1,000 in B/A=10 (A, B are elongation strains on measurement of the sample and their strains are in 0.1-10) on its maximum value of the ratio of uniaxial melt elongation viscosity ηB/ηA in the elongation strains A and B at arbitrary two points where the tensile stress rate is measurable in the range of 0.01-1.0s-<1> where the expansion ratio of the foamed products is 5-200 and the closed cells occupy 5-70%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配管用断熱材、建材用
断熱材、包装用緩衝材、スポーツ・レジャー用緩衝材、
シール材等に用いて好適な耐熱性、柔軟性及び断熱性に
すぐれた発泡体に関する。
TECHNICAL FIELD The present invention relates to a heat insulating material for piping, a heat insulating material for building materials, a cushioning material for packaging, a cushioning material for sports / leisure,
The present invention relates to a foam excellent in heat resistance, flexibility and heat insulation, which is suitable for use as a sealing material and the like.

【0002】[0002]

【従来の技術】押出し発泡によりポリエチレン発泡体を
製造する方法として、特開昭60−19520号公報
に、アルコキシシランがグラフトしたポリエチレンを押
出機から低圧領域に押出して発泡体を得る方法が開示さ
れている。
2. Description of the Related Art As a method for producing a polyethylene foam by extrusion foaming, JP-A-60-19520 discloses a method of extruding polyethylene grafted with alkoxysilane into a low pressure region from an extruder to obtain a foam. ing.

【0003】特開昭60−31538号公報には、プロ
ピレン重合体もしくはエチレン含有量1〜20重量%の
プロピレン−エチレンブロック共重合体とプロピレン−
αオレフィン共重合体との混合物に無機ガスを圧入して
押出し発泡する発泡体の製造方法が開示されている。
JP-A-60-31538 discloses a propylene polymer or a propylene-ethylene block copolymer having an ethylene content of 1 to 20% by weight and propylene-.
Disclosed is a method for producing a foam in which an inorganic gas is pressed into a mixture with an α-olefin copolymer to extrude and foam.

【0004】[0004]

【発明が解決しようとする課題】特開昭60−1952
0号公報に記載の方法によると、押出し発泡直後から架
橋が一挙に進行しているため、短期間で高倍率の架橋発
泡体が得られる。架橋されるので未架橋のポリエチレン
よりは耐熱性は高くなるが、ポリプロピレンのような高
い耐熱性は得られない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the method described in Japanese Patent Publication No. 0, since the cross-linking proceeds all at once immediately after the foaming by extrusion, a cross-linked foam having a high magnification can be obtained in a short period of time. Since it is crosslinked, it has higher heat resistance than uncrosslinked polyethylene, but it does not have the high heat resistance of polypropylene.

【0005】又、特開昭60−31538号公報に記載
の方法により得られる発泡体は、表面が微麗なものであ
り、耐熱性は得られるが、高倍率の発泡体を得ることは
できず、断熱性が不足する。又、発泡倍率が低いので柔
軟性に欠け、例えば配管の曲げ部分の断熱用としては不
適当であるという問題がある。
Further, the foam obtained by the method described in JP-A-60-31538 has a fine surface, and heat resistance is obtained, but a foam with a high magnification cannot be obtained. Insufficient heat insulation. Further, since the expansion ratio is low, it lacks flexibility and is not suitable for heat insulation of a bent portion of a pipe, for example.

【0006】本発明は上記従来の問題点を解消し、耐熱
性、断熱性、柔軟性に富み、各種の断熱材、緩衝材、シ
ール材等として好適に使用できる耐熱性発泡体を提供す
ることを目的とする。
The present invention solves the above conventional problems and provides a heat resistant foam which is excellent in heat resistance, heat insulation and flexibility and can be suitably used as various heat insulating materials, cushioning materials, sealing materials and the like. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明耐熱性発泡体は、
伸張歪速度が0.01〜1.0s-1の範囲内で測定可能
な任意の2点の伸張歪量A、Bにおけるそれぞれの一軸
溶融伸張粘度ηA 、η B の比の最大値が次式で表される
関係を有し、ゲル成分を含まないプロピレン系樹脂から
なる発泡体であり、該発泡体の発泡倍率が5〜200
倍、独立気泡率が5〜70%であることを特徴とするも
のである。 B/A=10におけるηB /ηA =3.0〜1000 (A、Bは測定時における試料の伸張歪量を示し、Aの
伸張歪量は0.1〜1.0の範囲内である。)
The heat resistant foam of the present invention comprises:
Stretch strain rate is 0.01-1.0s-1Can be measured within the range
A uniaxial axis at two arbitrary stretch strains A and B
Melt elongation viscosity ηA, Η BThe maximum value of the ratio of
From a propylene-based resin that has a relationship and does not contain a gel component
Which has a foaming ratio of 5 to 200.
Also, the closed cell ratio is 5 to 70%.
Of. Η at B / A = 10B/ ΗA= 3.0 to 1000 (A and B indicate the tensile strain amount of the sample at the time of measurement,
The amount of extension strain is in the range of 0.1 to 1.0. )

【0008】本発明で使用するプロピレン系樹脂は、プ
ロピレン単独重合体、プロピレンを主成分とする共重合
体、又はこれらの混合物のいずれでもよい。プロピレン
を主成分とする共重合体の一例としては、プロピレン−
αオレフィン共重合体が挙げられる。αオレフィンとし
てはエチレン、1−ヘキセン、4−メチル−1−ペンテ
ン、1−オクテン、1−ブテン、1−ペンテン等が挙げ
られ、プロピレン成分を85重量%以上含むものが好ま
しい。プロピレン成分が85重量%よりも少ないと耐熱
性が低下するので好ましくない。
The propylene resin used in the present invention may be either a propylene homopolymer, a propylene-based copolymer, or a mixture thereof. An example of a copolymer containing propylene as a main component is propylene-
Examples include α-olefin copolymers. Examples of the α-olefin include ethylene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-butene, 1-pentene, and the like, and those containing 85% by weight or more of a propylene component are preferable. If the propylene component is less than 85% by weight, the heat resistance decreases, which is not preferable.

【0009】プロピレン単独重合体及びプロピレンを主
成分とする共重合体は、JIS K7210で規定され
るメルトインデックスが0.05〜20のものであるこ
とが好ましく、より好ましくは0.1〜15である。こ
の範囲のメルトインデックスを有することにより溶融状
態で適度の流動性を現して高発泡倍率の発泡体が得られ
るが、メルトインデックスが0.05未満であると溶融
粘度が高すぎて高倍率の発泡体は得られ難く、20を超
えると溶融粘度が低すぎて発泡時の樹脂の伸びが悪く、
破泡し易くなり高倍率の発泡体が得られない。上記プロ
ピレン重合体及びプロピレンを主成分とする共重合体の
分子量は50000〜500000のものが好ましい。
The propylene homopolymer and the copolymer containing propylene as a main component preferably have a melt index defined by JIS K7210 of 0.05 to 20, more preferably 0.1 to 15. is there. By having a melt index in this range, a foam having a high expansion ratio can be obtained by exhibiting appropriate fluidity in a molten state. However, if the melt index is less than 0.05, the melt viscosity is too high and foaming with a high expansion ratio is performed. It is difficult to obtain a body, and if it exceeds 20, the melt viscosity is too low and the elongation of the resin during foaming is poor,
It is easy to break the bubbles and a high-magnification foam cannot be obtained. The molecular weight of the propylene polymer and the copolymer containing propylene as a main component is preferably 50,000 to 500,000.

【0010】ηB /ηA の最大値が3.0未満の場合、
発泡時の溶融した樹脂に急激な粘度上昇がなく、流動し
易いので気泡の薄膜部だけが局所的に伸び、厚膜部は伸
びが遅れるために気泡が成長せず、又、気泡が破れたり
して高倍率の発泡体が得られない。上記最大値が100
0を超えると、発泡時の溶融した樹脂に急激な粘度上昇
が起こり、そのために発泡が阻害されて高倍率の発泡体
が得られない。従って、ηB /ηA の最大値を3.0〜
1000に設定することにより、高倍率の発泡体とする
ことができ、更に独立気泡率を5〜70%に調整するこ
とが可能である。メルトインデックスが0.05〜20
であるプロピレン系樹脂を用いると、上記独立気泡率の
調整に一層効果的である。ηB /ηA の最大値として更
に好ましい値の範囲は10〜900である。
When the maximum value of η B / η A is less than 3.0,
There is no sudden viscosity increase in the molten resin during foaming and it easily flows, so only the thin film part of the bubble expands locally, and the expansion of the thick film part is delayed, so the bubble does not grow and the bubble breaks. As a result, a high-magnification foam cannot be obtained. The maximum value is 100
When it exceeds 0, the viscosity of the molten resin at the time of foaming increases rapidly, which hinders foaming and a foam with high magnification cannot be obtained. Therefore, the maximum value of η B / η A is 3.0 to
By setting to 1000, it is possible to obtain a high-magnification foam, and it is possible to further adjust the closed cell ratio to 5 to 70%. Melt index is 0.05 to 20
If the propylene-based resin is used, it is more effective in adjusting the closed cell ratio. A more preferable range of the maximum value of η B / η A is 10 to 900.

【0011】上記プロピレン系樹脂には必要に応じて気
泡核形成剤、酸化防止剤、顔料、収縮防止剤、難燃剤等
を添加してもよい。
If necessary, a bubble nucleating agent, an antioxidant, a pigment, an anti-shrink agent, a flame retardant, etc. may be added to the propylene resin.

【0012】気泡核形成剤としては、その平均粒径が
0.1μm以上で500μm以下、特に1μm以上で1
00μm以下であることが好ましい。500μmを超え
ると得られる発泡体の気泡径が粗大となり表面平滑性、
断熱特性が低下するので好ましくない。一方、0.1μ
m未満の場合には気泡核形成剤をオレフィン系樹脂に均
一に分散させることが困難となり、均一微細な気泡の発
泡体が得られず好ましくない。気泡核形成剤として、例
えば炭酸カルシウム、タルク、クレー、酸化マグネシウ
ム、酸化亜鉛、カーボンブラック、二酸化ケイ素、酸化
チタン、クエン酸、重曹、オルトホウ酸と滑石、脂肪酸
のアルカリ土類金属塩等が挙げられる。
The cell nucleating agent has an average particle diameter of 0.1 μm or more and 500 μm or less, and particularly 1 μm or more.
It is preferably 00 μm or less. If it exceeds 500 μm, the bubble diameter of the obtained foam becomes coarse and the surface smoothness is
It is not preferable because the heat insulating property is deteriorated. On the other hand, 0.1μ
If it is less than m, it becomes difficult to uniformly disperse the cell nucleating agent in the olefin resin, and a foam having uniform fine cells cannot be obtained, which is not preferable. Examples of the cell nucleating agent include calcium carbonate, talc, clay, magnesium oxide, zinc oxide, carbon black, silicon dioxide, titanium oxide, citric acid, sodium bicarbonate, orthoboric acid and talc, and alkaline earth metal salts of fatty acids. .

【0013】酸化防止剤としては一般に用いられるもの
であれば特に限定されず、例えば、テトラキス〔メチレ
ン(3,5−ジ−t−ブチル−4−ヒドロキシハイドロ
シンナメート)〕メタン、チオジプロピオン酸ジラウリ
ル、1,1,3−トリス(2−メチル−4−ヒドロキシ
−5−t−ブチルフェニル)ブタン等が挙げられる。
The antioxidant is not particularly limited as long as it is generally used, and examples thereof include tetrakis [methylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate)] methane and thiodipropionic acid. Dilauryl, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane and the like can be mentioned.

【0014】収縮防止剤としては一般に用いられるもの
であれば特に限定されず、例えば、極性官能基を有する
脂肪族炭化水素が代表的であり、具体的にはステアリン
酸モノグリセライド、ステアリン酸アミド等がある。
The shrinkage inhibitor is not particularly limited as long as it is commonly used, and for example, aliphatic hydrocarbon having a polar functional group is typical, and specifically, stearic acid monoglyceride, stearic acid amide and the like. is there.

【0015】難燃剤としては、ヘキサブロモビフェニル
エーテル、デカブロモジフェニルエーテル等の臭素系難
燃剤、ポリリン酸アンモニウム、トリメチルホスフェー
ト、トリエチルホスフェート等の含リン酸系難燃剤、メ
ラミン誘導体、無機系難燃剤等の1種又は2種以上の混
合物が挙げられる。
Examples of the flame retardant include bromine flame retardants such as hexabromobiphenyl ether and decabromodiphenyl ether, phosphoric acid flame retardants such as ammonium polyphosphate, trimethyl phosphate and triethyl phosphate, melamine derivatives and inorganic flame retardants. Examples include one kind or a mixture of two or more kinds.

【0016】本発明耐熱性発泡体を製造するには、上記
プロピレン系樹脂を溶融状態とし、これに気体状もしく
は液体状の発泡剤を高圧下で溶解させるか、又は、上記
プロピレン系樹脂が未溶融状態において気体状もしくは
液体状の発泡剤を混合して高圧状態を維持したまゝ溶融
し、圧力を開放することにより発泡させる。
In order to produce the heat-resistant foam of the present invention, the propylene-based resin is brought into a molten state and a gaseous or liquid foaming agent is dissolved under high pressure, or the propylene-based resin is not added. In the molten state, a gaseous or liquid foaming agent is mixed and melted while maintaining a high pressure state, and the pressure is released to foam.

【0017】用いる発泡剤は、ブタン、ペンタン、ヘキ
サン等の脂肪族炭化水素、ベンゼン、トルエン、キシレ
ン等の芳香族炭化水素、アセトン、メチルエチルケトン
等のケトン系炭化水素、メタノール、エタノール、プロ
パノール等のアルコール系炭化水素、1,1−ジクロロ
−フルオロエタン、2,2−ジクロロ1,1,1−トリ
フルオロエタン、1,1,1,2テトラフルオロエタ
ン、モノクロロジフルオロエタン、モノクロロジフルオ
ロメタン等のハロゲン化炭化水素、炭酸ガス、窒素ガ
ス、空気、酸素、ネオン、アルゴン等の無機ガス等から
選ばれる1種もしくは2種以上の混合物が挙げられる。
この中でも、安全性が高く、オゾン層破壊のおそれのな
い無機ガスが特に好ましく、更に無機ガスの中でもプロ
ピレン系樹脂に対する溶解度の高い炭酸ガス、あるいは
炭酸ガスと他のガスとの混合ガスが特に好ましい。
The blowing agent used is an aliphatic hydrocarbon such as butane, pentane, hexane, an aromatic hydrocarbon such as benzene, toluene, xylene, a ketone hydrocarbon such as acetone or methyl ethyl ketone, an alcohol such as methanol, ethanol or propanol. Halogenated carbonization of hydrocarbons, 1,1-dichloro-fluoroethane, 2,2-dichloro-1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, monochlorodifluoroethane, monochlorodifluoromethane, etc. Examples thereof include one kind or a mixture of two or more kinds selected from hydrogen, carbon dioxide gas, nitrogen gas, air, oxygen, inorganic gases such as neon and argon.
Among these, an inorganic gas that is highly safe and has no danger of depleting the ozone layer is particularly preferable, and among the inorganic gases, carbon dioxide having a high solubility in propylene-based resin, or a mixed gas of carbon dioxide and another gas is particularly preferable. .

【0018】発泡剤の溶解量は、プロピレン系樹脂1g
に対し、常温常圧において5〜200ccであることが
好ましい。5cc未満であると高倍率の発泡体が得られ
ず、発泡体の断熱性が悪くなり、200ccを超えても
これ以上の断熱特性は向上せず無駄となる。
The amount of the foaming agent dissolved is 1 g of propylene resin.
On the other hand, it is preferably 5 to 200 cc at room temperature and atmospheric pressure. If it is less than 5 cc, a high-magnification foam cannot be obtained, and the heat insulating property of the foam deteriorates. If it exceeds 200 cc, further heat insulating properties are not improved and it is wasteful.

【0019】上記の製造方法で圧力を開放するときの樹
脂温度Tは、樹脂の融点(Tm)+(+5〜50℃)が
好ましい。T<Tm+5℃の場合は独立気泡率が高くな
り、柔軟性が損なわれるおそれがある。このような場合
はTm−10℃<T<Tm+5℃の範囲で独立気泡率の
高い発泡体を製造し、この発泡体に針などで多数の穿孔
を設けて独立気泡率を5〜70%に調整してもよい。T
>Tm+50℃となると、樹脂の溶融粘度が低いために
発泡時に破泡が激しく、高倍率の発泡体が得られない。
The resin temperature T when the pressure is released by the above manufacturing method is preferably the melting point (Tm) of the resin + (+ 5 to 50 ° C.). When T <Tm + 5 ° C., the closed cell rate becomes high, and the flexibility may be impaired. In such a case, a foam having a high closed cell ratio is produced within the range of Tm-10 ° C <T <Tm + 5 ° C, and a large number of perforations are provided in the foam to make the closed cell ratio 5 to 70%. You may adjust. T
When> Tm + 50 ° C., the melt viscosity of the resin is low, so that the foaming is severe at the time of foaming, and a high-magnification foam cannot be obtained.

【0020】上記発泡体を製造するための手段として
は、押出発泡装置又は耐圧容器を用いる。押出発泡装置
を用いる方法は、プロピレン系樹脂を押出機のホッパー
に投入し、該樹脂が溶融状態にある部分に設けたガス圧
入孔から発泡剤を圧入する。発泡剤として炭酸ガスを使
用する場合、押出機に取付けた圧入孔の圧力が15〜6
00kg/cm2 となるようにして注入すると、上記範
囲の溶解量が得られる。
An extrusion foaming device or a pressure resistant container is used as a means for producing the foam. In the method using an extrusion foaming device, a propylene-based resin is charged into a hopper of an extruder, and a foaming agent is pressed into a gas injection hole provided in a portion where the resin is in a molten state. When carbon dioxide is used as the foaming agent, the pressure of the press-fitting hole attached to the extruder is 15 to 6
When injected at a rate of 00 kg / cm 2 , a dissolved amount within the above range can be obtained.

【0021】注入方法としては、所定圧力に調節した気
体を直接注入する方法、液体状態の発泡剤をプランジャ
ーポンプ等を用いて所定圧力で注入する方法等がある。
又、発泡剤を予め高圧下で樹脂に含浸せしめたものを押
出機のホッパーから投入してもよい。この場合、押出機
中で溶融状態となる前にガスが放出され、ホッパーから
抜け出ることもあるので加圧ホッパーを用いるのが好ま
しく、更に目標の発泡倍率を得るためには不足する発泡
剤を押出機の途中から圧入する。
As the injection method, there are a method of directly injecting a gas adjusted to a predetermined pressure, a method of injecting a liquid foaming agent at a predetermined pressure using a plunger pump or the like.
Alternatively, the resin may be impregnated with a foaming agent under high pressure in advance, and the resin may be charged from the hopper of the extruder. In this case, it is preferable to use a pressure hopper because gas is released before it becomes a molten state in the extruder and may escape from the hopper, and a foaming agent that is insufficient to obtain the target expansion ratio is extruded. Press in from the middle of the machine.

【0022】次いで、発泡剤が溶解された樹脂を前記温
度Tに維持した金型に導き、所望の形状の口金より大気
圧中に押出すと、圧力差により発泡して目的の発泡体が
得られる。このときの口金の形状は目的の発泡体に応じ
た形状に順次広げられた形状のものであってもよく、
又、それが潤滑油で潤滑処理されたものであってもよ
い。更に、発泡体の形状を保つため、口金から押出され
た瞬間に水や冷風等の樹脂の軟化点よりも低い冷媒に接
触させてもよい。
Then, the resin in which the foaming agent is dissolved is introduced into a mold maintained at the temperature T and extruded from a die having a desired shape into the atmospheric pressure to foam due to a pressure difference to obtain a desired foam. To be The shape of the die at this time may be a shape that is sequentially expanded into a shape according to the desired foam,
It may also be lubricated with lubricating oil. Further, in order to maintain the shape of the foam, it may be brought into contact with a refrigerant such as water or cold air having a temperature lower than the softening point of the resin at the moment of extrusion from the die.

【0023】耐圧容器を用いて製造する方法としては、
樹脂と発泡剤とをロール又は押出機等で混練溶融して目
的の形状に成形し、これを耐圧容器に投入する。次いで
該樹脂を発泡に適した温度まで加熱し、発泡剤を圧入し
該樹脂に溶解する。発泡剤の圧入、溶解は加熱前に行っ
てもよい。発泡剤として炭酸ガスを使用するときは、発
泡剤の圧入圧力を15〜600kg/cm2 とするのが
好ましく、この圧力範囲で好適な溶解量となる。
As a method of manufacturing using a pressure resistant container,
A resin and a foaming agent are kneaded and melted with a roll or an extruder to form a desired shape, and the mixture is put into a pressure resistant container. Then, the resin is heated to a temperature suitable for foaming, and a foaming agent is press-fitted and dissolved in the resin. The foaming agent may be pressed and dissolved before heating. When carbon dioxide gas is used as the foaming agent, the pressure of the foaming agent is preferably 15 to 600 kg / cm 2, and the dissolution amount is suitable in this pressure range.

【0024】発泡剤の圧入方法は所定圧力に調節された
気体を直接圧入する方法、液体状態の発泡剤をプランジ
ャーポンプ等で注入する方法、固体状で注入する方法等
がある。無機ガスが樹脂に充分溶解した後、耐圧容器の
圧力弁を開放することにより目的の発泡体が得られる。
The foaming agent may be injected by directly injecting a gas adjusted to a predetermined pressure, by injecting a liquid foaming agent with a plunger pump, or by injecting it in a solid state. After the inorganic gas is sufficiently dissolved in the resin, the target foam can be obtained by opening the pressure valve of the pressure vessel.

【0025】本発明耐熱性発泡体の発泡倍率は5〜20
0倍である。より好ましい範囲は10〜150倍であ
る。発泡倍率が5倍よりも低いと断熱性が悪く、200
倍を超えてもそれ以上に断熱性は向上しないばかりでな
く強度が低下する。
The heat-resistant foam of the present invention has an expansion ratio of 5 to 20.
It is 0 times. A more preferable range is 10 to 150 times. If the expansion ratio is less than 5 times, the heat insulation is poor and
Even if it exceeds twice, not only the heat insulating property is not further improved but also the strength is reduced.

【0026】又、本発明耐熱性発泡体の独立気泡率は5
〜70%である。より好ましい範囲は10〜65%の範
囲である。独立気泡率が5%よりも少ないと連続気泡が
おおくなり、吸水性が大きくて断熱性が低下するので好
ましくない。70%を超えると発泡体の柔軟性が不足
し、曲げると折れ易くなる。
The closed cell ratio of the heat resistant foam of the present invention is 5
~ 70%. A more preferred range is 10 to 65%. If the closed cell ratio is less than 5%, the number of open cells becomes large, the water absorption is large, and the heat insulating property is deteriorated, which is not preferable. If it exceeds 70%, the flexibility of the foam will be insufficient, and if it is bent, it will be easily broken.

【0027】本発明ではゲル成分を含まないプロピレン
系樹脂を使用するのは、高倍率の発泡体とすることがで
き、発泡時に適当な破泡が生じて独立気泡率を調整し易
く、又、該発泡体を回収再利用することができるためで
ある。該樹脂がゲル成分を含む、即ち架橋されていると
発泡した気泡が大きく成長せず、高倍率の発泡体とする
ことが困難であり、破泡が生じ難くて大部分が独立気泡
となり、独立気泡率を5〜70%と調整することが困難
である。又、架橋されることにより再利用することが困
難となる。
In the present invention, the use of a propylene-based resin containing no gel component makes it possible to obtain a high-magnification foam, and appropriate foam breakage occurs during foaming, so that the closed cell ratio can be easily adjusted. This is because the foam can be collected and reused. When the resin contains a gel component, that is, when it is crosslinked, the foamed bubbles do not grow greatly, and it is difficult to form a foam with a high magnification, and it is difficult for bubble breakage to occur and most of the cells become closed cells. It is difficult to adjust the bubble rate to 5 to 70%. In addition, the crosslinking makes it difficult to reuse.

【0028】[0028]

【作用】本発明の耐熱性発泡体はプロピレン系樹脂から
なるので耐熱性にすぐれる。使用するプロピレン系樹脂
は、伸張歪速度が0.01〜1.0s-1の範囲内で測定
可能な任意の2点におけるそれぞれの溶融伸張粘度
ηA 、ηB の比ηB /ηAの最大値が3.0〜1000
の範囲であるから、発泡時の樹脂に適度の粘度上昇が生
じて樹脂の伸びがよく、高倍率の発泡体が得られる。使
用するプロピレン系樹脂はゲル成分を含まないので発泡
倍率が5〜200倍という高発泡、且つ、独立気泡率が
5〜70%のものとすることもでき、容易に再利用する
ことができる。
The heat-resistant foam of the present invention is excellent in heat resistance because it is made of a propylene resin. Propylene resin to be used, elongation strain rate each melt extensional viscosity eta A at any two points can be measured within the 0.01~1.0S -1, the ratio η B / η A of eta B Maximum value is 3.0 to 1000
Within this range, the resin will have an appropriate increase in viscosity during foaming, the resin will have good elongation, and a high-magnification foam can be obtained. Since the propylene-based resin used does not contain a gel component, it can be made to have a high expansion ratio of 5 to 200 times and a closed cell ratio of 5 to 70%, and can be easily reused.

【0029】[0029]

【実施例】以下に本発明耐熱性発泡体の実施例を説明す
る。プロピレン系樹脂として次のものを用いた。 (1)ポリプロピレン(Himont社製,商品名「P
F814」,MI=4,融点165℃,ゲル成分0) 伸張歪速度0.4s-1で測定した伸張歪量Aが0.86
における一軸溶融伸張粘度ηA =21544Pa・s、
伸張歪量Bが8.6における一軸溶融伸張粘度ηB =8
43190Pa・sであり、ηB /ηA =39.1であ
った。 (2)プロピレンとエチレンとのランダム共重合体(チ
ッソ石油化学社製,商品名「XF1800」,MI=
2,融点146℃) 伸張歪速度0.4s-1で測定した伸張歪量Aが0.19
4における一軸溶融伸張粘度ηA =234462Pa・
s、伸張歪量Bが1.94における一軸溶融伸張粘度η
B =48438Pa・sであり、ηB /ηA =1.85
であった。
EXAMPLES Examples of the heat resistant foam of the present invention will be described below. The following was used as the propylene-based resin. (1) Polypropylene (manufactured by Himont, trade name "P
F814 ”, MI = 4, melting point 165 ° C., gel component 0) The elongation strain amount A measured at an elongation strain rate of 0.4 s −1 is 0.86.
Uniaxial melt extensional viscosity η A = 21544 Pa · s,
Uniaxial melt extensional viscosity η B = 8 when the extensional strain amount B is 8.6
It was 43190 Pa · s and η B / η A = 39.1. (2) Random copolymer of propylene and ethylene (manufactured by Chisso Petrochemical Co., Ltd., trade name "XF1800", MI =
2, melting point 146 ° C.) The tensile strain amount A measured at a tensile strain rate of 0.4 s −1 is 0.19.
Uniaxial melt extensional viscosity η A = 234462 Pa · 4
s, uniaxial melt extensional viscosity η at elongation strain B of 1.94
B = 48438 Pa · s, η B / η A = 1.85
Met.

【0030】(実施例1)ポリプロピレン(PF81
4)100重量部と気泡形成核剤としてタルク(日本タ
ルク社製,商品名「MS」,平均粒子径9μm)0.8
重量部とを210℃に設定したベントタイプの押出機
(口径65mm,L/D=35)のホッパーに投入し、
ベント部から炭酸ガスを50kg/cm2 の圧力で圧入
し、171℃に設定した口径2mmの口金から12kg
/hの吐出量でロッド状に押出して発泡した。
Example 1 Polypropylene (PF81
4) 100 parts by weight and 0.8 as a bubble-forming nucleating agent (manufactured by Nippon Talc Co., Ltd., trade name “MS”, average particle size 9 μm) 0.8
Part by weight and charged into the hopper of a vent type extruder (caliber 65 mm, L / D = 35) set to 210 ° C.,
Carbon dioxide gas was press-fitted at a pressure of 50 kg / cm 2 from the vent part, and 12 kg from a cap with a diameter of 2 mm set at 171 ° C.
It was extruded into a rod shape at a discharge amount of / h and foamed.

【0031】(実施例2)タルクを用いず、ベント部か
らの炭酸ガスの圧入圧力を100kg/cm2 、押出機
の口金の温度を190℃とした以外は実施例1と同様に
して押出し発泡した。
(Example 2) Extrusion foaming was carried out in the same manner as in Example 1 except that talc was not used, the pressure of carbon dioxide gas injected from the vent was 100 kg / cm 2 , and the temperature of the die of the extruder was 190 ° C. did.

【0032】(実施例3)タルクを用いず、ベント部か
らの炭酸ガスの圧入圧力を100kg/cm2 とした以
外は実施例1と同様にして押出し発泡した。
(Example 3) Extrusion and foaming were carried out in the same manner as in Example 1 except that talc was not used and the pressure of carbon dioxide gas injected from the vent was 100 kg / cm 2 .

【0033】(実施例4)タルクを用いず、炭酸ガスの
代わりにモノクロロジフルオロエタン(フロン)を用い
て、ベント部からの圧入圧力を100kg/cm2 、押
出機の口金の温度を172℃とした以外は実施例1と同
様にして押出し発泡した。
Example 4 Monochlorodifluoroethane (Freon) was used instead of carbon dioxide gas without using talc, the pressure of the vent portion was 100 kg / cm 2 , and the temperature of the die of the extruder was 172 ° C. Except for this, extrusion was performed and foaming was performed in the same manner as in Example 1.

【0034】(実施例5)モノクロロジフルオロエタン
の圧入圧力を120kg/cm2 とした以外は実施例4
と同様にして押出し発泡した。
(Example 5) Example 4 except that the press-fitting pressure of monochlorodifluoroethane was set to 120 kg / cm 2.
It was extruded and foamed in the same manner as in.

【0035】(実施例6)実施例1で用いたものと同じ
ポリプロピレン100重量部及びタルク0.8重量部と
を200℃に設定したロールにより混練した後、温度2
00℃,圧力150kg/cm2 で5分間プレスして厚
さ2mmのシートを得た。該シートを169℃に設定し
たオートクレーブに投入し、炭酸ガス圧力を500kg
/cm2 として2時間加熱した後、減圧バルブを開放し
て発泡させ発泡体を得た。得られた発泡体を100℃に
設定したオートクレーブに投入し、窒素ガス圧力を8k
g/cm2 として8時間養生した。得られた発泡体は発
泡倍率150cc/g、独立気泡率82%であった。こ
の発泡体に針で孔をあけ、独立気泡率を61%に調整し
た。
Example 6 100 parts by weight of the same polypropylene as used in Example 1 and 0.8 parts by weight of talc were kneaded with a roll set at 200 ° C.
The sheet was pressed at 00 ° C. and a pressure of 150 kg / cm 2 for 5 minutes to obtain a sheet having a thickness of 2 mm. The sheet was put into an autoclave set at 169 ° C., and carbon dioxide gas pressure was 500 kg.
/ Cm 2 and after heating for 2 hours, the pressure reducing valve was opened to foam and obtain a foam. The obtained foam was put into an autoclave set at 100 ° C., and the nitrogen gas pressure was 8 k.
It was cured for 8 hours at g / cm 2 . The obtained foam had an expansion ratio of 150 cc / g and a closed cell rate of 82%. A hole was made in this foam with a needle to adjust the closed cell ratio to 61%.

【0036】(比較例1)ベント部からの炭酸ガスの圧
入圧力を10kg/cm2 とした以外は実施例1と同様
にして押出し発泡した。
(Comparative Example 1) Extrusion and foaming were carried out in the same manner as in Example 1 except that the pressure of the carbon dioxide gas injected from the vent was 10 kg / cm 2 .

【0037】(比較例2)タルクを用いず、押出機の口
金の温度を165℃とした以外は実施例2と同様にして
押出し発泡した。
(Comparative Example 2) Extrusion and foaming were carried out in the same manner as in Example 2 except that talc was not used and the temperature of the die of the extruder was 165 ° C.

【0038】(比較例3)比較例2で得た発泡体に針で
無数の孔をあけたものである。
Comparative Example 3 The foam obtained in Comparative Example 2 has a large number of holes formed by needles.

【0039】(比較例4)プロピレンとエチレンとの共
重合体(XF1800)を用いて押出機の口金の温度を
157℃とした以外は比較例2と同様にして押出し発泡
した。上記実施例1〜6及び比較例1〜4の発泡体の製
造条件を表1に示す。
(Comparative Example 4) Extrusion and foaming were carried out in the same manner as in Comparative Example 2 except that the temperature of the die of the extruder was changed to 157 ° C using a copolymer of propylene and ethylene (XF1800). Table 1 shows the production conditions for the foams of Examples 1 to 6 and Comparative Examples 1 to 4.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例1〜6及び比較例1〜4の発泡体に
つき、性能評価した結果を表2に示す。評価方法は次の
とおりである。 断熱性;0℃における熱伝導率を測定。 柔軟性;90度に折り曲げて折れるか否かにより判定。 耐熱性;120℃で22時間経過後、20℃,湿度65
%で1時間経過後の寸法変化率。 吸水率;JIS K6767に準じて測定。
The performance evaluation results of the foams of Examples 1 to 6 and Comparative Examples 1 to 4 are shown in Table 2. The evaluation method is as follows. Adiabatic property; thermal conductivity measured at 0 ° C. Flexibility; judged by whether or not it is bent at 90 degrees. Heat resistance; after 22 hours at 120 ° C, 20 ° C, humidity 65
The dimensional change rate after 1 hour in%. Water absorption rate: Measured according to JIS K6767.

【0042】[0042]

【表2】 [Table 2]

【0043】表2から明らかなとおり、実施例1〜6の
ものは発泡倍率が5〜200倍の範囲内であり、且つ、
独立気泡率が5〜70%の範囲であるから柔軟性を備え
ながらも吸水率が低く、断熱性がよいことが判る。これ
に対し比較例1のものは発泡倍率が3倍と低く、比較例
2のものは独立気泡率が70%を超えているので、吸水
率は低くても柔軟性が殆どない。又、比較例3のものは
独立気泡率が0%、即ち全部が連続気泡であるから柔軟
性があっても吸水率が高く、断熱性が得られない。比較
例4のものは発泡倍率が4倍と低いので柔軟性がなく、
僅かな気泡のうち殆どが連続気泡であるから吸水量が多
く断熱性が極めて低い。
As is apparent from Table 2, in Examples 1 to 6, the expansion ratio is in the range of 5 to 200 times, and
It can be seen that since the closed cell ratio is in the range of 5 to 70%, the water absorption rate is low and the heat insulating property is good while having flexibility. On the other hand, Comparative Example 1 has a low expansion ratio of 3 times, and Comparative Example 2 has a closed cell ratio of more than 70%, so that it has almost no flexibility even if the water absorption rate is low. Further, in Comparative Example 3, the closed cell ratio is 0%, that is, all of them are open cells, so that even if they have flexibility, they have a high water absorption rate and cannot obtain heat insulation. Since the foaming ratio of Comparative Example 4 is as low as 4 times, there is no flexibility,
Since most of the few bubbles are open cells, the amount of water absorption is large and the heat insulation is extremely low.

【0044】[0044]

【発明の効果】本発明の耐熱性発泡体はプロピレン系樹
脂からなるので耐熱性にすぐれたものである。又、高倍
率の発泡体であり柔軟性に富む一方、吸水率が低いので
断熱性にすぐれたものであり、各種の用途における断熱
材や緩衝材、シール材として極めて実用的なものであ
る。
The heat-resistant foam of the present invention is excellent in heat resistance since it is made of a propylene resin. Further, it is a high-magnification foam and is highly flexible, while it has a low water absorption rate, so it has excellent heat insulating properties, and is extremely practical as a heat insulating material, cushioning material, or sealing material in various applications.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 伸張歪速度が0.01〜1.0s-1の範
囲内で測定可能な任意の2点の伸張歪量A、Bにおける
それぞれの一軸溶融伸張粘度ηA 、ηB の比の最大値が
次式で表される関係を有し、ゲル成分を含まないプロピ
レン系樹脂からなる発泡体であり、該発泡体の発泡倍率
が5〜200倍、独立気泡率が5〜70%であることを
特徴とする耐熱性発泡体。 B/A=10におけるηB /ηA =3.0〜1000 (A、Bは測定時における試料の伸張歪量を示し、Aの
伸張歪量は0.1〜1.0の範囲内である。)
1. A ratio of uniaxial melt extensional viscosities η A and η B at arbitrary two points of extensional strain A and B which can be measured within an extensional strain rate of 0.01 to 1.0 s −1. Has a relationship represented by the following formula, and is a foam made of a propylene-based resin containing no gel component, the foaming ratio of the foam is 5 to 200 times, and the closed cell ratio is 5 to 70%. A heat-resistant foam characterized by the following. Η B / η A at B / A = 10 = 3.0 to 1000 (A and B indicate the tensile strain amount of the sample at the time of measurement, and the tensile strain amount of A is within the range of 0.1 to 1.0. is there.)
JP21246794A 1994-09-06 1994-09-06 Heat-resistant foamed product Pending JPH0873642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21246794A JPH0873642A (en) 1994-09-06 1994-09-06 Heat-resistant foamed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21246794A JPH0873642A (en) 1994-09-06 1994-09-06 Heat-resistant foamed product

Publications (1)

Publication Number Publication Date
JPH0873642A true JPH0873642A (en) 1996-03-19

Family

ID=16623133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21246794A Pending JPH0873642A (en) 1994-09-06 1994-09-06 Heat-resistant foamed product

Country Status (1)

Country Link
JP (1) JPH0873642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528173A (en) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド Sound absorbing polymer foam with improved thermal insulation performance
JP2008082039A (en) * 2006-09-28 2008-04-10 Mimo Material Kk Thermal insulation material
JP4813181B2 (en) * 2003-07-15 2011-11-09 電気化学工業株式会社 Heat shrinkable foam film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528173A (en) * 2000-03-17 2003-09-24 ダウ グローバル テクノロジーズ インコーポレーテッド Sound absorbing polymer foam with improved thermal insulation performance
JP4884635B2 (en) * 2000-03-17 2012-02-29 ダウ グローバル テクノロジーズ エルエルシー Sound absorbing polymer foam with improved thermal insulation performance
JP4813181B2 (en) * 2003-07-15 2011-11-09 電気化学工業株式会社 Heat shrinkable foam film
JP2008082039A (en) * 2006-09-28 2008-04-10 Mimo Material Kk Thermal insulation material

Similar Documents

Publication Publication Date Title
US7803862B2 (en) Composition for polyolefin resin foam, foam of the same, and process for producing foam
KR101455435B1 (en) Polypropylene resin foam particle and molding thereof
JP5159315B2 (en) High melt strength thermoplastic elastomer composition
US5527573A (en) Extruded closed-cell polypropylene foam
JP5512672B2 (en) Polypropylene resin expanded particles and expanded molded articles
US20040162358A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
JP3380816B2 (en) Ultra-low density polyolefin foams, foamable polyolefin compositions and methods of making them
JP2009144096A (en) Polypropylenic resin foamed particles and molded article from foamed particles
RU2232781C2 (en) Foamed plastics prepared from mixture of syndiotactic polypropylenes and thermoplastic polymers
EP1124887B1 (en) Process for producing extruded foam
JP4238032B2 (en) Blends of ethylene polymers with improved modulus and melt strength and articles made from these blends
JPH11343362A (en) Thermoplastic elastomer foam
CN112011142B (en) Molding composition and foamed article made therefrom
JPH0873642A (en) Heat-resistant foamed product
JP5358452B2 (en) Polypropylene resin expanded particles and expanded molded articles
JPH0347297B2 (en)
JPH0881590A (en) Resin composition
JP2505543B2 (en) Method for producing foam containing crystalline propylene resin
JPS5831102B2 (en) Method for manufacturing polyolefin foam
JP3537001B2 (en) Expanded polypropylene resin particles and method for producing the same
JPS6249303B2 (en)
JP3859334B2 (en) Method for producing polyethylene resin foam, polyethylene resin foam and molded product thereof
JP5248939B2 (en) Polypropylene resin foam particles
JPH09227707A (en) Production of polypropylene resin foam
JPS599572B2 (en) Manufacturing method of polyolefin foam