JP3207219B2 - Low-expanded particles of polyolefin resin and method for producing the same - Google Patents

Low-expanded particles of polyolefin resin and method for producing the same

Info

Publication number
JP3207219B2
JP3207219B2 JP17475291A JP17475291A JP3207219B2 JP 3207219 B2 JP3207219 B2 JP 3207219B2 JP 17475291 A JP17475291 A JP 17475291A JP 17475291 A JP17475291 A JP 17475291A JP 3207219 B2 JP3207219 B2 JP 3207219B2
Authority
JP
Japan
Prior art keywords
particles
expanded
resin
foamed
expansion ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17475291A
Other languages
Japanese (ja)
Other versions
JPH04372630A (en
Inventor
康 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP17475291A priority Critical patent/JP3207219B2/en
Publication of JPH04372630A publication Critical patent/JPH04372630A/en
Application granted granted Critical
Publication of JP3207219B2 publication Critical patent/JP3207219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、発泡剤のCFC、HC
FC規制をクリアーする処の二酸化炭素を、ポリオレフ
ィン系樹脂粒子に気相含浸させて、発泡剤とするポリオ
レフィン系樹脂の製造方法、及びその製造方法で初めて
達成された、従来品に比べ「気泡1個当たりの見掛けの
膜厚み」が一定範囲(4〜26μm)で厚い点で改良さ
れたポリオレフィン系樹脂の低倍率発泡粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to foaming agents such as CFC and HC.
A method for producing a polyolefin-based resin as a foaming agent by impregnating polyolefin-based resin particles in a gas phase with carbon dioxide that meets the FC regulations, and a method for producing a polyolefin-based resin for the first time, which was achieved for the first time by a conventional method, "bubble 1 The present invention relates to a low-magnification expanded particle of a polyolefin resin, which is improved in that the apparent film thickness per unit is thick within a certain range (4 to 26 μm) .

【0002】[0002]

【従来の技術】従来から型内成形に供する発泡粒子とし
ては、均質構造の発泡粒子「独立気泡構造で気泡径や粒
子径の揃った状態の発泡粒子」が理想的であるとされて
いる。これは、型内に充填して加熱し、発泡粒子を膨張
させて粒子相互間の空間が埋まった密に融着した状態の
成形体にしようとする際に、均質構造の発泡粒子の方が
型窩内への充填状態が均質になることや、予め発泡粒子
に付与しておいた膨張能が大きく発現すること、及び得
られた成形体の特性が本質的に良くなることに基づくも
のと考えられている。
2. Description of the Related Art Conventionally, as foamed particles to be subjected to in-mold molding, it is considered that foamed particles having a homogeneous structure "foamed particles having a closed cell structure and uniform cell diameter and particle diameter" are ideal. This is because foamed particles with a homogeneous structure are better when they are filled in a mold and heated to expand the foamed particles to form a closely fused molded body in which the spaces between the particles are filled. It is based on the fact that the filling state in the mold cavity is uniform, the expansion ability previously given to the foamed particles is greatly expressed, and the characteristics of the obtained molded body are essentially improved. It is considered.

【0003】例えば、特公昭61−11253号公報及
び特公平2−50944号公報には、低発泡倍率の発泡
粒子を作成しておき、これを段階的に膨張させて目標発
泡倍率の発泡粒子を得る方法が記載されている。この技
術思想は、発泡粒子の再膨張には均質な独立気泡構造の
発泡粒子が必要となるので、先ず低発泡状態の粒子に
し、これを段階的に丁寧に膨張させると、成形に供する
発泡粒子は、均質な独立気泡構造で粒子形状(粒子径)
の揃った状態になることを教示している。しかし、この
特公昭61−11253号公報及び特公平2−5094
4号公報には、「気泡1個当たりの見掛けの膜厚み」が
厚いポリオレフィン系樹脂の低倍率発泡粒子を得る方法
に関する技術的内容や、「気泡1個当たりの見掛けの膜
厚み」が厚い発泡粒子が発揮する、特異な効能について
の開示はない。
[0003] For example, Japanese Patent Publication No. 61-11253 and Japanese Patent Publication No. 2-50944 disclose that foamed particles having a low expansion ratio are prepared in advance, and expanded in a stepwise manner to obtain expanded particles having a target expansion ratio. The method of obtaining is described. This technical concept is based on the fact that foamed particles having a uniform closed cell structure are required for re-expansion of foamed particles. Is a homogeneous closed cell structure and particle shape (particle size)
Are taught to be in the same state. However, Japanese Patent Publication No. 61-11253 and Japanese Patent Publication No. 2-5094
In JP-A No. 4 (KOKAI) No. 4, the technical content of a method for obtaining low-magnification expanded particles of a polyolefin resin having a large “apparent film thickness per cell” and a foaming method having a large “apparent film thickness per cell” are described. There is no disclosure of the specific effects exerted by the particles.

【0004】一方、二酸化炭素をポリオレフィン系樹脂
の発泡剤に使用することは、例えば特公昭62−447
77号公報及び特公昭62−61227号公報に記載さ
れていて公知である。また、二酸化炭素を樹脂粒子の発
泡剤にして得た発泡樹脂粒子は、これに空気などの無機
ガスを追添して膨張能を付与し、型内で加熱成形すれば
型内成形体に出来ることも、例えば特公昭63−419
42号公報等に記載されている。この3つの発明は、オ
ゾン層破壊の問題が地球規模の環境問題として重視さ
れ、発泡剤として重用されてきた。例えば、ジクロロジ
フルオロメタン、モノクロロジフルオロメタン等の揮発
性有機発泡剤が、CFC、HCFC規制によって使用が
制約される昨今では、上記規制をクリアーする処の二酸
化炭素を樹脂粒子の発泡剤とする点で注目される。
[0004] On the other hand, the use of carbon dioxide as a blowing agent for polyolefin resins has been described in, for example, Japanese Patent Publication No. 62-47 / 1987.
No. 77 and Japanese Patent Publication No. 62-61227, which are well known. In addition, foamed resin particles obtained by using carbon dioxide as a foaming agent for resin particles can be expanded into an in-mold molded article by adding an inorganic gas such as air to the expanded resin particles and imparting expandability thereto, followed by heat molding in a mold. For example, Japanese Patent Publication No. 63-419
No. 42, and the like. In these three inventions, the problem of depletion of the ozone layer is emphasized as a global environmental problem, and has been used as a foaming agent. For example, volatile organic foaming agents such as dichlorodifluoromethane and monochlorodifluoromethane have been restricted in use by CFC and HCFC regulations. Attention.

【0005】とは言え、二酸化炭素を樹脂粒子の発泡剤
にすることは容易なことではない。その理由は、一般に
二酸化炭素は、揮発性有機発泡剤に比べて樹脂への溶解
性が低く、これを直接ポリオレフィン系樹脂に均質含浸
させることが困難な上に、逆に加熱発泡させる時は、含
浸した二酸化炭素の樹脂からの逸散が速すぎることや、
含浸した二酸化炭素それ自体が気泡核となって気泡の成
長を阻害してしまう問題等があって、型内成形が可能な
良質の発泡粒子が得られないためだと考えられる。その
ためか、上記三つの発明の技術では、いずれも水性分散
媒に二酸化炭素を溶解させた状態にして樹脂粒子に接触
含浸させ、そして「得られた発泡性粒子は高温・高圧下
の分散媒と一緒に低圧の雰囲気下に放出して発泡させる
方式」を採用している処に特長がある。
However, it is not easy to use carbon dioxide as a blowing agent for resin particles. The reason is that carbon dioxide is generally less soluble in a resin than a volatile organic foaming agent, and it is difficult to impregnate it directly into a polyolefin resin. That the impregnated carbon dioxide escapes too quickly from the resin,
This is probably because there is a problem that impregnated carbon dioxide itself becomes a cell nucleus and inhibits cell growth, and high-quality expanded particles that can be formed in a mold cannot be obtained. For this reason, in the above three invention techniques, all of the aqueous dispersion medium in which carbon dioxide is dissolved is contacted and impregnated with the resin particles, and `` the obtained expandable particles are dispersed with the dispersion medium under high temperature and high pressure. It is characterized by the fact that it employs a method of releasing and foaming under a low-pressure atmosphere.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、二酸化
炭素を用いる上記三つの発明では、均質構造の発泡粒子
「独立気泡構造で気泡径や粒子径の揃った状態の発泡粒
子」が得られない欠点、及び膨張能に乏しい発泡粒子に
なってしまう欠点があり、結果的に、型内成形用に適し
た発泡粒子が得られない問題点が依然として残る。この
原因は、発泡方法自体が持つ本質的な難点、即ちi)発
泡剤の含浸時や発泡性粒子の放出時に生じる容器内・分
散媒内の発泡剤成分や圧力の変動が、得られる発泡粒子
の気泡構造にバラツキを与えてしまう問題点、ii)分散
媒と共に放出された時に生じる粒子群内の温度勾配に起
因する、粒子個々の気泡構造及び粒子形状が不揃いにな
り易い問題点が未解決のままである。その上に、二酸化
炭素を発泡剤にして低発泡化させることの困難さが加わ
ってきているためと推察される。
However, in the above three inventions using carbon dioxide, there are disadvantages in that foamed particles having a homogeneous structure "foamed particles having a closed cell structure and uniform cell diameter and particle diameter" cannot be obtained. Further, there is a drawback that the expanded particles have poor expandability, and as a result, there remains a problem that expanded particles suitable for in-mold molding cannot be obtained. This is because of the inherent difficulty of the foaming method itself, i.e., fluctuations in the foaming agent component and pressure in the container and in the dispersion medium caused by impregnation of the foaming agent and release of the foamable particles, resulting in the foamed particles being obtained. Unsolved problems that cause the bubble structure of the particles to vary, and ii) the bubble structure and particle shape of the particles tend to be irregular due to the temperature gradient in the particle group generated when the particles are released together with the dispersion medium. Remains. In addition, it is presumed that the difficulty of using carbon dioxide as a blowing agent to reduce the foaming has been added.

【0007】本発明者らは、上記の現状に鑑みて長期に
わたり二酸化炭素を樹脂粒子の発泡剤にする研究を重ね
た結果、従来品に比べて「気泡1個当たりの見掛けの膜
厚み」が厚い改良された低発泡倍率の発泡粒子を得る
ことに成功したものである。そして、驚くべきことに、
本発明で完成された発泡粒子は、従来の揮発性有機発泡
剤を用いて得てきた低発泡の発泡粒子のそのいずれより
も、膨張性能と独立気泡率の維持性に優れ、型内成形用
に適した発泡粒子になる事実を究明し、本発明の完成を
見たものである。しかして、本発明の目的は、CFC、
HCFC規制をクリアーする処の二酸化炭素を用いて、
従来の低発泡倍率の発泡粒子のそのいずれよりも、膨張
性能と独立気泡率の維持性に優れたポリオレフィン系樹
脂発泡粒子が得られる製造方法を提供することであり、
その結果として、型内成形用に適した低発泡倍率のポリ
オレフィン系樹脂発泡粒子を提供することである。
In view of the above-mentioned situation, the present inventors have conducted long-term research on using carbon dioxide as a foaming agent for resin particles. As a result, the "apparent film thickness per bubble" is smaller than that of a conventional product. It has succeeded in obtaining thick , improved low expansion ratio expanded particles. And surprisingly,
The foamed particles completed in the present invention are superior to any of the low-foamed foamed particles obtained using a conventional volatile organic foaming agent in the expansion performance and the maintainability of the closed cell ratio, and are used for in-mold molding. The present inventors have investigated the fact that the foamed particles are suitable for the present invention and have completed the present invention. Thus, an object of the present invention is to provide a CFC,
Using carbon dioxide to clear HCFC regulations,
It is to provide a production method capable of obtaining expanded polyolefin resin particles having excellent expansion performance and excellent maintainability of a closed cell rate, compared to any of the conventional expanded particles having a low expansion ratio,
As a result, an object of the present invention is to provide expanded polyolefin resin particles having a low expansion ratio suitable for in-mold molding.

【0008】[0008]

【課題を解決するための手段】上記本発明の目的は、本
発明の発泡粒子、即ち「ポリオレフィン系樹脂でできた
独立気泡構造の低発泡倍率の発泡粒子において、この発
泡粒子の発泡構造は、 発泡倍率は1.5〜3.8c
3 /gの範囲にあり、 気泡は粒子径の方向にほぼ
均等に分布しており、 気泡1個当たりの見掛けの
膜厚み」が4〜26μmの範囲であることを特徴とす
る、ポリオレフィン系樹脂の低発泡粒子を採用するこ
と、及び本発明の製造方法、即ちポリオレフィン系樹脂
粒子を二酸化炭素の臨界圧力未満の高圧状態にあるガス
雰囲気下に保持して、該樹脂粒子の樹脂分100重量部
に対して二酸化炭素ガスの5重量部未満を上記樹脂粒子
内に含浸させて発泡性樹脂粒子となし、後にこれを加熱
して発泡させ、発泡倍率が1.5〜3.8cm3 /gの
発泡粒子にすることを特徴とする、ポリオレフィン系樹
脂の低発泡粒子の製造方法を採用することによって、容
易に達成することができる。
The object of the present invention is to provide a foamed particle of the present invention, that is, a foamed particle of a closed cell structure made of a polyolefin resin and having a low expansion ratio, wherein the foamed structure of the foamed particle is: Foaming ratio is 1.5 to 3.8c
m 3 / g, bubbles are almost uniformly distributed in the direction of particle diameter, and apparent film thickness per bubble” is in a range of 4 to 26 μm. The low-expanded particles of the resin-based resin, and the production method of the present invention, that is, the polyolefin-based resin particles are held in a gas atmosphere in a high-pressure state lower than the critical pressure of carbon dioxide, and the resin content of the resin particles is 100%. The resin particles are impregnated with less than 5 parts by weight of carbon dioxide gas with respect to parts by weight to form expandable resin particles, which are then heated and expanded, and the expansion ratio is 1.5 to 3 It can be easily achieved by adopting a method for producing low-expanded polyolefin resin particles, which is characterized by making expanded particles of 0.8 cm 3 / g.

【0009】以下、本発明を図面に基いて詳述する。図
1は、本発明の発泡粒子(二酸化炭素の気相含浸:含浸
量1.6重量部、発泡倍率2.6cm3 /gのもの)の
断面拡大(×150倍)模式図である。図2は、比較品
の発泡粒子(二酸化炭素溶解の液相含浸、含浸量測定不
可能、発泡倍率2.6cm3 /gのもの)の断面拡大
(×150倍)模式図である。図3は、従来品の発泡粒
子(モノクロロジフルオロメタンの液相含浸、含浸量
4.0重量部、発泡倍率2.6cm3 /gのもの)の断
面拡大(×150倍)模式図である。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic enlarged cross-sectional view (× 150) of the expanded particles of the present invention (gas phase impregnation with carbon dioxide: impregnation amount 1.6 parts by weight, expansion ratio 2.6 cm 3 / g). FIG. 2 is an enlarged schematic (× 150) cross-sectional view of a foamed particle of a comparative product (having a liquid phase impregnated with carbon dioxide dissolved, impregnating amount cannot be measured, and an expansion ratio of 2.6 cm 3 / g). FIG. 3 is a schematic enlarged cross-sectional view (× 150 times) of a conventional expanded particle (having a liquid phase impregnation of monochlorodifluoromethane, an impregnation amount of 4.0 parts by weight, and an expansion ratio of 2.6 cm 3 / g).

【0010】先ず、図1〜3において、これらは共にポ
リオレフィン系樹脂を基材樹脂とする低発泡(この場
合、発泡倍率を揃えて表示)の粒子である。一般に、こ
の粒子は、独立気泡に富むことで(独立気泡率90%以
上)、実用時に空気などの無機ガスを含浸させ、加熱し
て目標の発泡倍率に迄膨張させ、型内成形に供すること
が出来る有用性を持つ発泡粒子として知られている。上
記3種の各発泡粒子の発泡構造上の特徴を図1〜3の対
比で見ると、本発明(図1)の低発泡粒子は比較的大き
な径の気泡が、比較的径寸法が揃った状態で、樹脂(粒
子)の中にほぼ均等に配置されている。
First, in FIGS. 1 to 3, these are low-foamed particles (in this case, the expansion ratios are shown as uniform) using a polyolefin-based resin as a base resin. Generally, these particles are rich in closed cells (90% or more closed cells ), so that they are impregnated with an inorganic gas such as air at the time of practical use, heated and expanded to a target expansion ratio, and subjected to in-mold molding. It is known as a foamed particle having a usefulness. Looking at the characteristics of the foaming structure of each of the three types of foaming particles in comparison with FIGS. 1 to 3, the low-foaming particles of the present invention (FIG. 1) have relatively large air bubbles and relatively uniform diameters. In this state, they are almost evenly arranged in the resin (particles).

【0011】これに対して、比較品(図2)の発泡粒子
は、大きな径の小数の気泡と、極小径の多数の気泡とが
樹脂(粒子)の中に混在して分布し、大きな径の気泡で
発泡倍率が保持している様子が伺える。また、従来品
(図3)の発泡粒子は、比較的小さな径の気泡が、径寸
法にバラツキを持った状態で、樹脂(粒子)の中にほぼ
均等に配置した、気泡数の多い発泡構造であることが分
かる。
On the other hand, in the foamed particles of the comparative product (FIG. 2), a small number of cells having a large diameter and a large number of cells having an extremely small diameter are mixed and distributed in the resin (particles). It can be seen that the expansion ratio is maintained by the bubbles. Further, the foamed particles of the conventional product (FIG. 3) have a foam structure having a large number of bubbles, in which bubbles having a relatively small diameter are arranged almost uniformly in the resin (particles) in a state where the diameters vary. It turns out that it is.

【0012】一般に、発泡倍率は、一定の容積内に占め
る気泡のその気泡径と気泡数との関係で定まる。しか
し、上記本発明の発泡粒子のような特徴のある粒子で
も、或る範囲を持った発泡倍率の粒子として、これを全
体表現したい時は、平均気泡径や単位面積当たりの気泡
数等でこの特徴を表現しようとすると、平均することや
バラツキを範囲で表現することの操作で、実質上の表現
内容が不用意に拡大され、従来品の発泡粒子をも包含す
る表現になる可能性がある。従って、本発明者らは、従
来品と区分ができ、且つ本発明の粒子の特徴が表現でき
る発泡構造の表現法を工夫した。
In general, the expansion ratio is determined by the relationship between the bubble diameter and the number of bubbles occupying a certain volume. However, even in the case of particles having characteristics such as the expanded particles of the present invention, as particles having an expansion ratio having a certain range, when it is desired to express this as a whole, the average cell diameter, the number of cells per unit area, etc. When trying to express the features, the operation of averaging and expressing the variation in a range may inadvertently expand the actual expression content, and there is a possibility that the expression will include the foam particles of the conventional product . Therefore, the present inventors have devised a method of expressing a foamed structure that can be distinguished from conventional products and that can express the characteristics of the particles of the present invention.

【0013】即ち、それは、本発明の発泡粒子の構成要
件である処の、 発泡倍率は1.5〜3.8cm3
gの範囲にあり、 気泡は粒子径の方向に均等に分布
しており、 気泡1個当たりの見掛けの膜厚み」が
4〜26μmの範囲であるとする表現である。先ず、
は、本発明の発泡粒子として具現できる発泡程度の領域
を示すものである。つまり、狭い範囲に限られた極めて
低い発泡状態の粒子を対象にしたものであることを意味
している。この制限理由は、発泡倍率が1.5未満で
は、粒子全体に占める樹脂量が多くなり過ぎるためか、
空気などの無機ガスを含浸させてする加熱膨張ではガス
含浸操作が困難になるし、発揮される膨張能も小さくな
る欠陥が生じる。逆に、発泡倍率が3.8以上のもの
は、粒子を構成する気泡全体の径寸法が小さくなりすぎ
るか、或いはバラツキの大きい気泡径の分布になってし
まい、本発明で規定する発泡粒子が具現できない。これ
は、気相含浸した二酸化炭素を発泡剤とする本発明の特
異現象である。上記の現象傾向から見た発泡倍率は望ま
しくは2〜3.2cm3 /gの範囲から選ぶことであ
る。
That is, it is a constituent factor of the expanded particles of the present invention, and the expansion ratio is 1.5 to 3.8 cm 3 /
in the range of g, the bubbles are evenly distributed in the direction of the particle diameter, "apparent film thickness per one bubble" is expressed to be in the range of 4~26Myuemu. First,
Indicates a region of a degree of expansion that can be realized as the expanded particles of the present invention. That is, it means that the particles are in a very low foaming state limited to a narrow range. The reason for this limitation is that if the expansion ratio is less than 1.5, the resin amount in the whole particles becomes too large,
In the case of thermal expansion in which an inorganic gas such as air is impregnated, a gas impregnating operation becomes difficult, and a defect occurs in which the expanding ability to be exerted is reduced. Conversely, when the expansion ratio is 3.8 or more, the diameter of all the cells constituting the particles is too small or the distribution of the cell diameters is large, and the expanded particles defined in the present invention are not suitable. Can't embody. This is a unique phenomenon of the present invention in which carbon dioxide impregnated in the gas phase is used as a blowing agent. The expansion ratio viewed from the above-mentioned phenomenon tendency is desirably selected from the range of 2 to 3.2 cm 3 / g.

【0014】上記に関連して構成要件は、本発明の
特徴を象徴するものである。具体的には、本発明の粒子
は、比較的大きな径の比較的小数の気泡集団で形成され
ており、それにより発泡倍率が確保されている。つま
り、各気泡周辺に位置する樹脂成分量は、比較的多いこ
とを意味している。この樹脂成分量は実質的に気泡膜の
厚さを示すものである。本発明では、この比較的多い樹
脂成分量の表現を「気泡1個当たりの見掛けの膜厚み」
によって係数化し、その特徴を「4〜26μm」の範囲
として表現したものである。この係数によると、図1〜
3の発泡粒子は、各々7.6μm、1.3μm、2.8
μmと計算され(平均気泡径では、各々68μm、11
μm、20μmとなる)、本発明の粒子(図1)の気泡
構造を良く表現し、公知のものと区分していることが分
かる。
[0014] In the context of the above, the constituent features symbolize the features of the present invention. Specifically, the particles of the present invention are formed of a relatively small number of cell populations having a relatively large diameter, thereby ensuring an expansion ratio. That is, it means that the amount of the resin component located around each bubble is relatively large. The amount of this resin component is substantially
It shows the thickness . In the present invention, the expression of the relatively large amount of the resin component is referred to as “apparent film thickness per bubble”.
The characteristic is expressed as a range of “4 to 26 μm”. According to this coefficient, FIGS.
The expanded particles of No. 3 were 7.6 μm, 1.3 μm, and 2.8, respectively.
μm (average bubble diameters are 68 μm and 11 μm, respectively).
μm, 20 μm), which indicates that the bubble structure of the particles (FIG. 1) of the present invention is well represented and is classified as a known particle.

【0015】そして、要件のは、対象とする発泡粒子
の概念を示すためのものである。つまり、上記の係数
表現では、例えば図6、7に示すような構造の発泡粒子
をも包含する可能性がある。図6、7のな発泡粒子は
実在するかどうかは定かではないが、もし実在すると仮
定すると、この種の発泡粒子は、常識上、型内成形用に
は不向きであると考えられる。従って、本発明では、要
件を設けることにより、図6、7に示すような気泡が
粒子径の方向に不均等に分布する発泡粒子を除外し、表
現上の完成度を高めているのである。
The requirement is to show the concept of the target expanded particle. That is, in the above coefficient expression, for example, there is a possibility that foamed particles having a structure as shown in FIGS. Expanded particles, such as 6 and 7 but is not clear whether existing, assuming that existing if the expanded beads of this type, the common sense, is considered to be unsuitable for mold molding. Therefore, in the present invention, by providing the requirements, foamed particles in which bubbles are unevenly distributed in the particle diameter direction as shown in FIGS.

【0016】図4、5は、本発明の発泡粒子の代表的効
果を示すグラフである。先ず、図4は、発泡粒子に付与
した気体(空気)の内圧〔kg/cm2 ・G〕と、その
粒子を加熱膨張させて到達出来る発泡倍率〔cm3
g〕の関係を示すグラフである。図5は、図4の実験で
確認された膨張過程における独立気泡の保持性を示すグ
ラフである。なお、図中の○は、図1の本発明の発泡粒
子を用いた場合、☆は、図2の比較品の発泡粒子を用い
た場合、□は、図3の従来品の発泡粒子を用いた場合、
を示している。
FIGS. 4 and 5 are graphs showing typical effects of the expanded particles of the present invention. First, FIG. 4 shows the internal pressure [kg / cm 2 · G] of the gas (air) applied to the foamed particles, and the expansion ratio [cm 3 /
g] is a graph showing the relationship. FIG. 5 is a graph showing the retention of closed cells in the expansion process confirmed in the experiment of FIG. In the figure, ○ indicates the case where the expanded particles of the present invention of FIG. 1 were used, ☆ indicates the case where the expanded particles of the comparative product of FIG. 2 were used, and □ indicates that the expanded particles of the conventional product of FIG. 3 were used. If you have
Is shown.

【0017】図4、5に示された結果で明らかなよう
に、本発明の発泡粒子は、比較品、従来品のいずれより
も、膨張性能と独立気泡の保持性の双方に優れ、型内成
形用、殊に繰り返しの膨張操作が必要な、高発泡倍率の
型内成形に適した性能を持つ発泡粒子であることが分か
る。因みに、発明者等の実験によると、付与された膨張
能(気体内圧)の膨張有効率は、比較品、従来品の発泡
粒子はいずれも73%以下に留まるのに対して、本発明
のものは85〜87%の値を示すことが観測される。そ
して、また、一段階の膨張で、独立気泡率を90%以上
維持した状態の高発泡粒子に出来る最大発泡倍率は、比
較品では約12倍、従来品では約10倍に留まるのに対
して、本発明の発泡粒子は約18倍の高い値を示すこと
が確認されている。
As is apparent from the results shown in FIGS. 4 and 5, the expanded particles of the present invention are superior to both the comparative product and the conventional product in both expansion performance and closed-cell retention, and have a good It can be seen that the foamed particles have a performance suitable for molding, particularly for in-mold molding with a high expansion ratio, which requires a repeated expansion operation. By the way, according to experiments by the inventors, the expansion efficiency of the imparted expansion capacity (internal gas pressure) is 73% or less for both the comparative product and the conventional product of the expanded particles, whereas the expansion efficiency of the conventional product is 73% or less. Shows a value of 85-87%. In addition, the maximum expansion ratio that can be made into highly expanded particles in a state where the closed cell ratio is maintained at 90% or more by one-stage expansion is about 12 times for the comparative product and about 10 times for the conventional product. It has been confirmed that the expanded particles of the present invention exhibit a value as high as about 18 times.

【0018】上記の現象・効果は、本発明の発泡粒子を
形成する気泡ではその見掛けの膜厚さが厚いために、加
熱膨張過程での膨張用気体の逸散が抑制され、且つ個々
の気泡の成長に伴う気泡膜の伸展が容易に行われたこと
の効果と推定される。上述した本発明の発泡粒子は、そ
の平均気泡径は40〜110μm(望ましくは50〜1
00μm)で、気泡径の揃い方としては、見掛けの平均
気泡径±50%の範囲外の径寸法の気泡の存在が、観測
出来る気泡数の15%以下(厳格には10%以下)であ
ることが望ましい。このように、内部の気泡構造の均質
な本発明の発泡粒子の完成は、発泡倍率も均質に揃って
いるので、径寸法の揃った球形の樹脂粒子を原料として
用いれば、均質構造の発泡粒子「独立気泡構造で気泡径
や粒子径の揃った状態の発泡粒子」が得られ、型内成形
に最適な発泡粒子が完成することを意味し、その有用性
を示している。
The above-mentioned phenomena and effects are caused by the fact that bubbles forming the expanded particles of the present invention have a large apparent film thickness, so that the expansion gas is prevented from escaping during the heat expansion process, and individual bubbles This is presumed to be due to the fact that the expansion of the bubble film along with the growth of the cells was easily performed. The above-mentioned expanded particles of the present invention have an average cell diameter of 40 to 110 μm (preferably 50 to 1 μm).
(00 μm), as the method of uniforming the bubble diameter, the presence of bubbles having a diameter outside the range of the apparent average bubble diameter ± 50% is 15% or less of the observable number of bubbles (strictly 10% or less). It is desirable. As described above, the completion of the foamed particles of the present invention having a uniform internal cell structure is uniform because the expansion ratio is also uniform. Therefore, if spherical resin particles having a uniform diameter are used as a raw material, the expanded particles having a uniform structure are obtained. "Expanded particles having a closed cell structure and uniform cell diameter and particle diameter" can be obtained, which means that the most suitable expanded particles for in-mold molding are completed, and their usefulness is shown.

【0019】次に、本発明の発泡粒子の製造方法につい
て説明する。本発明の製造方法としての主要点は、樹脂
粒子に二酸化炭素を含浸させるに当たり、 イ)二酸化炭素の臨界圧力未満の高圧雰囲気(具体的に
は15〜50kg/cm2 ・G)下で、二酸化炭素をガ
ス体(気相)の状態で樹脂粒子に接触含浸させること、 ロ)含浸量は、樹脂粒子の樹脂分100重量部に対して
5重量部未満とする、ことを採用することである。
Next, the method for producing expanded beads of the present invention will be described. The main point of the production method of the present invention is to impregnate the resin particles with carbon dioxide. A) Under a high-pressure atmosphere (specifically, 15 to 50 kg / cm 2 · G) lower than the critical pressure of carbon dioxide, Contact impregnation of resin particles in a gaseous state (gas phase) with carbon; b) Impregnation amount is less than 5 parts by weight based on 100 parts by weight of resin content of resin particles. .

【0020】先ず、上記主要点イ)の必要性は、例えば
これを臨界圧力以上の雰囲気にし、二酸化炭素を液体
(液相)の状態にして、樹脂粒子に接触含浸させよう
と、その耐圧装置、冷却装置が大掛かりなものになるば
かりでなく、得られる発泡粒子は、図2のものよりも気
泡径のバラツキが多いものになってしまう。また、特公
昭62−44777号公報で代表されるような、二酸化
炭素を水性分散媒に溶解させた状態にして樹脂と接触含
浸させる方法は、上記図2に示し実証した通りの、膨張
させて使用するには、不向きの発泡粒子になってしま
う。これに対し、本発明の二酸化炭素の臨界圧力未満の
雰囲気での含浸では、含浸温度は低温側で行うことが出
来、得られる発泡粒子も図1に示す通りの、均質構造の
ものが得られる利点がある。
First, the necessity of the above-mentioned main point a) is, for example, to make the atmosphere above the critical pressure, to make carbon dioxide in a liquid (liquid phase) state, and to impregnate the resin particles with the pressure-resistant device. Not only does the cooling device become large-scale, but also the obtained foamed particles have a greater variation in cell diameter than that of FIG. Further, a method of contacting and impregnating a resin in a state in which carbon dioxide is dissolved in an aqueous dispersion medium, as represented by JP-B-62-44777, is performed by expanding and expanding as shown in FIG. Use would result in unsuitable foamed particles. On the other hand, in the impregnation of the present invention in an atmosphere of less than the critical pressure of carbon dioxide, the impregnation temperature can be performed at a low temperature, and the obtained expanded particles also have a homogeneous structure as shown in FIG. There are advantages.

【0021】この場合の実用含浸温度は、二酸化炭素単
独の気相含浸の場合は5〜20℃の範囲内の或る温度
に、含浸助剤との混合気相含浸の場合は20〜30℃の
範囲内の或る温度に、各々調節維持することが均質気泡
構造のものを得る上で望ましい。つまり、含浸助剤の役
割は、含浸温度を常温に近づけることで調温の経済性を
高めるものである。なお、ここで言う含浸助剤は、基材
樹脂に対して可塑化効果が生じる揮発性有機溶剤であ
る。中でも、塩化メチル、塩化メチレン、塩化エチル、
塩化エチレン等のハロゲン化炭化水素が望ましく、特に
塩化メチレンが実質上不燃性で沸点が40℃と比較的低
いので、含浸後の粒子から揮散除去して回収するなどの
後処理が行い易く、特に望ましい。
The practical impregnation temperature in this case is a certain temperature in the range of 5 to 20 ° C. in the case of gas phase impregnation of carbon dioxide alone, and 20 to 30 ° C. in the case of mixed gas phase impregnation with an impregnation aid. It is desirable to maintain each of them at a certain temperature in the range of in order to obtain a homogeneous cell structure. In other words, the role of the impregnation aid is to increase the economics of temperature control by bringing the impregnation temperature close to room temperature. Here, the impregnation aid is a volatile organic solvent that produces a plasticizing effect on the base resin. Among them, methyl chloride, methylene chloride, ethyl chloride,
Halogenated hydrocarbons such as ethylene chloride are desirable, and since methylene chloride is particularly nonflammable and has a relatively low boiling point of 40 ° C., it is easy to carry out post-treatment such as volatilization and removal from the impregnated particles, especially desirable.

【0022】次に、主要点ロ)の必要性は、樹脂粒子の
樹脂分100重量部に対して含浸量が5重量部を越えて
多くなると、得られる発泡粒子の気泡が微小化してしま
う現象がある。この現象は、発泡条件を調整しても解消
しない。恐らくは、二酸化炭素ガス自体が発泡時の核剤
として作用するためと考えられる。とは言え、含浸量が
0に近似して少なすぎると、当然発泡は阻害される。発
明者等の知見によると、樹脂粒子の樹脂分100重量部
に対する含浸量は、樹脂の種類により決まり、望ましく
はポリエチレン樹脂で1.1〜1.8重量部、ポリプロ
ピレン樹脂で2.5〜4.5重量部の範囲で目標の発泡
倍率に応じて選ぶことである。
Next, the necessity of the main point b) is that the resin particles
If the impregnation amount exceeds 5 parts by weight with respect to 100 parts by weight of the resin component, there is a phenomenon that the bubbles of the obtained expanded particles are miniaturized. This phenomenon does not disappear even if the foaming conditions are adjusted. This is probably because the carbon dioxide gas itself acts as a nucleating agent during foaming. However, if the impregnation amount is too small close to zero, foaming is naturally inhibited. According to the knowledge of the inventors, the amount of resin particles impregnated with respect to 100 parts by weight of resin is determined by the type of resin, and preferably 1.1 to 1.8 parts by weight of polyethylene resin and 2 parts by weight of polypropylene resin. The selection is made in the range of 0.5 to 4.5 parts by weight in accordance with the target expansion ratio.

【0023】上記主要点イ)、ロ)を満たして二酸化炭
素を含浸させた発泡性樹脂粒子は、基材樹脂の発泡適性
温度にまで加熱して発泡させることになる。この場合の
発泡は、発泡剤である二酸化炭素が樹脂粒子内に気泡を
形成して成長させ、この気泡によって粒子の体積が増加
して発泡倍率が高められる処の真の発泡である。従っ
て、調節条件としては、主に加熱(発泡)温度「基材樹
脂融点−(1〜5℃)」、昇温速度、加熱時間の設定管
理が重要になる。しかし、これらは、採用する発泡(方
式)装置の種類やその規模の大きさ等で相違するため
に、これを数値表現することは困難である。
The expandable resin particles satisfying the above-mentioned main points a) and b) and impregnated with carbon dioxide are heated to a suitable foaming temperature of the base resin and foamed. Foaming in this case is true foaming in which carbon dioxide as a foaming agent forms and grows bubbles in the resin particles, and the bubbles increase the volume of the particles and increase the expansion ratio. Therefore, as the adjustment conditions, it is important to mainly set and control the heating (foaming) temperature “base resin melting point− (1 to 5 ° C.)”, the rate of temperature rise, and the heating time. However, these differ depending on the type of foaming (method) apparatus to be employed, the size of the scale, and the like, so that it is difficult to express them numerically.

【0024】よって、要するに、ハ)「発泡倍率が1.
5〜3.8cm3 /gの発泡粒子にすること」を指標
に、採用した装置に合わせて上記発泡条件を設定する。
発泡倍率が1.5未満になる発泡条件では、得られた粒
子は樹脂成分内に占める気泡領域の容積が不足し、後で
膨張させて使うことが困難な粒子になってしまう。逆
に、発泡倍率が3.8を越える発泡条件では、得られた
粒子は気泡寸法が微小化するか、或いは微小気泡と極大
気泡が混在する現象が生じ、後で膨張させて使うことが
困難な粒子になってしまう。上記の現象傾向から見て、
発泡倍率は2〜3.2cm3 /gの狭い範囲で管理した
方が、良質の発泡粒子を得る上で望ましい。
Therefore, in short, c) "the expansion ratio is 1.
The above-mentioned foaming conditions are set in accordance with the employed apparatus, with the index of “to make foamed particles of 5 to 3.8 cm 3 / g”.
Under foaming conditions in which the expansion ratio is less than 1.5, the obtained particles lack the volume of the bubble region occupying the resin component, and become particles which are difficult to expand and use later. On the other hand, under the expansion conditions in which the expansion ratio exceeds 3.8, the obtained particles have a reduced bubble size, or a phenomenon in which microbubbles and maximal bubbles are mixed occurs, which makes it difficult to expand and use later. Particles. Looking at the above phenomenon trends,
It is desirable to control the expansion ratio in a narrow range of 2 to 3.2 cm 3 / g in order to obtain high-quality expanded particles.

【0025】更に、発泡条件上で留意することは、発泡
装置内の発泡粒子の全体が発泡温度に高まる迄の速さを
示す「昇温速度」を速めることへの工夫である。この必
要性は、二酸化炭素の樹脂からの逸散速度が、従来汎用
されているフロン系の揮発性有機発泡剤に比べ、2〜4
倍も速いことである。従って、「昇温速度」を速めるこ
とは、含浸した二酸化炭素を発泡剤として有効活用する
ためのものである。上記「昇温速度」の条件としての適
否を決める目途の一つに、得られた発泡粒子の表面に形
成される非発泡状態の表皮部の厚み寸法がある。この粒
子表面の表皮部は、樹脂粒子の表面にあった発泡剤(二
酸化炭素)が優先的に逸散した結果、生じたものと考え
られ、この表皮部の厚み寸法を70μm未満、望ましく
は60μm未満に留めるようにすることである。この厚
み寸法が70μmを越えて大きくなると、粒子の発泡倍
率が目標値に到らないし、目標値に到っても、後で膨張
させて使うことが困難な粒子になってしまう。しかし、
逆に、二酸化炭素の逸散速度の速さを利用して、発泡粒
子の表面全体が厚み寸法で20〜60μmの非発泡状態
の表皮部ですっぽりと覆われた構造の発泡粒子を作成す
ると、この粒子は膨張性能に極めて優れ、2〜4段階の
膨張発泡により、発泡倍率で80〜100cm3 /gの
良質の発泡粒子(発泡成形体)を容易に得ることができ
る。
Further, it should be noted on the foaming conditions that the "heating rate", which indicates the speed at which the whole of the foamed particles in the foaming apparatus rises to the foaming temperature, is increased. This necessity is that the rate of carbon dioxide escaping from the resin is 2 to 4 times higher than that of a conventionally used fluorocarbon volatile organic foaming agent.
It is twice as fast. Therefore, increasing the “heating rate” is for effectively utilizing the impregnated carbon dioxide as a blowing agent. One of the measures to determine the suitability of the above-mentioned “heating rate” is the thickness dimension of the non-foamed skin formed on the surface of the obtained foamed particles. It is considered that the skin portion on the surface of the particle was generated as a result of the foaming agent (carbon dioxide) existing on the surface of the resin particles being preferentially escaping, and the thickness of the skin portion was less than 70 μm, preferably 60 μm. Is to keep it below. If the thickness dimension exceeds 70 μm, the expansion ratio of the particles does not reach the target value, and even if the expansion ratio reaches the target value, the particles are difficult to expand and use later. But,
Conversely, using the speed of the carbon dioxide escape rate, to create foamed particles having a structure in which the entire surface of the foamed particles is completely covered with a non-foamed skin portion having a thickness of 20 to 60 μm, These particles are extremely excellent in expansion performance, and high-quality expanded particles (expanded molded articles) having an expansion ratio of 80 to 100 cm 3 / g can be easily obtained by expansion and expansion in two to four stages.

【0026】上述した本発明の製造方法によると、膨張
性能と独立気泡の保持性に富む処の、「1個当たりの気
泡の膜厚み」の厚い、高い独立気泡構造の本発明の発泡
粒子は、おのずと作成することができる。一般に、発泡
粒子の膨張は、粒子を構成する個々の気泡内にある気体
の熱膨張によって気泡が拡大することでなされるが、こ
の時に発揮される膨張能は、気泡膜の持つ抗張力や独立
気泡率の高さに大きく影響される。同じ原理で発泡粒子
を用いてする型内成形は、そこに採用した発泡粒子の気
泡膜の持つ抗張力や独立気泡率の保持性そのものが、発
現する膨張能の高まりとなり、独立気泡率の高い発泡粒
子の相互が強固に熱融着した状態の成形体を形成し、最
終製品としての品質特性を保証することになる。こうし
た観点から見ても、本発明の発泡粒子は有用性に富んだ
極めて優れたものであると言える。しかも、これの製造
方法は、CFC、HCFC規制をクリアーする処の二酸
化炭素を発泡剤に使用して達成されており、その技術的
意義は極めて高いものである。
According to the above-mentioned production method of the present invention, the expanded particles of the present invention having a high “closed cell film thickness” and a high closed cell structure, which are rich in expansion performance and closed cell retention, are obtained. , Can be created naturally. Generally, the expansion of expanded particles is performed by expanding the bubbles due to the thermal expansion of the gas in the individual cells constituting the particles.At this time, the expansion ability exerted depends on the tensile strength of the bubble film and the closed cells. It is greatly influenced by the high rate. In-mold molding using foamed particles based on the same principle uses the expanded strength of the foam film of the foamed particles adopted and the retention of the closed cell rate itself, resulting in an increase in the expandability that is exhibited, and foaming with a high closed cell rate A compact is formed in a state in which the particles are firmly heat-sealed with each other, thereby guaranteeing the quality characteristics of the final product. From such a viewpoint, it can be said that the expanded particles of the present invention are very useful and extremely excellent. In addition, this production method is achieved by using carbon dioxide, which meets the CFC and HCFC regulations, as a blowing agent, and its technical significance is extremely high.

【0027】本発明で言うポリオレフィン系樹脂とは、
架橋した状態で或いは無架橋の状態で発泡することが可
能なポリオレフィン系樹脂の総称であり、例えば高・中
・低・超低密度のポリエチレン樹脂、エチレン−酢酸ビ
ニル共重合樹脂、ポリプロピレン樹脂、エチレン−プロ
ピレン共重合樹脂等のそれぞれ単独樹脂や、その2種以
上の混合樹脂等である。中でも、密度の範囲が0.92
5〜0.940g/cm 3 のポリエチレン樹脂や、エチ
レン成分が1〜30重量%のエチレン−プロピレンラン
ダム共重合樹脂を用いる時は、最大の効果を発揮するの
で望ましい。
The polyolefin resin referred to in the present invention is:
A general term for polyolefin-based resins that can be foamed in a cross-linked state or in a non-cross-linked state, such as high-, medium-, low-, and ultra-low-density polyethylene resins, ethylene-vinyl acetate copolymer resins, polypropylene resins, and ethylene. -A single resin such as a propylene copolymer resin or a mixed resin of two or more thereof. Above all, the range of density is 0.92
It is desirable to use a polyethylene resin of 5 to 0.940 g / cm 3 or an ethylene-propylene random copolymer resin having an ethylene component of 1 to 30% by weight, since the maximum effect is exhibited.

【0028】[0028]

【評価方法】本発明で使用する評価方法を次に示す。 発泡倍率; 重量(Wg)既知の発泡粒子の容積(Vcm3 )を水没
法で測定し、その容積を重量で除した値を発泡倍率(c
3 /g)とする。
[Evaluation method] The evaluation method used in the present invention is shown below. Foaming ratio: The volume (Vcm 3 ) of a known foamed particle having a weight (Wg) is measured by a submersion method, and the value obtained by dividing the volume by the weight is expressed as the foaming ratio (c).
m 3 / g).

【0029】 独立気泡率; 発泡倍率(cm3 /g)が既知の発泡粒子約24cm3
の真の容積を東芝・ベックマン社製空気比較式比重計9
30形を用いて測定し、次式(I)より独立気泡率(%)
(S)を算出する。
Closed cell ratio; about 24 cm 3 of expanded particles having a known expansion ratio (cm 3 / g)
The true volume of the air is 9
Measured using Model 30 and the closed cell rate (%) from the following formula (I )
(S) is calculated.

【数1】 x :上記装置で測定した真の発泡粒子の容積(cm3 )。 Va :発泡粒子の容積〔発泡倍率×重量〕(cm3 )。 W :発泡粒子の重量(g)。 ρ :発泡粒子の基材樹脂の密度(g/cm3 )。(Equation 1) V x : the volume (cm 3 ) of the true expanded particles measured by the above apparatus. V a: the volume of the foamed particles [expansion ratio × Weight] (cm 3). W: Weight of expanded particles (g). ρ: density of base resin of expanded particles (g / cm 3 ).

【0030】 発泡粒子に付与した気体(空気)の内
圧。 加圧・加温装置で膨張能を付与した発泡粒子を大気圧
(0kg/cm2 ・G)下に取り出し、6分経過した時
の発泡粒子約150cm3 の重量を測定し、次式(2)
り発泡粒子に付与した気体(空気)の内圧(kg/cm
2 ・G)(P)を算出する。
The internal pressure of the gas (air) applied to the expanded particles. The foamed particles imparted with expanding ability by pressurizing and heating device atmospheric pressure (0 kg / cm 2 · G) taken out under, and measuring the weight of the foamed particles of about 150 cm 3 when passed 6 minutes, the following equation (2 ) ) To the internal pressure (kg / cm) of the gas (air)
2 · G) Calculate (P) .

【数2】 1 : 膨張能を付与した後、大気圧(0kg/cm2 ・G)下に取り出し、 6分経過した時の発泡粒子の重量(g)。 W0 : 発泡粒子の気泡内圧が大気圧(0kg/cm2 ・G)の時の発泡粒子 の重量(g)。 V : 発泡粒子の気泡内圧が大気圧(0kg/cm2 ・G)の時の発泡粒子 の容積(cm3 )。 M ; 加圧気体(空気)の分子量(28.98g/モル)。 R : 気体定数(0.082atm ・L/モル・°K)。 T :換算値温度(293°K)。(Equation 2) W 1 : The weight (g) of the foamed particles after the swelling ability has been imparted and taken out under atmospheric pressure (0 kg / cm 2 · G) for 6 minutes. W 0 : Weight (g) of the foamed particles when the internal pressure of the foamed particles is atmospheric pressure (0 kg / cm 2 · G). V: Volume (cm 3 ) of the foam particles when the pressure inside the cells of the foam particles is atmospheric pressure (0 kg / cm 2 · G). M: molecular weight of pressurized gas (air) (28.98 g / mol). R: gas constant (0.082 atm · L / mol · ° K). T: Converted value temperature (293 ° K).

【0031】 発泡粒子内部の「気泡1個当たりの見
掛け膜厚み」と「平均気泡径」及び「見掛けの平均気泡
径」。発泡粒子断面の気泡拡大画像を画像処理装置を用
い、その気泡の大きさや数等を解析・計数化して、「気
泡1個当たりの見掛けの膜厚み(μm)」と「平均気泡
径(μm)」を算出する。次に、その手順を記載する。 i)発泡粒子断面の気泡拡大画像の作成。 発泡粒子の略中央部を鋭利な刃物で切断し、前処理を行
った検鏡用試料の切断面全体を走査型電子顕微鏡を用い
て拡大し、撮影する。この撮影フィルムから拡大率15
0倍、寸法340mm×240mmの写真画像を作成
し、この上にトレース紙を載せて、気泡の外郭をなぞ
り、発泡粒子断面の気泡拡大画像を作成する。
The “apparent film thickness per cell”, “average cell diameter”, and “apparent average cell diameter” inside the expanded beads. Using an image processing device, an enlarged image of the bubbles in the cross section of the expanded particles is analyzed and counted based on the size and number of the bubbles, and the “apparent film thickness per bubble (μm)” and the “average bubble diameter (μm)” Is calculated. Next, the procedure will be described. i) Creation of an enlarged bubble image of the cross section of the expanded particles. A substantially central portion of the foamed particles is cut with a sharp blade, and the entire cut surface of the prespecified microscopic sample is enlarged and photographed using a scanning electron microscope. Magnification 15 from this film
A photographic image having a size of 0x and a size of 340 mm x 240 mm is created, a trace paper is placed on the photographic image, and the outline of the bubble is traced to create an enlarged bubble image of the cross section of the foamed particles.

【0032】ii)気泡拡大画像の解析 上記の気泡拡大画像において、発泡粒子芯部近傍の約1
60mm×160mm角の大きさに位置する気泡群を画
像処理装置(カラーイメージプロセッサSPCCA−I
I、商品名;日本アビオニクス社製)に入力して、濃淡
画像処理、2値画像処理を行って、「画像処理面積(μ
2 )」、「気泡数(個)」、「各気泡の面積(μ
2 )とその分布」、「気泡面積の総計(μm2 )」を
計算する。この計算から、「気泡1個当たりの見掛け膜
厚み(μm)」、と「平均気泡径(μm)」、「見掛け
の平均気泡径(μm)」を算出する。
Ii) Analysis of enlarged bubble image In the above enlarged bubble image, about 1 cm in the vicinity of the expanded particle core portion is used.
A bubble group located at a size of 60 mm × 160 mm square is converted to an image processing device (color image processor SPCCA-I).
I, a trade name; manufactured by Nippon Avionics Co., Ltd.), and a grayscale image process and a binary image process are performed.
m 2 ) ”,“ number of bubbles (pieces) ”,“ area of each bubble (μ
m 2 ) and its distribution ”and“ total bubble area (μm 2 ) ”are calculated. From this calculation, “apparent film thickness per bubble (μm)”, “average bubble diameter (μm)”, and “apparent average bubble diameter (μm)” are calculated.

【0033】<気泡1個当たりの見掛け膜厚み(μm)
> 平均気泡径に気泡1個が占める基材樹脂量が均一な膜と
なって、すっぽりと覆ったものとして、次式(3) より
「気泡1個当たりの見掛け膜厚み(μm)」(T)値
算出する。
<Apparent film thickness per bubble (μm)
Assuming that the film has a uniform amount of the base resin occupied by one bubble in the average bubble diameter and completely covers the film, the “apparent film thickness per bubble (μm)” from the following equation (3) (T ) Calculate the value .

【数3】 0 ; 画像処理面積(μm2 ) Ag ; 気泡面積の総計(μm2 ) N ; 気泡数(個) L ; 平均気泡径(μm)(Equation 3) A 0 ; Image processing area (μm 2 ) A g ; Total bubble area (μm 2 ) N; Number of bubbles (pieces) L; Average bubble diameter (μm)

【0034】<平均気泡径(μm)> 発泡粒子を切断した断面で測る気泡径は、その粒子を構
成する気泡群を完全に表現したものにはならない。それ
は、気泡を球状と想定した場合に、切断面に並んで見え
る気泡の幾つかは、気泡の最大径(=直径)の部分で切
断されたものや他の幾つかは最大径よりも小さく、或い
はずっと小さく見える部分で切断された気泡が確率的に
配列されている。従って、本発明の気泡径は、次式(4)
より評価断面で計測された気泡面積の平均値に係数(6
/π)を乗じた値の平方根を「平均気泡径(μm)」
(L)とする。
<Average Cell Diameter (μm)> The cell diameter measured on the cross section obtained by cutting the expanded particles does not completely represent the group of cells constituting the particles. That is, assuming that the bubbles are spherical, some of the bubbles visible along the cut surface are cut at the maximum diameter (= diameter) part of the bubbles and some others are smaller than the maximum diameter, Alternatively, the cut bubbles are stochastically arranged in a portion that looks much smaller. Therefore, the bubble diameter of the present invention is expressed by the following equation (4)
Coefficient to the average value of the bubble area measured by more evaluation section (6
/ Π) is the “average bubble diameter (μm)”
(L) .

【数4】 (Equation 4)

【0035】<見掛けの平均気泡径(μm)> 発泡粒子内部の個々の気泡径は、補正の手法がなく、上
記計測値の気泡面積から円相当直径を求め、この数値を
気泡径とする。従って、これらの気泡径の「見掛けの平
均気泡径」(L 0 は、次式(5) より算出した値を用い
る。
<Apparent average cell diameter (μm)> For each cell diameter inside the expanded beads, there is no correction method, a circle-equivalent diameter is obtained from the cell area of the measured value, and this numerical value is used as the cell diameter. Therefore, as the “apparent average bubble diameter” (L 0 ) of these bubble diameters, a value calculated from the following equation (5) is used.

【数5】 (Equation 5)

【0036】 成形体の外観品位 成形体の隅部の成形寸法に対して、中央部の成形寸法が
不足している現象を評価するものであり、得られた成形
体面の対角両隅部に定規を水平に当て、成形体面との間
に生じる間隙(ヒケ)の最大部の寸法を測定する。
The appearance quality of the molded article is to evaluate the phenomenon that the molding dimension at the center is insufficient with respect to the molding dimension at the corner of the molded article. A ruler is applied horizontally, and the maximum dimension of a gap (sink) generated between the molded body and the surface of the molded body is measured.

【0037】 成形体の特性 成形体が弾性的緩衝性能を備えた発泡粒子であるとする
観点から、次の3項目を評価する。 −1 圧縮強度 成形体を一定速度で圧縮した時の応力を示すもので、2
5%歪下の応力を圧縮強度とし、JIS Z−0235
の試験方法により評価する。 −2 圧縮永久歪 成形体に一定歪量が長時間に亘ってかけられた後の回復
割合を示すものであり、JIS K−6767の試験方
法で評価する。 −3 繰り返し圧縮永久歪 成形体に一定歪量が繰り返しかけられた後の回復割合を
示すものであり、JIS K−6767の試験方法で評
価する。
The following three items are evaluated from the viewpoint that the molded article is a foamed particle having elastic cushioning performance. -1 Compressive strength Indicates the stress when the compact is compressed at a constant speed.
The stress under 5% strain is defined as the compressive strength, and is defined by JIS Z- 0235.
The evaluation is made according to the test method. -2 Compression set This indicates the rate of recovery after a given amount of strain is applied to the molded body over a long period of time, and is evaluated by the test method of JIS K-6767. -3 Repeated compression set This indicates the recovery ratio after a given amount of strain is repeatedly applied to the molded body, and is evaluated by the test method of JIS K-6767.

【0038】[0038]

【実施例】以下、本発明の内容を実施例を用いて詳述す
るが、これらは本発明の範囲を制限しない。 (実施例1) 低密度ポリエチレン(サンテックLD、商品名;旭化成
工業(株)製、密度0.930g/cm3 MI=2.
4g/10分、融点117℃)の細断品に水懸濁系で架
橋剤ジクミルパーオキサイドを含浸させ、160℃で4
5分間加熱分解して、ゲル分率60%(沸騰トルエン×
8時間抽出)、平均粒径1.2mmの架橋ポリエチレン
樹脂粒子とした。この架橋樹脂粒子を耐圧容器に収容
し、容器内の水蒸気を乾燥空気で置換した後、発泡剤と
して二酸化炭素(気体)を注入し、圧力32kg/cm
2 ・G、温度11℃の条件下で3時間かけて該樹脂粒子
中に二酸化炭素を含浸した。二酸化炭素の含浸量は、該
樹脂粒子を容器内から大気中に取り出して、1分経過後
に測定したところ、樹脂粒子の樹脂分100重量部に対
して1.6重量部であった。
EXAMPLES Hereinafter, the contents of the present invention will be described in detail with reference to examples, but these do not limit the scope of the present invention. (Example 1) Low-density polyethylene (Suntech LD, trade name; manufactured by Asahi Kasei Corporation), density 0.930 g / cm 3 , MI = 2.
(4 g / 10 min, melting point: 117 ° C.) was impregnated with dicumyl peroxide as a crosslinking agent in an aqueous suspension.
Heat decomposition for 5 minutes, gel fraction 60% (boiling toluene x
8 hours) to obtain crosslinked polyethylene resin particles having an average particle size of 1.2 mm. The crosslinked resin particles are accommodated in a pressure-resistant container, and the water vapor in the container is replaced with dry air. Then, carbon dioxide (gas) is injected as a foaming agent, and the pressure is 32 kg / cm.
The resin particles were impregnated with carbon dioxide over 3 hours under the conditions of 2 · G and a temperature of 11 ° C. The amount of carbon dioxide impregnated was determined by taking the resin particles out of the container into the atmosphere and measuring one minute later .
It was 1.6 parts by weight.

【0039】次に、この発泡性樹脂粒子を発泡装置(脱
気昇温方式)に収容して、槽内温度を100℃から発泡
温度の114.2℃まで20秒間かけて昇温し、更にそ
の温度を保持しながら10秒間水蒸気加熱発泡し、架橋
ポリエチレン発泡粒子を得た。この発泡粒子の発泡倍率
は2.6cm3 /gであった。得られた発泡粒子の内部
の気泡構造を本文記載の評価方法で評価し、発泡粒子の
断面を拡大(×150倍)した局部の写生の模式図を図
1に示す。図1によると、本発明の発泡粒子の気泡構造
は、比較的大きな径の気泡が樹脂の中に比較的小数の気
泡群で形成されていることが判る。
Next, the expandable resin particles are accommodated in a foaming apparatus (a degassing and heating system), and the temperature in the tank is raised from 100 ° C. to a foaming temperature of 114.2 ° C. over 20 seconds. While maintaining the temperature, the mixture was foamed by steam heating for 10 seconds to obtain crosslinked polyethylene foam particles. The expansion ratio of the expanded particles was 2.6 cm 3 / g. The internal cell structure of the obtained expanded particles was evaluated by the evaluation method described in the text, and FIG. 1 is a schematic diagram of a local sketch in which the cross section of the expanded particle was enlarged (× 150 times). According to FIG. 1, it can be seen that in the cell structure of the expanded particles of the present invention, cells having a relatively large diameter are formed of a relatively small number of cells in the resin.

【0040】(比較例1) 比較例として、実施例の発泡剤及び架橋ポリエチレン樹
脂粒子中への発泡剤含浸・発泡方法を下記のように変更
し、また実施例と同じ発泡倍率(2.6cm3/g)と
なるように各条件を調節して、実施例と同様に行った。
得られた発泡粒子の気泡構造は図2、図3から判るよう
に、比較品、従来品は、気泡径が不均一で小さな径の気
泡が混在した、気泡数の多い構造であることが判る。 (i) 実験No.1(比較品) 耐圧容器内に架橋樹脂粒子100重量部、発泡剤として
二酸化炭素(固体)16重量部、水450重量部、分散
剤として塩基性炭酸マグネシウム3.0重量部を収容
し、攪拌下で128℃に昇温し、45分間保持して樹脂
中に発泡剤を含浸した後、容器内を118℃まで冷却し
た後、容器内圧を33kg/cm2 ・Gの窒素ガスで加
圧しつつ容器の一端を開放し、大気中に放出発泡して、
発泡倍率2.6cm3 /gの発泡粒子を得た。なお、二
酸化炭素の含浸量は、発泡剤含浸・発泡の方法上測定出
来なかった。得られた発泡粒子の内部の気泡構造を実施
例1と同様にして評価を行い、図2に示す。 (ii)実験No.2(従来品) 発泡剤としてモノクロロジフルオロメタン液を用いて、
このものと架橋樹脂粒子を耐圧容器内に入れ、攪拌しな
がら昇温して、45℃で90分間上記揮発性有機発泡剤
を含浸(樹脂粒子の樹脂分100重量部に対して含浸量
4.0重量部)後、実施例1と同様にして発泡を行い、
発泡倍率2.6cm3 /gの発泡粒子を得た。この発泡
粒子の内部の気泡構造を実施例1と同様にして評価を行
い、図3に示す。
Comparative Example 1 As a comparative example, the method of impregnating and foaming the blowing agent in the blowing agent and the crosslinked polyethylene resin particles of the example was changed as follows, and the same expansion ratio (2.6 cm) as in the example was used. 3 / g), and the same conditions as in the example were used.
As can be seen from FIGS. 2 and 3, the foam structure of the obtained expanded particles shows that the comparative product and the conventional product have a structure with a large number of bubbles in which bubbles having a non-uniform bubble diameter and a small diameter are mixed. . (i) Experiment No. 1 (Comparative product) 100 parts by weight of crosslinked resin particles, 16 parts by weight of carbon dioxide (solid) as a foaming agent, 450 parts by weight of water, and 3.0 parts by weight of basic magnesium carbonate as a dispersant were placed in a pressure-resistant container and stirred. After raising the temperature to 128 ° C. and holding the resin for 45 minutes to impregnate the foaming agent into the resin, the inside of the container was cooled to 118 ° C., and then the container was pressurized with nitrogen gas at 33 kg / cm 2 · G. Open one end of the container, release foam into the atmosphere,
Expanded particles having an expansion ratio of 2.6 cm 3 / g were obtained. The impregnation amount of carbon dioxide could not be measured due to the method of impregnation and foaming of the foaming agent. The cell structure inside the obtained expanded particles was evaluated in the same manner as in Example 1, and is shown in FIG. (ii) Experiment No. 2 (Conventional product) Using monochlorodifluoromethane liquid as a foaming agent,
This resin and the crosslinked resin particles are placed in a pressure vessel, and the temperature is increased while stirring, and impregnated with the volatile organic foaming agent at 45 ° C. for 90 minutes (impregnation amount of 100 parts by weight of resin of the resin particles is 4. 0 parts by weight), and then foaming was performed in the same manner as in Example 1.
Expanded particles having an expansion ratio of 2.6 cm 3 / g were obtained. The cell structure inside the expanded particles was evaluated in the same manner as in Example 1, and is shown in FIG.

【0041】(実施例2・比較例2) 実施例1・比較例1で得た図1(本発明の発泡粒子)、
図2(比較品の発泡粒子)、図3(従来品の発泡粒子)
の気泡構造を示す発泡倍率2.6cm3 /gの発泡粒子
を加圧・加温装置に収容し、それぞれの発泡粒子の内圧
が3、4、5kg/cm2 ・Gの各圧力を示す膨張能を
付与した。高膨張能の付与処理条件は、80℃の温度下
で高圧空気を用い、1時間かけて昇圧し、圧力10〜1
5kg/cm2 ・G、時間5〜10時間の範囲内で、上
記内圧を示すように調節した。次に、この膨張性発泡粒
子を発泡装置に収容して、槽内温度100℃から発泡温
度の114.5℃まで15秒間かけて昇温し、更にその
温度を保持しながら8秒間水蒸気加熱発泡した。
Example 2 and Comparative Example 2 FIG. 1 (expanded particles of the present invention) obtained in Example 1 and Comparative Example 1
Fig. 2 (Expanded particles of comparative product), Fig. 3 (Expanded particles of conventional product)
Expanded particles having an expansion ratio of 2.6 cm 3 / g exhibiting the cell structure of the above are accommodated in a pressurizing / heating device, and the expansion pressures indicate the respective internal pressures of the expanded particles of 3, 4, 5 kg / cm 2 · G. Noh was given. The conditions for the treatment for imparting the high expansion ability are as follows: high pressure air is used at a temperature of 80 ° C., the pressure is increased over 1 hour, and the pressure is 10 to 1
The pressure was adjusted so as to show the above internal pressure within a range of 5 kg / cm 2 · G for 5 to 10 hours. Next, the expandable foamed particles are accommodated in a foaming apparatus, and the temperature is raised from the bath temperature of 100 ° C. to the foaming temperature of 114.5 ° C. over 15 seconds. did.

【0042】得られた発泡粒子について、本文記載の評
価方法により発泡倍率及び独立気泡率を評価し、その結
果を図4〜5にグラフで示した。即ち、図4には、発泡
粒子に付与した気体(空気)の内圧とその粒子を加熱膨
張させて到達出来る発泡倍率の関係をグラフで表した。
図5には、加熱膨張させて得られる発泡粒子の発泡倍率
と独立気泡率の関係をグラフで表した。なお、図4〜5
中の○は図1の本発明の発泡粒子を用いた場合の線であ
り、☆は図2の比較品の発泡粒子を用いた場合の線であ
り、□は図3の従来品の発泡粒子を用いた場合の線であ
る。本発明の発泡粒子は、繰り返し膨張(発泡)におい
て、独立気泡率を高く維持した状態で高度に発泡倍率を
高めることが出来ることが判る。
With respect to the obtained expanded particles, the expansion ratio and the closed cell ratio were evaluated by the evaluation methods described in the text, and the results are shown in graphs in FIGS. That is, FIG. 4 is a graph showing the relationship between the internal pressure of the gas (air) applied to the expanded particles and the expansion ratio that can be reached by heating and expanding the particles.
FIG. 5 is a graph showing the relationship between the expansion ratio and the closed cell ratio of the expanded particles obtained by heat expansion. 4 and 5
The circles in FIG. 1 are the lines when the expanded particles of the present invention of FIG. 1 are used, the circles are the lines when the expanded particles of the comparative product in FIG. 2 are used, and the squares are the expanded particles of the conventional product in FIG. Is a line in the case of using. It can be seen that the expanded particles of the present invention can highly increase the expansion ratio during repeated expansion (expansion) while maintaining a high closed cell ratio.

【0043】(実施例3・比較例3) 実施例1・比較例1で使用した低密度ポリエチレンの細
断品を、気泡1個当たりの見掛けの膜厚みが表1に示し
た値になるように、核剤としてステアリン酸亜鉛を0〜
0.3重量%の範囲で添加量を調節した押出細断品に、
かつ二酸化炭素(気体)の含浸条件の圧力32kg/c
2 ・Gを20kg/cm2 ・Gに、温度11℃を13
℃(なお、二酸化炭素の含浸量は樹脂粒子の樹脂分10
0重量部に対して1.2重量であった)にそれぞれ変
更した他は、実施例1・比較例1と同様にして発泡倍率
2.0cm3 /gの一次発泡粒子とした。この発泡粒子
について、本文記載の評価方法により独立気泡率、気泡
1個当たりの見掛けの膜厚み、平均気泡径を評価し、そ
の結果を表1に示す。
(Example 3 / Comparative Example 3) The shredded product of the low-density polyethylene used in Example 1 / Comparative Example 1 was adjusted so that the apparent film thickness per cell becomes the value shown in Table 1. And zinc stearate as a nucleating agent
For extruded shredded products with the amount added in the range of 0.3% by weight,
And pressure of 32 kg / c under carbon dioxide (gas) impregnation condition
m 2 · G to 20 kg / cm 2 · G, temperature 11 ° C to 13
° C (the carbon dioxide impregnation amount is 10 % of the resin content of the resin particles).
The exception that each was the) 1.2 parts by weight with respect to 0 parts by weight, and the primary foamed particle expansion ratio 2.0 cm 3 / g in the same manner as in Example 1, Comparative Example 1. For the expanded particles, the closed cell ratio, the apparent film thickness per cell, and the average cell diameter were evaluated by the evaluation method described in the text. The results are shown in Table 1.

【0044】この各々の一次発泡粒子を加圧(高圧空
気)・加温装置に収容し、80℃の温度下で1時間かけ
て昇圧し、圧力15kg/cm2 ・Gで8時間保持して
発泡粒子の気体(空気)内圧を高めた後、発泡装置に収
容して、槽内温度100℃から発泡温度まで15秒間か
けて昇温し、更にその温度を保持しながら8秒間水蒸気
加熱発泡し、一旦発泡倍率8cm3 /gの二次発泡粒子
とした。なお、発泡温度は上記発泡倍率の発泡粒子とな
るように、112.5℃〜114.5℃の範囲で調節し
た。次に、各々の二次発泡粒子を常温で2日間熟成した
後、再び加圧(高圧空気)・加温装置に収容して、80
℃の温度下で4時間かけて圧力10kg/cm2 ・Gま
で昇圧し、その状態で1時間保持して膨張能を付与し、
発泡粒子の気体(空気)内圧を本文記載の評価方法によ
り評価した結果を表1に示した。この気体(空気)内圧
を有する二次発泡粒子を発泡装置に収容し、実施例2・
比較例2と同様にして水蒸気加熱発泡を行い、三次発泡
粒子とした。得られた三次発泡粒子について本文記載の
評価方法により発泡倍率、独立気泡率を評価し、その結
果を表1に示す。
Each of the primary foamed particles is housed in a pressurized (high-pressure air) / warming apparatus, pressurized at a temperature of 80 ° C. for 1 hour, and held at a pressure of 15 kg / cm 2 · G for 8 hours. After increasing the gas (air) internal pressure of the foamed particles, the foamed particles are housed in a foaming apparatus, heated from a bath temperature of 100 ° C. to a foaming temperature in 15 seconds, and further steam-foamed for 8 seconds while maintaining the temperature. Then, secondary expanded particles having an expansion ratio of 8 cm 3 / g were once obtained. The foaming temperature was adjusted in the range of 112.5 ° C to 114.5 ° C so that the foamed particles had the above-mentioned expansion ratio. Next, after aging each of the secondary expanded particles at room temperature for 2 days, they are again stored in a pressurized (high-pressure air) / warming device, and
The pressure is raised to 10 kg / cm 2 · G over 4 hours at a temperature of ° C., and the state is maintained for 1 hour to give an expanding ability.
Table 1 shows the results of evaluating the gas (air) internal pressure of the expanded particles by the evaluation method described in the text. The secondary expanded particles having this gas (air) internal pressure are housed in a foaming apparatus,
Steam heating foaming was performed in the same manner as in Comparative Example 2 to obtain tertiary foamed particles. The expansion ratio and closed cell ratio of the obtained tertiary expanded particles were evaluated by the evaluation methods described in the text, and the results are shown in Table 1.

【0045】[0045]

【表1】 表1の結果によると、本発明の発泡粒子は、気体(空
気)内圧の付与水準、繰り返し膨張(発泡)時の到達倍
率の高さや独立気泡率の維持性等が優れていることが判
る。
[Table 1] According to the results shown in Table 1, it can be seen that the expanded particles of the present invention are excellent in the level of application of gas (air) internal pressure, the high ultimate magnification during repeated expansion (expansion), the maintainability of the closed cell ratio, and the like.

【0046】(実施例4・比較例4) 実施例1・比較例1で得た図1(本発明の発泡粒子)、
図2(比較品の発泡粒子)、図3(従来品の発泡粒子)
の気泡構造を示す発泡倍率2.6cm3 /gの発泡粒子
を用いて、実施例3・比較例3の二次発泡粒子の発泡倍
率8cm3 /gを9cm3 /gに、かつ膨張能を付与し
た二次発泡粒子の水蒸気加熱発泡温度114.5℃を1
10.5〜114.5℃の範囲で調節することにより、
それぞれ変更した他は、実施例3・比較例3と同様にし
て発泡倍率32cm3 /gの三次発泡粒子とした。この
発泡粒子を常温・常圧下に2日間放置後、密閉容器に収
納し、常温の空気中で元の嵩体積の63%(圧縮率37
%)に加圧圧縮し、その状態を保持しつつ水蒸気孔を有
する型内成形金型内(内寸法312mm×312mm×
26mmt)に充填し、圧力1.3kg/cm2 ・Gの
水蒸気で加熱して、発泡粒子相互を膨張・融着させた
後、冷却し、成形金型より取り出した。次に、この成形
体を75℃の熱風循環恒温槽内で8時間熟成した後、2
3℃で3日間放置し、発泡倍率30cm3 /gの型内成
形体とした。各々の成形体について上記評価方法により
成形体の外観品位、特性を評価し、その結果を表2に示
す。
Example 4 and Comparative Example 4 FIG. 1 (expanded particles of the present invention) obtained in Example 1 and Comparative Example 1
Fig. 2 (Expanded particles of comparative product), Fig. 3 (Expanded particles of conventional product)
The expansion ratio of the secondary expanded particles of Example 3 and Comparative Example 3 was changed from 8 cm 3 / g to 9 cm 3 / g, and the expansion capacity was increased by using expanded particles having an expansion ratio of 2.6 cm 3 / g showing the cell structure of The steam heating foaming temperature of the applied secondary foamed particles of 114.5 ° C. is set to 1
By adjusting in the range of 10.5 to 114.5 ° C,
Tertiary expanded particles having an expansion ratio of 32 cm 3 / g were prepared in the same manner as in Example 3 and Comparative Example 3, except for the respective changes. After leaving the foamed particles at normal temperature and normal pressure for 2 days, they are housed in a closed container, and 63% of the original bulk volume (compressibility 37
%) And pressurized and compressed while maintaining the state in an in-mold forming die having a water vapor hole (inner dimensions 312 mm x 312 mm x
26 mmt) and heated with steam at a pressure of 1.3 kg / cm 2 · G to expand and fuse the foamed particles to each other, then cooled and taken out from the molding die. Next, this molded body was aged in a hot air circulating constant temperature bath at 75 ° C. for 8 hours.
It was left at 3 ° C. for 3 days to obtain an in-mold molded product having an expansion ratio of 30 cm 3 / g. The appearance quality and properties of the molded articles were evaluated for each molded article by the above evaluation method, and the results are shown in Table 2.

【0047】[0047]

【表2】 表2の結果によると、本発明の発泡粒子は、型内成形体
としても優れた性能を有していることが判る。
[Table 2] According to the results shown in Table 2, it can be seen that the expanded particles of the present invention also have excellent performance as an in-mold molded product.

【0048】(実施例5) 無架橋エチレン−プロピレンランダム共重合樹脂〔ユニ
オンポリマー社製、FM821、密度0.90g/cm
3 、MFR7g/10分(230℃、2.16kg)、
エチレン含量2.7重量%〕の細断品を用いて、実施例
1・比較例1の二酸化炭素(気体)の含浸時間3時間を
6時間に、かつ発泡温度114.2℃を130℃にそれ
ぞれ変更した他は、実施例1・比較例1と同様にして発
泡倍率2.6cm3 /gの発泡粒子とした。なお、二酸
化炭素の含浸量は樹脂粒子100重量部に対して3.5
重量であった。この発泡粒子について、上記評価方法
により独立気泡率、気泡1個当たりの見掛けの膜厚み、
平均気泡径を評価した結果、98%、8.3μm、70
μmの各値を示し、また実施例1・比較例1と同様に発
泡粒子断面の気泡構造を観察したところ、略図1と同様
に比較的大きな径の気泡が均一に分布しているものであ
った。次に、この発泡粒子を加圧(高圧空気)・加温装
置に収容して、実施例2・比較例2の発泡粒子の気体
(空気)内圧を4kg/cm2 ・Gのみとし、かつ発泡
温度114.5℃を128℃に変更した他は、実施例2
・比較例2と同様にして水蒸気加熱発泡を行った。得ら
れた発泡粒子について、上記評価方法により発泡倍率、
独立気泡率を評価したところ、13.5cm3 /g、9
7%であった。
Example 5 Non-crosslinked ethylene-propylene random copolymer resin [manufactured by Union Polymer Co., FM821, density 0.90 g / cm
3 , MFR7g / 10min (230 ° C, 2.16kg),
Ethylene content of 2.7% by weight] was used, and the carbon dioxide (gas) impregnation time of Example 1 and Comparative Example 1 was changed from 3 hours to 6 hours and the foaming temperature from 114.2 ° C to 130 ° C. Except for the modification, foamed particles having an expansion ratio of 2.6 cm 3 / g were produced in the same manner as in Example 1 and Comparative Example 1. The carbon dioxide impregnation amount was 3.5 per 100 parts by weight of the resin particles.
Parts by weight. For the expanded particles, the closed cell rate, apparent film thickness per cell,
As a result of evaluating the average cell diameter, 98%, 8.3 μm, 70%
Each value of μm was shown, and the bubble structure of the cross section of the expanded bead was observed in the same manner as in Example 1 and Comparative Example 1. As a result, bubbles having a relatively large diameter were uniformly distributed as in FIG. Was. Next, the foamed particles were accommodated in a pressurized (high-pressure air) / warming device, and the gas (air) internal pressure of the foamed particles of Example 2 and Comparative Example 2 was set to only 4 kg / cm 2 · G, and the foamed particles were foamed. Example 2 except that the temperature was changed from 114.5 ° C. to 128 ° C.
-Steam heating foaming was performed in the same manner as in Comparative Example 2. For the obtained expanded particles, the expansion ratio according to the above evaluation method,
When the closed cell rate was evaluated, 13.5 cm 3 / g, 9
7%.

【0049】[0049]

【発明の効果】以上詳述して明らかにして来た通り、本
発明の発泡粒子は、上述の構成を持つことにより、膨張
性能が極めて優れ、繰り返し膨張(発泡)を行っても、
高い独立気泡率を維持した状態で、高発泡倍率の良質な
発泡粒子を容易に得ることができる。この発泡粒子を型
内成形に用いれば、成形体外観品位や成形体特性に優れ
た型内成形体が提供出来る。また、本発明の製造方法
は、CFC、HCFC規制をクリアーする処の二酸化炭
素を発泡剤として用いているために、オゾン層を破壊す
ることもなく、そして不燃性で毒性が低くて取り扱いが
容易で且つ安価である等、種々の利点がある。よって、
本発明は、産業界に果たす極めて優れたものである。
As has been described in detail above, the expanded particles of the present invention, having the above-mentioned structure, have extremely excellent expansion performance, and can be repeatedly expanded (expanded) even if they are repeatedly expanded (expanded).
Good foamed particles having a high expansion ratio can be easily obtained while maintaining a high closed cell rate. If the expanded particles are used for in-mold molding, it is possible to provide an in-mold molded article having excellent appearance quality and molded article properties. In addition, since the production method of the present invention uses carbon dioxide as a blowing agent to clear CFC and HCFC regulations, it does not destroy the ozone layer, is nonflammable, has low toxicity, and is easy to handle. There are various advantages such as low cost and low cost. Therefore,
The present invention is outstanding for the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発泡粒子断面を拡大(×150倍)し
た局部の模式図である。
FIG. 1 is a schematic view of a local area in which a cross section of a foamed particle of the present invention is enlarged (× 150).

【図2】比較品の発泡粒子断面を拡大(×150倍)し
た局部の模式図である。
FIG. 2 is a schematic diagram of a local part in which a cross-section of a foamed particle of a comparative product is enlarged (× 150 times).

【図3】従来品の発泡粒子断面を拡大(×150倍)し
た局部の模式図である。
FIG. 3 is a schematic diagram of a local part in which a cross section of a foamed particle of a conventional product is enlarged (× 150 times).

【図4】本発明の発泡粒子について、付与した内圧と発
泡倍率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the applied internal pressure and the expansion ratio of the expanded beads of the present invention.

【図5】本発明の発泡粒子について、発泡倍率と独立気
泡率との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the expansion ratio and the closed cell ratio for the expanded particles of the present invention.

【図6】本発明に規定の発泡粒子から除外される発泡粒
子断面周縁の概念的模式図である。
FIG. 6 is a conceptual schematic diagram of a cross-sectional periphery of a foamed particle excluded from foamed particles defined in the present invention.

【図7】本発明に規定の発泡粒子から除外される発泡粒
子断面中心部の概念的模式図である。
FIG. 7 is a conceptual schematic view of a center portion of a cross section of a foamed particle excluded from the foamed particles defined in the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリオレフィン系樹脂でできた独立気泡
構造の低発泡倍率の発泡粒子において、この発泡粒子の
発泡構造は、 発泡倍率は1.5〜3.8cm3 /gの範囲にあ
り、 気泡は粒子径の方向に均等に分布しており、 気泡1個当たりの見掛けの膜厚み」が4〜26μ
mの範囲であることを特徴とする、ポリオレフィン系樹
脂の低発泡粒子。
1. A foamed particle of a closed cell structure made of a polyolefin resin and having a low expansion ratio, wherein the expanded structure of the expanded particles has an expansion ratio in the range of 1.5 to 3.8 cm 3 / g. Are uniformly distributed in the direction of the particle diameter, and the apparent film thickness per bubble” is 4 to 26 μm.
m, a low-expanded particle of a polyolefin resin.
【請求項2】 ポリオレフィン系樹脂粒子を二酸化炭素
の臨界圧力未満の高圧状態にあるガス雰囲気下に保持し
て、該樹脂粒子の樹脂分100重量部に対して二酸化炭
素ガスの5重量部未満を上記樹脂粒子内に含浸させて発
泡性樹脂粒子となし、後にこれを加熱して発泡させ、発
泡倍率が1.5〜3.8cm3 /gの発泡粒子にするこ
とを特徴とする、ポリオレフィン系樹脂の低発泡粒子の
製造方法。
2. The polyolefin-based resin particles are held in a gas atmosphere in a high-pressure state lower than the critical pressure of carbon dioxide, and less than 5 parts by weight of carbon dioxide gas is added to 100 parts by weight of resin of the resin particles. A polyolefin-based resin, wherein the resin particles are impregnated to form expandable resin particles, which are then heated and expanded to form expanded particles having an expansion ratio of 1.5 to 3.8 cm 3 / g. A method for producing low-expanded resin particles.
JP17475291A 1991-06-20 1991-06-20 Low-expanded particles of polyolefin resin and method for producing the same Expired - Lifetime JP3207219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17475291A JP3207219B2 (en) 1991-06-20 1991-06-20 Low-expanded particles of polyolefin resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17475291A JP3207219B2 (en) 1991-06-20 1991-06-20 Low-expanded particles of polyolefin resin and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04372630A JPH04372630A (en) 1992-12-25
JP3207219B2 true JP3207219B2 (en) 2001-09-10

Family

ID=15984067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17475291A Expired - Lifetime JP3207219B2 (en) 1991-06-20 1991-06-20 Low-expanded particles of polyolefin resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP3207219B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69903593T2 (en) * 1998-06-11 2003-06-18 Jsp Corp Molded item made of expanded and expanded propylene beads
JP2002187972A (en) * 2000-12-20 2002-07-05 Jsp Corp Expanded polyester resin particle for multi-stage expansion and method for expanding the particle by multi-stage expansion
WO2010150466A1 (en) 2009-06-26 2010-12-29 株式会社ジェイエスピー Expanded polypropylene resin beads and expanded bead molding
JP4712914B2 (en) 2009-08-13 2011-06-29 旭化成ケミカルズ株式会社 Foam beads, molded body using the same, and method for producing molded body
EP2524941B1 (en) 2010-01-15 2019-05-15 Kaneka Corporation Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
JP5727210B2 (en) 2010-12-15 2015-06-03 株式会社ジェイエスピー Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
JP6436583B2 (en) * 2015-03-23 2018-12-12 積水化成品工業株式会社 Method for producing cyclic olefin-based resin expanded particles and method for producing expanded molded body
JP2018065972A (en) * 2016-10-21 2018-04-26 旭化成株式会社 Foam and molding prepared therewith
CN110139894B (en) 2017-02-13 2022-08-09 旭化成株式会社 Resin foamed particle, resin foamed molded article, and laminate
JP6844065B2 (en) 2018-04-09 2021-03-17 旭化成株式会社 Foam molded product and its manufacturing method
EP3835053A4 (en) 2018-08-09 2021-09-15 Asahi Kasei Kabushiki Kaisha Stack structure
JP7355838B2 (en) 2019-09-30 2023-10-03 旭化成株式会社 Containers, storage devices, electrical parts storage bodies
CN114514271B (en) 2019-10-16 2023-03-21 旭化成株式会社 Spacer, method for producing same, and composite body
WO2021166667A1 (en) 2020-02-18 2021-08-26 旭化成株式会社 Lithium-ion battery module
CN116194289A (en) 2020-08-28 2023-05-30 旭化成株式会社 Composite nonflammable molded body
WO2022176591A1 (en) 2021-02-19 2022-08-25 旭化成株式会社 Cover
EP4316800A1 (en) 2021-03-31 2024-02-07 Asahi Kasei Kabushiki Kaisha Laminate
CN117580899A (en) 2021-07-09 2024-02-20 旭化成株式会社 Expanded beads, process for producing the same, and molded article

Also Published As

Publication number Publication date
JPH04372630A (en) 1992-12-25

Similar Documents

Publication Publication Date Title
JP3207219B2 (en) Low-expanded particles of polyolefin resin and method for producing the same
US4704239A (en) Process for the production of expanded particles of a polymeric material
US4436840A (en) Process for producing pre-foamed particles of polyolefin resin
US4483809A (en) Process for preparing polyolefin foam
JPS5825334A (en) Production of polypropylene resin foam
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JPH082989B2 (en) Pre-expansion method of polyolefin resin particles
JP3638960B2 (en) Polyolefin resin expanded particles and method for producing the same
JP4157399B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded foam in polypropylene resin mold
JPH07119314B2 (en) Blowing agent composition for thermoplastic resin foaming
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
EP0109458B1 (en) Pressurization and storage of thermoplastic resin foams prior to secondary expansion
JPS5876230A (en) Manufacture of polypropylene resin foamed particle
JPH01156338A (en) Prefoamed polypropylene resin particle and production thereof
JP4001669B2 (en) Olefinic resin foamable particles and method for producing the same
JPS58215326A (en) Manufacture of polyolefin resin molding foamed in force
JP3453814B2 (en) Method for producing non-crosslinked polyolefin resin pre-expanded particles
JPH05255531A (en) Production of molded polymer foam
JP2603858B2 (en) Method for producing spherical polyethylene expanded particles
JP2874772B2 (en) Method for producing expanded polymer particles
JP3126171B2 (en) Method for producing expanded polyolefin resin particles
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JPS6234334B2 (en)
JPH0415235A (en) Crosslinked polyolefin resin foam

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010626

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

EXPY Cancellation because of completion of term