JP2603858B2 - Method for producing spherical polyethylene expanded particles - Google Patents

Method for producing spherical polyethylene expanded particles

Info

Publication number
JP2603858B2
JP2603858B2 JP20338788A JP20338788A JP2603858B2 JP 2603858 B2 JP2603858 B2 JP 2603858B2 JP 20338788 A JP20338788 A JP 20338788A JP 20338788 A JP20338788 A JP 20338788A JP 2603858 B2 JP2603858 B2 JP 2603858B2
Authority
JP
Japan
Prior art keywords
particles
resin particles
resin
container
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20338788A
Other languages
Japanese (ja)
Other versions
JPH0253837A (en
Inventor
英樹 桑原
正博 橋場
真人 内藤
和男 鶴飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP20338788A priority Critical patent/JP2603858B2/en
Publication of JPH0253837A publication Critical patent/JPH0253837A/en
Application granted granted Critical
Publication of JP2603858B2 publication Critical patent/JP2603858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は球状ポリエチレン発泡粒子の製造法に関し、
更に詳しくは無架橋直鎖状低密度ポリエチレンを基材樹
脂とする球状ポリエチレン発泡粒子の製造法に関する。
The present invention relates to a method for producing expanded spherical polyethylene particles,
More specifically, the present invention relates to a method for producing expanded spherical polyethylene particles using a non-crosslinked linear low-density polyethylene as a base resin.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

発泡粒子を型内に充填して蒸気等によって加熱発泡さ
せて得られる型内成型体(ビーズ発泡体)は緩衝材、包
装材、断熱材、建築資材等として広範囲に利用されてお
り、その需要は近年富みに増大している。
In-mold molded articles (bead foams) obtained by filling foamed particles in a mold and heating and foaming with steam or the like are widely used as cushioning materials, packaging materials, heat insulating materials, building materials, and the like. Has increased in recent years.

この種成型体として従来はポリスチレン発泡粒子を用
いたものが用いられていたが、ポリスチレン発泡粒子の
型内成型体は脆いという致命的欠点があるため、ポリス
チレン発泡粒子にかえてポリエチレン発泡粒子を用いる
ことが提案された。しかしながらポリエチレン発泡粒子
は融点付近での粘度低下が著しいため通常架橋して用い
られるが、架橋ポリエチレン発泡粒子は型内成型によっ
て低密度(高発泡)のものが得難く、強いて低密度の成
型体を得ようとすると収縮が著しく、しかも吸水率の大
きい物質に劣った成型体しか得られず、実用に供し得る
低密度成型体は得られなかった。更に架橋ポリエチレン
の原料には架橋性が良いことから主として高圧法低密度
ポリエチレンが用いられているが、高圧法低密度ポリエ
チレンは耐熱性に劣り、しかも剛性が不足することから
必然的に比較的低発泡倍率とせざるを得なかった。
Conventionally, a molded article of polystyrene expanded particles was used as the seed molded article.However, a molded article of polystyrene expanded particles has a fatal drawback of being brittle, so polyethylene expanded particles are used instead of polystyrene expanded particles. That was suggested. However, polyethylene foam particles are usually used after being crosslinked because of a significant decrease in viscosity near the melting point. However, it is difficult to obtain crosslinked polyethylene foam particles having a low density (high foaming) by in-mold molding, and a strong and low-density molded body is required. When trying to obtain it, only a molded article inferior to a substance having remarkable shrinkage and having a high water absorption was obtained, and a low-density molded article which could be practically used was not obtained. Further, high-pressure method low-density polyethylene is mainly used as a raw material of cross-linked polyethylene because of its good cross-linking property, but high-pressure method low-density polyethylene is inferior in heat resistance and lacks rigidity, so that it is inevitably relatively low. The expansion ratio had to be determined.

これらの問題を解決する方法として無架橋直鎖状低密
度ポリエチレンよりなる発泡粒子を用いて成型する方法
が提案された(特公昭60−10047号公報)。無架橋直鎖
状低密度ポリエチレン発泡粒子を用いると、低密度で優
れた物性の型内成型体を容易に提供し得るが、発泡粒子
製造用原料として用いる樹脂粒子として、押出機からス
トランド状に押出されたものをカットして得られる円柱
状又は楕円柱状の樹脂粒子をそのまま用いた場合、得ら
れる発泡粒子は円柱状やラグビー球状或いは偏平状とな
り、このような形状の発泡粒子は型内への充填不良を生
じ易く、このような発泡粒子を用いて成型すると発泡粒
子相互の融着不良等による成型不良を生じてボイドの大
い成型体となり易い等の問題がある。このため従来は円
柱状や楕円柱状の樹脂粒子を別工程にて球状化してから
発泡させることにより球状の発泡粒子を得ていたが、発
泡工程の前に樹脂粒子の球状化工程があるため、製造工
程が煩雑となるという欠点があった。
As a method for solving these problems, there has been proposed a method of molding using expanded particles made of non-crosslinked linear low-density polyethylene (Japanese Patent Publication No. 60-10047). When non-crosslinked linear low-density polyethylene foamed particles are used, an in-mold molded article having low density and excellent physical properties can be easily provided.However, as resin particles used as a raw material for producing foamed particles, a strand shape is formed from an extruder. When the cylindrical or elliptical resin particles obtained by cutting the extruded material are used as they are, the obtained expanded particles become cylindrical, rugby spherical or flat, and the expanded particles having such a shape are put into a mold. There is a problem that molding is apt to occur due to poor filling, and molding using such expanded particles causes poor molding due to defective fusion between expanded particles and the like, and tends to result in a molded body having a large void. For this reason, conventionally, spherical or oval column-shaped resin particles were formed into spherical particles in a separate step and then expanded to obtain spherical expanded particles.Because there is a step of spheroidizing the resin particles before the expanding step, There is a disadvantage that the manufacturing process becomes complicated.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は上記従来技術の欠点を解消すべく鋭意研究
した結果、密閉容器内で無架橋直鎖状低密度ポリエチレ
ン粒子を発泡剤とともに分散媒に分散させて加熱した
後、樹脂粒子と分散媒とを同時に低圧下に放出して発泡
せしめる方法において、該ポリエチレン粒子として長さ
と直径の比と、樹脂粒子の収縮率との間に特定の関係を
有する樹脂粒子を用い、しかも樹脂粒子と発泡剤とを特
定量の塩基性炭酸マグネシウムの存在下で分散媒に分散
させて発泡させる方法を採用することにより、発泡とと
もに球状化も行われ、球状の無架橋直鎖状低密度ポリエ
チレン発泡粒子を一工程で得ることができることを見出
し本発明を完成するに至った。
The present inventors have conducted intensive studies to solve the above-mentioned disadvantages of the prior art, and as a result, after dispersing non-crosslinked linear low-density polyethylene particles together with a foaming agent in a dispersion medium in a closed container and heating, the resin particles and the dispersion medium were dispersed. Simultaneously releasing the resin particles under low pressure to cause foaming, wherein the polyethylene particles use resin particles having a specific relationship between the ratio of length to diameter and the shrinkage ratio of the resin particles, and furthermore, the resin particles and the foaming agent Is dispersed in a dispersion medium in the presence of a specific amount of basic magnesium carbonate and foamed, whereby spheroidization is performed together with foaming, and spherical non-crosslinked linear low-density polyethylene foamed particles are formed. The present inventors have found that they can be obtained in a process and completed the present invention.

即ち本発明は、密閉容器内で融点115℃以上、密度0.9
15〜0.930g/cm3の無架橋直鎖状低密度ポリエチレン樹脂
よりなり、樹脂粒子の融点+4℃における加熱収縮率を
X、粒子の長さをL、粒子の径をDとしたときに、 0.8<L/D×(100−X)/100<1.5 なる関係を有する樹脂粒子を、該樹脂粒子100重量部当
たりに対して0.05重量部以上の塩基性炭酸マグネシウム
の存在下に揮発性発泡剤とともに分散媒に分散させて樹
脂粒子の融点−15℃〜融点の温度範囲に加熱保持して樹
脂粒子に発泡剤を含浸させ、次いで容器内温度を上記温
度範囲に保持しながら容器の一端を開放して樹脂粒子と
分散媒とを同時に容器内より低圧の雰囲気下に放出して
略球状の直鎖状低密度ポリエチレン発泡粒子を得ること
を特徴とする球状ポリエチレン発泡粒子の製造法を要旨
とするものである。
That is, the present invention has a melting point of at least 115 ° C. and a density of 0.9 in a closed container.
It is composed of a non-crosslinked linear low-density polyethylene resin of 15 to 0.930 g / cm 3 , where X is the heat shrinkage at the melting point of the resin particles + 4 ° C., L is the length of the particles, and D is the diameter of the particles. Resin particles having a relationship of 0.8 <L / D × (100−X) / 100 <1.5 are added to a volatile blowing agent in the presence of at least 0.05 parts by weight of basic magnesium carbonate per 100 parts by weight of the resin particles. The resin particles are dispersed in a dispersing medium, and the resin particles are heated and maintained in a temperature range of −15 ° C. to the melting point to impregnate the resin particles with a foaming agent. And producing a substantially spherical linear low-density polyethylene expanded particle by simultaneously discharging the resin particles and the dispersion medium from the inside of the container under a low-pressure atmosphere. Things.

本発明において用いる直鎖状低密度ポリエチレン(以
下、LLDPEと略称する。)は、エチレンと炭素数3〜8
のα−オレフィンとの共重合体であり、α−オレフィン
としてはプロピレン、ブテン−1、ペンテン−1、ヘキ
セン−1、ヘプテン−1、オクテン−1、4−メチルペ
ンテン−1等が挙げら、これらα−オレフィンの組成が
10モル%以下のものである。上記LLDPEは融点が115℃以
上、密度0.915〜0.930g/cm3、特に好ましくは融点120〜
130℃、密度0.920〜0.930g/cm3のものである。融点が11
5℃未満のLLDPEを用いた発泡粒子は型内成型性が劣り、
この発泡粒子を型内で発泡成型して得られる型内成型体
は物性が劣ったものとなる。また密度が0.915g/cm3未満
のLLDPEは樹脂の剛性が不足し、高発泡倍率の成型体が
得難く、密度0.930g/cm3を超えるLLDPEは高密度ポリエ
チレンに近い物性となり、このようなLLDPEを用いた発
泡粒子は成型性が悪くなる。またLLDPEはMFRが0.1〜5.0
g/10分、特に0.5〜2グラム/10分のものが球状化及び独
立気泡化の点で好ましい。
The linear low-density polyethylene (hereinafter abbreviated as LLDPE) used in the present invention is ethylene and has 3 to 8 carbon atoms.
And α-olefins, such as propylene, butene-1, pentene-1, hexene-1, heptene-1, octene-1, 4-methylpentene-1 and the like, The composition of these α-olefins is
It is less than 10 mol%. The above LLDPE has a melting point of 115 ° C. or higher, a density of 0.915 to 0.930 g / cm 3 , and particularly preferably a melting point of 120 to
It has a temperature of 130 ° C. and a density of 0.920 to 0.930 g / cm 3 . Melting point 11
Foamed particles using LLDPE below 5 ° C have poor moldability in the mold,
The in-mold molded body obtained by foam-molding the expanded particles in a mold has poor physical properties. The LLDPE density is less than 0.915 g / cm 3 is insufficient stiffness of the resin is molded of high expansion ratio is difficult to obtain, LLDPE exceeding density 0.930 g / cm 3 becomes close to the high-density polyethylene properties, like this Foamed particles using LLDPE have poor moldability. LLDPE has an MFR of 0.1 to 5.0
g / 10 minutes, particularly 0.5 to 2 grams / 10 minutes, is preferred in terms of spheroidization and closed cell formation.

上記LLDPE粒子は、添加剤として重合時の触媒残査を
中和するためのステアリン酸カルシウム、樹脂の酸化劣
化を防止するための酸化防止剤、紫外線による劣化を防
止するための紫外線吸収剤、樹脂のスリップ性を良くす
るスリップ剤、樹脂粒子相互のブロッキングを防止する
ブロッキング防止剤等の各種添加剤を含有していてもよ
く、これらは目的により適宜選択して用いられるが、特
にスリップ剤を添加すると球状化がより効果的に行われ
るため好ましい。ステアリン酸カルシウムの添加量は通
常500ppm程度であるが、発泡粒子の気泡径を0.02〜2.0m
m、好ましくは0.05〜1.5mmにコントロールするためには
20〜300ppm程度添加することが好ましい。酸化防止剤及
び紫外線吸収剤としては、通常LLDPE用として用いられ
るものが挙げられるが、気泡径に影響の少ないものが好
ましい。スリップ剤としては通常アマイド系のものが用
いられ、例えばエチレンビス脂肪酸(炭素数16〜18)ア
マイド、高級脂肪酸(炭素数8〜22)アマイド、オレイ
ルパルミトアマイド等が挙げられる。このスリップ剤の
添加量は通常5000ppm以下であるが、通常のスリップ剤
としての目的で添加する場合に比べて多く添加すること
が好ましく、特に300〜1000ppm添加することが好まし
い。ブロッキング防止剤としては通常シリカが用いら
れ、その添加量は300〜1000ppm程度である。
The above LLDPE particles are, as additives, calcium stearate for neutralizing catalyst residue during polymerization, an antioxidant for preventing oxidative deterioration of the resin, an ultraviolet absorber for preventing deterioration by ultraviolet rays, and a resin. Slip agent to improve the slip property, may contain various additives such as an anti-blocking agent to prevent blocking between resin particles, these are appropriately selected and used depending on the purpose, especially when adding a slip agent This is preferable because spheroidization is performed more effectively. The addition amount of calcium stearate is usually about 500 ppm, but the cell diameter of the expanded particles is 0.02 to 2.0 m
m, preferably 0.05 to 1.5 mm
It is preferable to add about 20 to 300 ppm. Examples of the antioxidant and the ultraviolet absorber include those usually used for LLDPE, and those having little influence on the bubble diameter are preferable. As the slip agent, amide-based slip agents are usually used, and examples thereof include ethylene bis fatty acid (C 16-18) amide, higher fatty acid (C 8-22) amide, oleyl palmito amide and the like. The addition amount of this slip agent is usually 5,000 ppm or less, but it is preferable to add more than in the case where it is added for the purpose of a normal slip agent, and it is particularly preferable to add 300 to 1000 ppm. Silica is usually used as an anti-blocking agent, and its addition amount is about 300 to 1000 ppm.

本発明においてLLDPE粒子は押出機のダイスよりスト
ランド状に押出されたものを水中にて冷却し、その後カ
ットした円柱状又は楕円柱状の粒子をそのまま用いるこ
とができるが、粒子の長さをL、直径をDとし、樹脂粒
子の融点+4℃における加熱収縮率をXとしたとき、 0.8<L/D×(100−X)/100<1.5 なる関係を有する樹脂粒子を用いる必要がある。このよ
うな樹脂粒子は、まずストランド状に押出された樹脂の
収縮率と径とを測定し、その収縮率と径において、上記
範囲を満たす長さとなるようにストランドを切断するこ
とにより得られる。
In the present invention, LLDPE particles are extruded into a strand from an extruder die, cooled in water, and then cut cylindrical or elliptical particles can be used as they are, but the length of the particles is L, When the diameter is D and the heat shrinkage at the melting point of the resin particles + 4 ° C. is X, it is necessary to use resin particles having a relationship of 0.8 <L / D × (100−X) / 100 <1.5. Such resin particles are obtained by first measuring the shrinkage and the diameter of the resin extruded into a strand, and cutting the strand so that the shrinkage and the diameter have a length satisfying the above range.

L/D×(100−X)/100の値が0.8未満の粒子を用いる
と発泡粒子が偏平状となり、1.5を超える粒子を用いる
と発泡粒子がラグビー球状となる。上記の樹脂粒子とし
ては通常L/Dの値が0.8〜3、特に好ましくは0.8〜2程
度のものが用いられ得る。
When particles having a value of L / D × (100−X) / 100 less than 0.8 are used, the foamed particles become flat, and when particles exceeding 1.5 are used, the foamed particles become rugby spherical. As the above-mentioned resin particles, those having an L / D value of about 0.8 to 3, particularly preferably about 0.8 to 2, can be used.

上記樹脂粒子の融点とは示差走査熱量測定における融
解ピークの頂点の温度であり、融解終了温度とは異なる
ものである。樹脂粒子の加熱収縮率とは押出機からスト
ランド状に押し出されたものをカットして得られる円柱
状又は楕円柱状の樹脂粒子(ペレット)の長さをLと
し、これを融点+4℃にて10分間加熱した時の長さ方向
の収縮率をいう。また樹脂粒子の径は円柱状の樹脂粒子
の場合にはその直系であり、楕円柱状の樹脂粒子の場合
には長径と短径との平均値である。
The melting point of the resin particles is the temperature of the peak of the melting peak in differential scanning calorimetry, and is different from the melting end temperature. The heat shrinkage ratio of the resin particles is defined as L, the length of the columnar or elliptic resin particles (pellets) obtained by cutting the extruded material into a strand shape from the extruder. It means the shrinkage in the longitudinal direction when heated for one minute. In the case of cylindrical resin particles, the diameter of the resin particles is a direct line, and in the case of elliptic resin particles, it is the average value of the major axis and the minor axis.

本発明方法ではまず、上記のLLDPE粒子を塩基性炭酸
マグネシウム存在下に密閉容器内で揮発性発泡剤ととも
に分散媒に分散させて加熱する。この揮発性発泡剤とし
ては例えばプロパン、ブタン、ペンタン、ヘキサン、ヘ
プタン等の脂肪族炭化水素類、シクロブタン、シクロペ
ンタン等の環式脂肪族炭化水素類、モノクロロジフロロ
メタン、トリクロロフロロメタン、ジクロロフロロメタ
ン、ジクロロテトラフロロエタン、メチルクロライド、
エチルクロライド、メチレンクロライド等のハロゲン化
炭化水素類等が挙げられる。これら発泡剤の添加量は発
泡剤の種類、所望する発泡倍率等によって異なるが、通
常樹脂粒子100重量部に対して5〜40重量部である。塩
基性炭酸マグネシウムは樹脂粒子100重量部当たり0.05
重量部以上用いる必要があるが、2重量部を超える量を
用いてもそれ以上の球状化効果の向上は得られず、特に
効率良く球状化を行うために必要な添加量は0.4〜1.5重
量部である。分散媒としては樹脂粒子を溶解しないもの
であれば、ほとんどの溶媒が使用可能であるが、通常は
水が用いられる。分散媒に樹脂粒子と揮発性発泡剤とを
分散せしめた後に加熱する温度は、樹脂粒子の融点−15
℃〜融点の範囲の温度である。加熱温度がこの範囲より
低い温度であると発泡倍率の低下が著しく、またこの範
囲より高い温度であると得られる発泡粒子の独立気泡率
が低下し、優れた発泡粒子が得られない。加熱時の容器
内圧力は用いた揮発性発泡剤の蒸気圧以上でも蒸気圧未
満でも良い。尚、樹脂粒子を分散倍に分散させるに際し
て、必要に応じてドデシルベンゼンスルフォン酸ナトリ
ウム等の界面活性剤を併用することができ、その添加量
は分散媒に対して4〜3000ppm程度が好ましい。
In the method of the present invention, first, the above LLDPE particles are dispersed in a dispersion medium together with a volatile foaming agent in a closed vessel in the presence of basic magnesium carbonate and heated. Examples of the volatile foaming agent include aliphatic hydrocarbons such as propane, butane, pentane, hexane, and heptane; cycloaliphatic hydrocarbons such as cyclobutane and cyclopentane; monochlorofluoromethane, trichlorofluoromethane, and dichlorofluoromethane. Methane, dichlorotetrafluoroethane, methyl chloride,
Halogenated hydrocarbons such as ethyl chloride and methylene chloride are exemplified. The amount of the foaming agent varies depending on the type of the foaming agent, the desired expansion ratio, and the like, but is usually 5 to 40 parts by weight based on 100 parts by weight of the resin particles. Basic magnesium carbonate is 0.05 per 100 parts by weight of resin particles.
It is necessary to use more than 2 parts by weight, but even if the amount exceeds 2 parts by weight, no further improvement of the spheroidizing effect is obtained, and the addition amount necessary for performing the spheroidization particularly efficiently is 0.4 to 1.5 parts by weight. Department. As the dispersion medium, most solvents can be used as long as they do not dissolve the resin particles, but usually water is used. After the resin particles and the volatile foaming agent are dispersed in the dispersion medium, the heating temperature is the melting point of the resin particles −15.
Temperature in the range of ° C. to melting point. If the heating temperature is lower than this range, the expansion ratio is significantly reduced, and if the heating temperature is higher than this range, the closed cell ratio of the obtained expanded particles is reduced, and excellent expanded particles cannot be obtained. The pressure in the container at the time of heating may be higher than or lower than the vapor pressure of the volatile foaming agent used. When dispersing the resin particles in a dispersion ratio, a surfactant such as sodium dodecylbenzenesulfonate can be used in combination, if necessary, and the amount of the surfactant is preferably about 4 to 3000 ppm based on the dispersion medium.

次いで容器内温度を樹脂粒子の融点−15℃〜融点の範
囲の温度に保持しながら、容器の一端を開放して樹脂粒
子と分散媒とを同時に容器内より低圧の雰囲気、通常は
大気圧下に放出して樹脂粒子を発泡せしめることにより
球状のLLDPE発泡粒子が得られる。このようにして得ら
れる発泡粒子は通常、嵩密度0.01〜0.023g/cm3、独立気
泡率60%以上、平均気泡数1000個/mm2以下のものであ
る。
Next, while maintaining the temperature in the container at a temperature in the range of the melting point of the resin particles −15 ° C. to the melting point, one end of the container is opened and the resin particles and the dispersion medium are simultaneously placed in a lower pressure atmosphere than the inside of the container, usually under atmospheric pressure. To expand the resin particles to obtain spherical LLDPE expanded particles. The foamed particles thus obtained usually have a bulk density of 0.01 to 0.023 g / cm 3 , a closed cell ratio of 60% or more, and an average number of cells of 1000 / mm 2 or less.

このようにして得られた発泡粒子は型内成型体の製造
用として用いることができ、型内成型体は発泡粒子を通
常、常圧下で所定時間熟成し、次いで必要に応じて無機
ガス又は無機ガスと揮発性発泡剤との混合ガスによて加
圧熟成して内圧付与を行った後、所定の成型型内に充填
して0.6〜2kg/cm2・G程度の蒸気で加熱発泡せしめて得
られるが、本発明方法により得られる発泡粒子は球状で
型内への充填性が良いため、得られる型内成型体は発泡
粒子相互の融着性に優れ、包装材、緩衝材、建築資材、
断熱材、食品容器、浮揚材等として優れた利用価値を有
する。
The foamed particles thus obtained can be used for the production of an in-mold molded product, and the in-mold molded product is usually aged for a predetermined time under normal pressure, and then, if necessary, an inorganic gas or an inorganic gas. After applying pressure and aging with a mixed gas of a gas and a volatile foaming agent to give an internal pressure, filling in a predetermined mold and heating and foaming with steam of about 0.6 to 2 kg / cm2G However, since the expanded particles obtained by the method of the present invention are spherical and have a good filling property in the mold, the obtained molded article in the mold has excellent fusion property between the expanded particles, and can be used as a packaging material, a cushioning material, or a building material. ,
It has excellent utility value as heat insulator, food container, flotation material, etc.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜12、比較例1〜7 第1表に示す融点、密度、MFR有するLLDPEを押出機内
で溶融して押出機先端のダイスより水中へストランド状
に押出した後、同表に示すL/D値となるようにカットし
て円柱状の樹脂粒子とした。尚、このLLDPEは添加剤と
してステアリン酸カルシウムを170ppm、エルカ酸アマイ
ドを1000ppm、イルガノックス1010を250ppm,フォスファ
イト168を750ppmを含有していた。この樹脂粒子の加熱
収縮率等の性状を第1表にあわせて示す。またこれらの
樹脂粒子の加熱収縮率:XとしてL/Dの値とをプロットし
た結果を第1図に示す。第1図中○は実施例の樹脂粒子
を、×は比較例の樹脂粒子を示す。
Examples 1 to 12, Comparative Examples 1 to 7 LLDPE having the melting point, density and MFR shown in Table 1 was melted in an extruder and extruded into water in a strand form from a die at the tip of the extruder. The resin particles were cut to have a / D value to obtain columnar resin particles. This LLDPE contained 170 ppm of calcium stearate, 1000 ppm of erucic acid amide, 250 ppm of Irganox 1010, and 750 ppm of phosphite 168 as additives. The properties of the resin particles such as the heat shrinkage are shown in Table 1. FIG. 1 shows the result of plotting the heat shrinkage ratio of these resin particles: X with the value of L / D. In FIG. 1, ○ indicates the resin particles of the example, and x indicates the resin particles of the comparative example.

上記粒子100kg及び第1表に示す量の発泡剤(ジクロ
ロジフロロメタン)を、同表に示す量の塩基性炭酸マグ
ネシウムとともに、400のオートクレーブ中で220の
水に分散させ、撹拌下に同表に示す温度に加熱して10分
間保持した。
100 kg of the above particles and the blowing agent (dichlorodifluoromethane) in the amount shown in Table 1 together with the basic magnesium carbonate in the amount shown in Table 1 were dispersed in 220 water in a 400 autoclave, and stirred under stirring. And held for 10 minutes.

次いで同温度にて容器内圧を空気で30kg/cm2・Gに保
持しながら容器の一端を開放して樹脂粒子と水とを大気
圧下に放出して発泡せしめ、発泡粒子を得た。得られた
発泡粒子の発泡倍率、形状を第1表にあわせて示す。
Then, at the same temperature, one end of the container was opened while the internal pressure of the container was maintained at 30 kg / cm 2 · G with air, and the resin particles and water were released under atmospheric pressure and foamed to obtain foamed particles. The expansion ratio and shape of the obtained expanded particles are shown in Table 1.

得られた発泡粒子を1日間大気圧下に放置して養生し
た後、300mm×300mm×60mm(内寸法)の金型に充填し、
1kg/cm2・Gの蒸気で5秒間加熱して発泡せしめて成型
した。得られた成型体の性状をボイドの有無により評価
した。結果を第1表にあわせて示す。
After leaving the obtained foamed particles under atmospheric pressure for one day to cure, they are filled into a 300 mm x 300 mm x 60 mm (inner dimension) mold,
It was heated for 5 seconds with steam of 1 kg / cm 2 · G to foam and mold. The properties of the obtained molded body were evaluated based on the presence or absence of voids. The results are shown in Table 1.

尚、成型体のボイドの有無の評価は、得られた成型体
の任意箇所の50mm×50mmの切断面を観察し、ボイドの最
も長い部分の長さを測定し、この長さが2mm以上のボイ
ドがいくつあるかにより以下の基準で判定した。
In addition, the evaluation of the presence or absence of voids in the molded body, observing a 50 mm × 50 mm cut surface of an arbitrary part of the obtained molded body, measuring the length of the longest part of the void, this length is 2 mm or more The following criteria were used to determine the number of voids.

10個未満・・・・・・・・・○ 10〜30個未満・・・・・・△ 30個以上・・・・・・・・・× 〔発明の効果〕 以上説明したように本発明方法は、樹脂粒子の融点+
4℃における加熱収縮率:Xと、樹脂粒子の長さ:L及び
径:Dとの間に、 0.8<L/D×(100−X)/100<1.5 なる関係を有する無架橋LLDPE粒子を用い、このLLDPE粒
子を密閉容器内で、樹脂粒子100重量部当たりに対して
0.5重量部以上の塩基性炭酸マグネシウムの存在下に揮
発性発泡剤とともに分散媒に分散させて特定温度範囲に
加熱した後、容器内より低圧下に放出して発泡せしめる
方法を採用したことにより、従来のように別工程で樹脂
粒子の球状化を行う必要がなく、円柱状又は楕円性状の
樹脂粒子を用いて発泡を行っても発泡工程において同時
に球状化を行うことができ、型内成型に供する際の充填
率に優れ、ボイド等の少ない優れた成型体を製造するこ
のできる球状の無架橋LLDPE発泡粒子を煩雑な工程を経
ることなく容易に製造することができる効果を有する。
Less than 10 ・ ・ ・ ・ ・ ・ ○ 10 to less than 30 ・ ・ ・ ・ ・ ・ △ 30 or more ・ ・ ・ ・ ・ ・ ・ ・ ・ × [Effects of the Invention] As described above, the method of the present invention provides a method of using the melting point of the resin particles +
Non-crosslinked LLDPE particles having a relationship of 0.8 <L / D × (100−X) / 100 <1.5 between the heat shrinkage at 4 ° C.:X and the length: L and diameter: D of the resin particles are used. Used, the LLDPE particles in a closed container, per 100 parts by weight of resin particles
By dispersing in a dispersion medium together with a volatile foaming agent in the presence of 0.5 parts by weight or more of basic magnesium carbonate and heating to a specific temperature range, and then releasing the foam under low pressure from the container to foam the foam, It is not necessary to perform spheroidization of resin particles in a separate process as in the conventional case, and even when foaming is performed using columnar or elliptical resin particles, spheroidization can be performed simultaneously in the foaming process, and in-mold molding is performed. This has the effect that spherical non-crosslinked LLDPE foamed particles that can be used to produce an excellent molded article having an excellent filling factor and few voids when supplied can be easily produced without going through complicated steps.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例と比較例の各樹脂粒子の加熱収縮率:Xを
横軸に、L/Dの値を縦軸にとって、XとL/Dの値をプロッ
トし、実施例と比較例との間の境界を求めたグラフであ
る。
FIG. 1 plots the X and L / D values with the X-axis as the abscissa and the L / D value as the ordinate, with respect to the heat shrinkage of each resin particle of Example and Comparative Example. It is the graph which calculated | required the boundary between.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−187035(JP,A) 特開 昭63−113040(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-187035 (JP, A) JP-A-63-113040 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】密閉容器内で融点115℃以上、密度0.915〜
0.930g/cm3の無架橋直鎖状低密度ポリエチレン樹脂より
なり、樹脂粒子の融点+4℃における加熱収縮率をX、
粒子の長さをL、粒子の径をDとしたときに、 0.8<L/D×(100−X)/100<1.5 なる関係を有する樹脂粒子を、該樹脂粒子100重量部当
たりに対して0.05重量部以上の塩基性炭酸マグネシウム
の存在下に揮発性発泡剤とともに分散媒に分散させて樹
脂粒子の融点−15℃〜融点の温度範囲に加熱保持して樹
脂粒子に発泡剤を含浸させ、次いで容器内温度を上記温
度範囲に保持しながら容器の一端を開放して樹脂粒子と
分散媒とを同時に容器内より低圧の雰囲気下に放出して
略球状の直鎖状低密度ポリエチレン発泡粒子を得ること
を特徴とする球状ポリエチレン発泡粒子の製造法。
1. A sealed container having a melting point of at least 115 ° C. and a density of 0.915 to 1.
It is made of 0.930 g / cm 3 of a non-crosslinked linear low-density polyethylene resin.
Resin particles having a relationship of 0.8 <L / D × (100−X) / 100 <1.5, where L is the length of the particles and D is the diameter of the particles, are based on 100 parts by weight of the resin particles. Disperse in a dispersion medium together with a volatile foaming agent in the presence of 0.05 parts by weight or more of basic magnesium carbonate and impregnate the resin particles with a foaming agent by heating and holding the resin particles in the temperature range of -15 ° C. to the melting point, Then, while maintaining the temperature in the container within the above temperature range, one end of the container is opened, and the resin particles and the dispersion medium are simultaneously released from the inside of the container under a low pressure atmosphere to form substantially spherical linear low-density polyethylene foamed particles. A method for producing expanded spherical polyethylene particles.
JP20338788A 1988-08-16 1988-08-16 Method for producing spherical polyethylene expanded particles Expired - Lifetime JP2603858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20338788A JP2603858B2 (en) 1988-08-16 1988-08-16 Method for producing spherical polyethylene expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20338788A JP2603858B2 (en) 1988-08-16 1988-08-16 Method for producing spherical polyethylene expanded particles

Publications (2)

Publication Number Publication Date
JPH0253837A JPH0253837A (en) 1990-02-22
JP2603858B2 true JP2603858B2 (en) 1997-04-23

Family

ID=16473198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20338788A Expired - Lifetime JP2603858B2 (en) 1988-08-16 1988-08-16 Method for producing spherical polyethylene expanded particles

Country Status (1)

Country Link
JP (1) JP2603858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813749B2 (en) 2011-03-08 2015-11-17 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold foam molding, and method for producing polyethylene resin foam particles
EP3936560A4 (en) * 2019-03-04 2022-11-09 Kaneka Corporation Polyolefin resin particles and use thereof

Also Published As

Publication number Publication date
JPH0253837A (en) 1990-02-22

Similar Documents

Publication Publication Date Title
US4399087A (en) Process for producing foamed polyolefin articles from aged pre-foamed particles of polyolefin resins
US5348984A (en) Expandable composition and process for extruded thermoplastic foams
EP0647673B1 (en) Expandable polyolefin compositions and preparation process utilizing isobutane blowing agent
US4694027A (en) Expandable polyolefin compositions and preparation process utilizing isobutane blowing agent
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
JP3207219B2 (en) Low-expanded particles of polyolefin resin and method for producing the same
JPH0686544B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles and molding method thereof
JPH0386736A (en) Production of foamed polyolefin resin particle
JP4238032B2 (en) Blends of ethylene polymers with improved modulus and melt strength and articles made from these blends
EP0036561B1 (en) Foamable olefin polymer compositions stabilized with certain naphthyl amine compounds, foaming process using them and foam article produced
JP2603858B2 (en) Method for producing spherical polyethylene expanded particles
JPH08504471A (en) Extruded closed cell propylene polymer foam and method of making same
JPH07278365A (en) Low-density polyolefin foam, foamable polyolefin compositionand their production
JPS63236629A (en) Manufacture of polyolefine foam
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JPS614738A (en) Preparation of foamed polypropylene resin particle
JP3599436B2 (en) Linear low-density polyethylene resin foam molded article and method for producing the same
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JPS6244778B2 (en)
JPS612741A (en) Manufacture of polypropylene resin expanded beads
JPS6213981B2 (en)
KR850000112B1 (en) A foaming method of aliphatic olefin polymers
JP3218333B2 (en) Expanded polyolefin resin particles and method for producing the same