JPS5876189A - System for purification of water with active sludge - Google Patents

System for purification of water with active sludge

Info

Publication number
JPS5876189A
JPS5876189A JP56173875A JP17387581A JPS5876189A JP S5876189 A JPS5876189 A JP S5876189A JP 56173875 A JP56173875 A JP 56173875A JP 17387581 A JP17387581 A JP 17387581A JP S5876189 A JPS5876189 A JP S5876189A
Authority
JP
Japan
Prior art keywords
sludge
amount
total amount
excess
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56173875A
Other languages
Japanese (ja)
Inventor
Yoshizumi Ogishima
荻島 美住
「よし」田 悦郎
Etsurou Yoshida
Junji Hirotsuji
淳二 廣辻
Mitsuo Maeda
満雄 前田
Ichiro Nakahori
一郎 中堀
Kazuo Maeda
和男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56173875A priority Critical patent/JPS5876189A/en
Publication of JPS5876189A publication Critical patent/JPS5876189A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To stabilize the quality of purified water, while holding the total amount of sludge in the system at a predetermined value, in purifying sewage or the like, by setting the total amount of sludge at first, and using the set value and an estimated value for the total amount of sludge obtained from information at a specified point to set the amount of excess sludge to be withdrawn. CONSTITUTION:From the output of an MLSS meter 6 inserted into an aerating cell 1, the total amont of sludge is calculated by an arithmetic circuit 7 for the total amount of sludge. On the other hand, an estimated value for the total amount of sludge is calculated by an arithmetic circuit 8 taking into consideration the quality of water to be purified, the property of sludge, the amount of air blow and the amount of excess sludge to the withdrawn. The set value of the total amount of sludge from the arithmetic circuit 8 and the estimated value for the total amount of sludge from the arithmetic circuit 7 are inputted to an arithmetic circuit 9 to determine the amount of excess sludge to be withdrawn. In addition, the outputs of a flow meter 11 for excess sludge and a densitometer 10 for excess sludge are processed by an arithmetic unit 12 to calculate the actual amount of excess sludge to be withdrawn. The output of the arithmetic unit 12 and the output of the arithmetic circuit 9 are inputted to a controller 13 for withdrawing excess sludge, withdrawal is performed by the operation of an excess sludge-withdrawing pump 4, and the total amount of sludge is held constant.

Description

【発明の詳細な説明】 本発明は好気性微生物を用いて構成される活性汚泥を用
いて下水を浄化する活性汚泥水処理方式%式% 第1図にその概要を示す下水処理プロセスでは、曝気槽
(1)入口で下水に、好気性微生物を含む活性汚泥を混
入する。曝気槽(1)では、汚泥が下水中の有機物を、
分解、吸収するのを利用して、下水を浄化する。下水と
汚泥の混合液は最終沈殿池(2)で活性汚泥と上澄水と
に固液分離され、上澄水は処理水として放流される。一
方、固液分離された活性汚泥は、返送汚泥として返送汚
泥ポンプ(3)によシ曝気槽(1)に戻される。また、
総汚泥量の一部分は余剰汚泥引抜ポンプ(4)によシ、
余剰汚泥として系外に引抜かれ、汚泥処理される。
Detailed Description of the Invention The present invention is an activated sludge water treatment method for purifying sewage using activated sludge composed of aerobic microorganisms. Activated sludge containing aerobic microorganisms is mixed into the sewage at the inlet of tank (1). In the aeration tank (1), the sludge removes organic matter from the sewage.
Purify sewage by decomposing and absorbing water. The mixed liquid of sewage and sludge is solid-liquid separated into activated sludge and supernatant water in the final settling tank (2), and the supernatant water is discharged as treated water. On the other hand, the solid-liquid separated activated sludge is returned to the aeration tank (1) as return sludge by the return sludge pump (3). Also,
A portion of the total sludge volume is transferred to the excess sludge extraction pump (4).
It is pulled out of the system as surplus sludge and treated as sludge.

従来、研究レペμでは、活性汚泥プロセスの汚泥量の管
理方法として、77M比一定制御方法、SRT制御方法
等が考案されている。
Conventionally, in the research field μ, a 77M ratio constant control method, an SRT control method, etc. have been devised as methods for managing the amount of sludge in an activated sludge process.

77M比一定制御方法とは、流入する有機物量と、活性
汚泥プロセス系内の微生物量の比であるIF / M比
を一定に保ち、処理水質の良化、安定化を図る方法であ
る。
77 The constant M ratio control method is a method of keeping the IF/M ratio, which is the ratio between the amount of organic matter flowing in and the amount of microorganisms in the activated sludge process system, constant to improve and stabilize the quality of treated water.

また、SR?制御方法とは、活性汚泥プロセス系内の微
生物滞留時間(BRT w Sluige Reten
tionTime)を一定に保つ制御法で多シ、毎日、
総汚泥量中の一定割合(汚泥総量/ EI R丁(日)
)を余剰汚泥として引き抜き、系内汚泥の刷新化を図シ
、汚泥の性状を良好に保つことにょシ、処理水質の良化
、安定化を図る方法である。
Also, SR? The control method is the microbial retention time within the activated sludge process system.
With a control method that keeps the tionTime constant, multiple times, every day,
A certain percentage of the total amount of sludge (total amount of sludge/EI R (day)
) is extracted as surplus sludge, the sludge in the system is renewed, the properties of the sludge are maintained in good condition, and the quality of treated water is improved and stabilized.

しかしながら実施設においては77M比一定制御方−法
においては流入有機物濃度の連続計測あるいは予測が必
要とされるのに対し、これを計測あるいは予測する実用
的な技術が々いことおよび流入する有機物量の変動は人
間の生活と密接に関連しているため、かなりの時間変動
をもっているのに対し、総汚泥量は、時間変動が少なく
、流入有機物量の変動に対応できないので現在では実現
不可能である。
However, in actual facilities, the 77M ratio constant control method requires continuous measurement or prediction of the concentration of inflowing organic matter, but there are many practical techniques for measuring or predicting this, and the amount of organic matter inflowing is difficult. Since the fluctuations in the amount of sludge are closely related to human life, they have considerable temporal fluctuations, whereas the total amount of sludge has small temporal fluctuations and cannot respond to fluctuations in the amount of inflowing organic matter, so it is currently impossible to achieve this goal. be.

また、EIRT制御方法においては、総汚泥量を、何ら
かの方法で推定することが不可欠であシ、マた5RTO
値によシ、処理水質が決定くれるモデル式のバフメータ
を常に求め刷新しなければならないし、設定゛値変更に
伴う、過渡応答時間がかなシの日数となるといった欠点
がある。また実施設では流入下水中にかなりの汚泥量が
含まれているのにもかかわらず、全く考慮されていない
In addition, in the EIRT control method, it is essential to estimate the total sludge amount by some method, and
A model-type buff meter that determines the quality of the treated water must be constantly searched for and updated, and there are drawbacks such as the transient response time required to change settings and values, which can take several days. Furthermore, in actual facilities, inflowing sewage water contains a considerable amount of sludge, but this is not taken into consideration at all.

また、上記2制御法共従来、その目的を処理水質の良化
安定化のみに重点をおいているので送気量および、余剰
汚泥発生量(汚泥処理量の一部)等の運転費用低減に対
する効果は、直接的には期待できない。
In addition, since the above two control methods conventionally focus only on improving and stabilizing the quality of treated water, it is important to reduce operating costs such as air supply amount and surplus sludge generation amount (a part of sludge treatment amount). Effects cannot be expected directly.

これら上記の理由で実施設においては、11M比一定制
御方法および5RT一定制御方法は、行なわれておらず
もっばら施設運転者のもつ長年の経験および勘に基づい
て運転管理が行なわれているというのが実状である。こ
のため処理水質、汚泥性状は、良化安定化せず、送気量
、余剰汚泥量についても低減化が図れていない。ま、九
時として運転操作の過不足から活性汚泥処理過程の破綻
さえ招くことがあった。
For these reasons, in actual facilities, the 11M constant ratio control method and the 5RT constant control method are not used, and operation management is mainly based on the long experience and intuition of facility operators. This is the actual situation. For this reason, the treated water quality and sludge properties have not been improved or stabilized, and the amount of air supplied and the amount of excess sludge have not been reduced. In some cases, the activated sludge treatment process could even fail due to over- or under-operation.

この発明は、上記のような実状にもとすき、実施設に最
も即した方法として曝気槽内、最終沈殿池内および返送
汚泥管路内に貯留する汚泥量の和である汚泥総量を所定
量に保つととによシ、処理水質を決定するy / M比
の変動を押え、処理水質および汚泥性状を良好、安定化
させ、かつ処理コストの低減化をも図るという活性汚泥
水処理方式を提供することを目的としている。総汚泥量
を一定に保つことによシ生じる効果について詳禰にのべ
る。
In view of the above-mentioned actual situation, this invention is a method most suitable for actual facilities, in which the total amount of sludge, which is the sum of the amount of sludge stored in the aeration tank, the final settling tank, and the return sludge pipe, is reduced to a predetermined amount. We provide an activated sludge water treatment method that suppresses fluctuations in the Y/M ratio that determines treated water quality, improves and stabilizes treated water quality and sludge properties, and reduces treatment costs. It is intended to. The effects of keeping the total sludge volume constant will be discussed in detail.

まず、処理水質は、第2図に示すように77M比により
決定される。図に示すようにIF/M比が低い領域では
処理水質は良好で安定しているのに対しF / M比が
高くなるに従い、処理水質は急に悪化する。本発明では
F / M比を決定する汚泥総量を制御量としているの
で流入有機物量の変動に対し、速まかに対応できる。し
かしながら前述したように、流入有機物の変動に対し、
汚泥総量を対応させることは、不可能に近く、寮際は、
流入有機物の変動および汚泥総量の影舎をうけてP/M
比は変動し、処理水質も変動する。しかしながら、本発
明によれば系内の汚、泥総量を一定に保つことにより処
理水質を決定する77M比の変動を流入有機物負荷の変
動程度に押えることができる。
First, the quality of treated water is determined by the 77M ratio as shown in FIG. As shown in the figure, in the region where the IF/M ratio is low, the quality of the treated water is good and stable, but as the F/M ratio increases, the quality of the treated water suddenly deteriorates. In the present invention, since the total amount of sludge that determines the F/M ratio is used as the control amount, it is possible to promptly respond to fluctuations in the amount of inflowing organic matter. However, as mentioned above, due to fluctuations in inflow organic matter,
It is almost impossible to control the total amount of sludge, and near the dormitory,
P/M based on changes in inflow organic matter and the total amount of sludge
The ratio changes, and the quality of the treated water also changes. However, according to the present invention, by keeping the total amount of sludge and sludge in the system constant, fluctuations in the 77M ratio, which determines the quality of treated water, can be suppressed to the extent of fluctuations in the inflow organic matter load.

(表1参照) 表  1 単位;流入COD負荷の平均値ζ標準11i1!I (
t /日)COD−35の平均値、標準偏差(1/日)
その結果処理水質の変動は、最小限に押えられ、IF/
M比制御とほぼ同等の効果を得る。この効果は、77M
比が高くなる程大きな効果となる(第2図参照)。また
汚泥性状についても、IF/M比と密接な関係をもって
おり、一般には、F / M比が高く々シすぎてもある
いは低くなわすぎても悪化する。このため総汚泥量を、
一定に保ち、77M比をある範囲内に保てば、汚泥性状
は悪化しない。
(See Table 1) Table 1 Unit: Average value of inflow COD load ζ Standard 11i1! I (
t/day) Mean value of COD-35, standard deviation (1/day)
As a result, fluctuations in treated water quality are kept to a minimum, and IF/
Almost the same effect as M ratio control is obtained. This effect is 77M
The higher the ratio, the greater the effect (see Figure 2). The properties of sludge are also closely related to the IF/M ratio, and generally become worse if the F/M ratio is too high or too low. Therefore, the total amount of sludge is
If the 77M ratio is kept constant and within a certain range, the sludge properties will not deteriorate.

一般に処理水質および汚泥性状については、1!M比0
゜1−0.8が良いとされている。つまシFZM比を0
.1〜0.8(1!日)に保てば処理水質、汚泥性状送
気量、安定化する、 活性汚泥水処理過程で最も費用のかかる部分は。
In general, regarding treated water quality and sludge properties, 1! M ratio 0
It is said that 1-0.8 is good. Tsumashi FZM ratio is 0
.. The most expensive part of the activated sludge water treatment process is that the treated water quality, sludge properties, and air flow rate will be stabilized if maintained at 1 to 0.8 (1! day).

送気量および汚泥処理の部分である。This is the air flow rate and sludge treatment part.

送気量については第8図に示すように総汚泥量が多くな
ると直線的に増加する。また余剰汚泥引抜量は、第4図
に示すように総汚泥量が多′くなると、直線的に減少す
る。
As shown in FIG. 8, the amount of air supplied increases linearly as the total amount of sludge increases. Further, as shown in FIG. 4, the amount of excess sludge drawn decreases linearly as the total amount of sludge increases.

第8図および第4図に破線で示したものは、それぞれ微
生物の呼吸速度モデルおよび増殖モデルより得られた結
果である。これらより各モデルを用い送気量および余剰
汚泥引抜量を把握することが可能である。
The broken lines in FIGS. 8 and 4 are the results obtained from the microbial respiration rate model and growth model, respectively. From these, it is possible to understand the air supply amount and excess sludge extraction amount using each model.

これらの項目を考慮した評価関数を作成しそれによシ総
汚泥量の設定値を決定し、活性汚泥プロセスを運転すれ
ば、処理水質および汚泥性状を良化、安定化させ、かつ
処理コストも低減させることが可能となる。
By creating an evaluation function that takes these items into account, determining the set value for the total sludge volume, and operating the activated sludge process, the quality of treated water and sludge properties can be improved and stabilized, and treatment costs can also be reduced. It becomes possible to do so.

また、流入負荷の変動に伴う応答時間はSRTよシも短
い。(第5図)すなわちSRT制御では余剰引抜を停止
しないのに対し、総汚泥量制御では余剰引抜を停止−し
、短時間で設定値の変更が可能である。
Furthermore, the response time due to fluctuations in inflow load is shorter than that of SRT. (FIG. 5) That is, in SRT control, excess extraction is not stopped, whereas in total sludge amount control, excess extraction is stopped, and the set value can be changed in a short time.

次にこの発明の一実施例を第6図に示す。Next, an embodiment of the present invention is shown in FIG.

第6図において、(6)は曝気槽内の特定の地点に挿入
され、系内汚泥総量を把握するための情報を得るMLS
S計である。(7)は汚泥総量演算回路であυMLBB
計(6)の出力を用いて、汚泥総量を演算する。(8)
は汚泥総量設定値の演算回路であり、処理水質、汚泥性
状送気量、余剰汚泥引抜量を考慮し、設定値を演算決定
する。(9)は、余剰汚泥引抜量演算回路であシ演算回
路(8)の出力である総汚泥置設定値と演算回路(7)
の出力である総汚泥量制御値を用い、余剰汚泥引抜量を
決定する。αQは余剰汚泥濃度計、(ロ)は余剰汚泥流
量計、@は演算器であシ余剰汚泥濃度計αqおよび余剰
汚泥流量計(ロ)の出力を処理し、余剰汚泥引抜量を演
算算出する。(至)は余剰汚泥引抜調節計であり、演算
器(2)および演算器1賂(8)の出力によシ、余剰汚
泥引抜ボンデ(4)を操作し、余剰引抜を行ない汚泥総
量を一定に保つ。
In Figure 6, (6) is an MLS that is inserted at a specific point in the aeration tank and obtains information to understand the total amount of sludge in the system.
It is an S meter. (7) is the sludge total amount calculation circuit υMLBB
Using the output of total (6), calculate the total amount of sludge. (8)
is a calculation circuit for the total sludge volume set value, which calculates and determines the set value in consideration of the treated water quality, sludge properties, air supply amount, and excess sludge extraction amount. (9) is the surplus sludge extraction amount calculation circuit, and the total sludge tank setting value which is the output of the calculation circuit (8) and the calculation circuit (7)
The amount of excess sludge to be extracted is determined using the total sludge amount control value that is the output of . αQ is a surplus sludge concentration meter, (b) is a surplus sludge flowmeter, @ is a calculator. Processes the outputs of the surplus sludge concentration meter αq and surplus sludge flowmeter (b), and calculates the amount of excess sludge extracted. . (To) is an excess sludge extraction controller, which operates the excess sludge extraction bonder (4) according to the output of the computing unit (2) and the computing unit 1 (8), and performs excess sludge extraction to keep the total amount of sludge constant. Keep it.

次に、本装置の動作について説明する。Next, the operation of this device will be explained.

活性汚泥処理プロセス系内の汚泥総量(ST)は次式で
示される。
The total amount of sludge (ST) in the activated sludge treatment process system is expressed by the following formula.

8rIllIS1+S2+S、・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・  IIJ(
1)式においてSl、sl、s3はそれぞれ曝気槽、最
終沈殿池および返送汚泥管路(5)内に貯留している汚
泥量である。
8rIllIS1+S2+S,・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ IIJ(
In equation 1), Sl, sl, and s3 are the amounts of sludge stored in the aeration tank, final settling tank, and return sludge pipe (5), respectively.

また、実施設においてはSs<<Sユ、B2の関係がら
シ、馬はほとんど無視できる。汚泥は曝気槽(1)−最
終沈殿池(2)−返送汚泥管路(5)と絶えず循環して
おシ、流入下水量が一定であればへと4の比は一定とな
シ゛定常的にはSTは次式のように示される。
Furthermore, in actual facilities, the relationship between Ss<<Syu and B2 and horses can be almost ignored. Sludge constantly circulates between the aeration tank (1), the final settling tank (2), and the return sludge pipe (5), and if the amount of inflowing sewage is constant, the ratio of 4 to 4 remains constant. , ST is shown as the following equation.

STW A  −8!  ・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・   (2)しか
しながら流入下水量が変わると曝気槽(1)よυ最終沈
殿池(2)へ押し出される汚泥量も変化し龜ともの比が
変化する。
STW A-8!・・・・・・・・・・・・・・・
(2) However, if the amount of inflowing sewage changes, the amount of sludge pushed out from the aeration tank (1) to the final settling tank (2) will also change. The ratio changes.

これを考ぼすれば、汚泥総量6Tは、定常的には次式で
示される。
Considering this, the total amount of sludge 6T can be expressed as follows.

8T= a  −flQJ ・S□・・・・・・・・・
・川・・・・・・・・   (3)ここでQは流入下水
量である。
8T= a −flQJ ・S□・・・・・・・・・
・River・・・・・・・・・ (3) Here, Q is the amount of inflowing sewage.

本装置では総汚泥乾量を推定するために曝気槽(1)の
特定地点にM L B−8計(6)を挿入し、MLSS
を計測している。また、定常的には、汚泥循環管路内の
特定地点の汚泥濃度tc)流入下水量IQ、)と総汚泥
量(BT)の間に次式が成立する。
In this device, an MLB-8 meter (6) is inserted at a specific point in the aeration tank (1) to estimate the total dry amount of sludge, and the MLSS
is being measured. Further, on a steady basis, the following equation holds between the sludge concentration tc) inflow sewage volume IQ,) at a specific point in the sludge circulation pipe and the total sludge volume (BT).

BT−A @flQ、)・C・・・・・・・・・・・・
・・・・・・・・・・・・ (4)ここでムは比例定数
でおる。
BT-A @flQ, )・C・・・・・・・・・・・・
・・・・・・・・・・・・ (4) Here, M is a constant of proportionality.

実施設では、定常状態となる時間が少ないので計測値・
を1日程度で平滑化して用いればかなシの精度で総汚泥
量の推定が可能となる 。
In actual facilities, there is little time for the steady state to occur, so the measured values and
If it is smoothed in about one day and used, it becomes possible to estimate the total amount of sludge with kanasi accuracy.

この種の演算MX、BBftf(6)の出力を用い汚泥
総量推定演算回路(7)で行なわれ、演算回路(7)の
出力として汚泥総量推定値が得られる。
Using the outputs of these types of calculations MX and BBftf (6), a total sludge amount estimation calculation circuit (7) performs the calculation, and an estimated total amount of sludge is obtained as an output of the calculation circuit (7).

汚泥総量設定演算回路(8)では汚泥総量設定値を決定
するが、この際流入有機物負荷量および、微生物呼吸モ
デル、微生物増殖モデμを必要とする。
The sludge total amount setting calculation circuit (8) determines the sludge total amount setting value, but at this time, the inflow organic matter load, the microbial respiration model, and the microbial growth model μ are required.

これらは間欠的に手分析を行ない求めてもよいし、計測
器を配置して刻々の状態を測定し、計算機等で求めても
よい。
These may be determined by performing manual analysis intermittently, or may be determined using a computer or the like by arranging a measuring device to measure the state every moment.

流入有機物量および微生物の呼吸モデル1増殖モデルよ
シ第6図に示すように汚泥総量と77M比、送気量およ
び余剰汚泥量の関係が得られる。
Based on the inflow organic matter amount and microbial respiration model 1 growth model, the relationship between the total amount of sludge, the 77M ratio, the air supply amount, and the amount of excess sludge can be obtained as shown in FIG.

これらよシ、適切なり / y比値すなわち0.1〜0
.8(1/日)を満足する総汚泥量の範囲を定め、つぎ
にその範囲内で送気量、余剰汚泥量に基づく電力費用お
よび汚泥処理費用の合計を最小とする汚泥総量を決定す
る。
These are appropriate / y ratio value, i.e. 0.1 to 0
.. 8 (1/day), and then determine the total amount of sludge that minimizes the sum of the air supply amount, the electricity cost based on the excess sludge amount, and the sludge treatment cost within that range.

つぎに、演算回路(7) (8)の出力を用いて余剰汚
泥量演算回路(9)において、余剰引抜汚泥量目標値 
□(SW)を決定する。
Next, using the outputs of the calculation circuits (7) and (8), the excess sludge amount calculation circuit (9) calculates the target value of the surplus drawn sludge amount.
□ (SW) is determined.

sW ” G(Sr −8? ) ””””””=  
 (6)(6)式において、Gは比例積分ゲイン、ST
は総汚泥量推定値S丁  は総汚泥量の設定値である。
sW ” G (Sr -8?) ””””””=
(6) In equation (6), G is the proportional integral gain, ST
is the estimated total sludge volume S is the set value of the total sludge volume.

演算回路(9)の出方は、余剰引抜調節計(至)に設定
値入力として接続され、余剰引抜調節計(至)の出方に
よシ余剰汚泥引抜ボンデ(3)を操作して所定の余剰汚
泥引抜を行ない総汚泥量を一定に保つ。
The output of the arithmetic circuit (9) is connected to the surplus withdrawal controller (to) as a set value input, and the surplus sludge withdrawal bonder (3) is operated depending on the output of the surplus withdrawal controller (to) to set a predetermined value. Excess sludge is removed to keep the total amount of sludge constant.

この装置に、曝気槽内MLSSを一定に保つよう流入下
水量の変動に対応させ返送汚泥流量をコントロールすれ
ば、曝気槽内ML日Sは、より一定に保たれ、処理水質
は、一層良好となシ安定化する。
If this device responds to fluctuations in the amount of inflowing sewage and controls the return sludge flow rate so as to keep the MLSS in the aeration tank constant, the MLSS in the aeration tank will be kept more constant, and the quality of the treated water will be even better. Stabilize.

以上のようにこの発明によれば、処理水質、汚泥性状お
よび汚水処理コストを考慮した汚泥a量の設定値になる
ように汚泥総量を保つようにしたので処理水質、汚泥性
状も良化、安定化し汚水処理コストも低減化できるとい
う効果がある。
As described above, according to the present invention, since the total amount of sludge is maintained at the set value of the amount of sludge a taking into consideration the quality of treated water, sludge properties, and sewage treatment cost, the quality of treated water and sludge properties are also improved and stabilized. This has the effect of reducing wastewater treatment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、活性汚泥下水処理プロセスの概要を示す図、
第2図はF / y比と処理水質の関係を示す図、第8
図は総汚泥乾量と送気量との関−係を示す図、第4図は
総汚泥乾量と余剰汚泥引抜乾量との関係を示す図、第6
図は制御方式と応答時間との関係を示す図、第6図はこ
の発明による活性汚泥水処理方式の一実施例を示す概略
構成図である。 (1)・・・曝気槽、(2)・・・最終沈殿池、(3)
・・・返送汚泥ポンプ、(4)・・・余剰汚泥引抜ポン
プs’ (5)・・・返送汚泥管路、(6)・・・ML
SSli”47)備汚泥量演算回路、(8)・・・総汚
泥量設定演算回路、(9)・・・余剰汚泥引抜量演算l
略、QQ・・・余剰汚泥引抜調節計、(ロ)・・・余剰
汚泥濃度計、@・・・余剰汚泥流量計、(至)・・・余
剰汚泥量演算回路。 なお図中同一符号は同−又は相当部分を示す。 代理人 葛野信−(ほか1名) 第2図 物比(VB) 第4図 第3図 4ぜ                専)/I\  
                    〆r)第7
図 −F/M比 一−−−−−送Frf −・−章剰55死幻涜 第1頁の続き ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号 手続補正書(方式) %式% 2、発明の名称 活性汚泥水処理方式 3 補正をする者 5、手続補正指令書(方式)の日付  昭和57年2月
28日(1) 鋭部の分〕 (2)明細書の図面の簡単な説明の欄 住、及び吉田悦部の分)を別紙の通り補充する。 (2)明方′書中、第13ページ第2行に「概略構成図
である。」とあるのを「概略構成図、第7図は、送気量
、F7M比、余剰汚泥発生量と、総汚泥乾量、汚泥性状
との関係を示す線図である。」と訂正する。 8、添付書類の目録 殻 (1)委任状(液島美住の分)     1通(2)委
任状(吉田悦部の分)     1通以上
Figure 1 is a diagram showing an overview of the activated sludge sewage treatment process;
Figure 2 is a diagram showing the relationship between F/y ratio and treated water quality.
Figure 4 shows the relationship between total sludge dry amount and air supply amount, Figure 4 shows the relationship between total sludge dry amount and surplus sludge dry amount, and Figure 6 shows the relationship between total sludge dry amount and excess sludge dry amount.
The figure is a diagram showing the relationship between the control method and the response time, and FIG. 6 is a schematic configuration diagram showing an embodiment of the activated sludge water treatment method according to the present invention. (1)... Aeration tank, (2)... Final settling tank, (3)
... Return sludge pump, (4) ... Excess sludge extraction pump s' (5) ... Return sludge pipe, (6) ... ML
SSli”47) Preliminary sludge amount calculation circuit, (8)...Total sludge amount setting calculation circuit, (9)...Excess sludge extraction amount calculation l
Abbreviation, QQ...excess sludge extraction controller, (b)...excess sludge concentration meter, @...excess sludge flow meter, (to)...excess sludge amount calculation circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Makoto Kuzuno (1 other person) 2nd figure ratio (VB) Figure 4 Figure 3 Figure 4 Special)/I\
〆r) 7th
Figure - F/M ratio - - - Transmission Frf - - Continuation of Chapter Surplus 55 Shingenkai, page 1 ■ Applicant Mitsubishi Electric Corporation 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Procedural amendment (Method) % formula % 2. Name of the invention Activated sludge water treatment method 3. Person making the amendment 5. Date of procedural amendment order (method) February 28, 1980 (1) Sharp parts] (2) The column for the brief explanation of the drawings in the specification and Etsube Yoshida's section will be supplemented as shown in the attached sheet. (2) In the Meiho' book, in the second line of page 13, the phrase ``This is a schematic configuration diagram.'' was replaced with ``Schematic configuration diagram. , total sludge dry amount, and sludge properties.'' 8. List of attached documents (1) Power of attorney (for Mizushima Misumi) 1 copy (2) Power of attorney (for Etsube Yoshida) 1 copy or more

Claims (1)

【特許請求の範囲】[Claims] 流入下水を曝気槽において好気性微生物を用いて浄化し
曝気槽から流出する活性汚泥混合液を最終沈殿池で固液
分離し、沈殿した汚泥を、曝気槽へ返送する活性汚泥処
理方式において、処理水質、汚泥性状、送気量、余剰汚
泥引抜量を考慮した曝気槽内及び最終沈殿池内並びに返
送汚泥管路内汚泥量の和である汚泥総量を設定値とし、
また系内の特定の1あるいは複数の地点の1あるいは複
数の情報により汚泥総量を推定して推定値とし、上記推
定値と上記設定値とによシ余剰汚泥引抜量を導出して、
この導出された余剰汚泥引抜量に応じて汚泥引抜を行な
うことによって汚泥総量を設定量に保つことを特徴とす
る活性汚泥水処理方式。
In the activated sludge treatment method, inflowing sewage is purified using aerobic microorganisms in an aeration tank, the activated sludge mixture flowing out from the aeration tank is separated into solid and liquid in a final settling tank, and the precipitated sludge is returned to the aeration tank. The set value is the total amount of sludge, which is the sum of the amount of sludge in the aeration tank, the final settling tank, and the return sludge pipe, taking into account water quality, sludge properties, air supply amount, and excess sludge extraction amount.
In addition, the total amount of sludge is estimated based on one or more pieces of information from one or more specific points in the system, and the amount of excess sludge to be extracted is derived by combining the estimated value and the set value.
The activated sludge water treatment method is characterized in that the total amount of sludge is maintained at a set amount by performing sludge extraction according to the derived amount of excess sludge.
JP56173875A 1981-10-30 1981-10-30 System for purification of water with active sludge Pending JPS5876189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173875A JPS5876189A (en) 1981-10-30 1981-10-30 System for purification of water with active sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173875A JPS5876189A (en) 1981-10-30 1981-10-30 System for purification of water with active sludge

Publications (1)

Publication Number Publication Date
JPS5876189A true JPS5876189A (en) 1983-05-09

Family

ID=15968743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173875A Pending JPS5876189A (en) 1981-10-30 1981-10-30 System for purification of water with active sludge

Country Status (1)

Country Link
JP (1) JPS5876189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184982A (en) * 2021-04-19 2021-07-30 西安建筑科技大学 Strengthening method and device for improving sedimentation performance of activated sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196171A (en) * 1975-02-21 1976-08-23
JPS5547189A (en) * 1978-09-29 1980-04-03 Mitsubishi Electric Corp Total sludge quantity controller in active sludge treatment process
JPS55134696A (en) * 1979-04-09 1980-10-20 Nobutsugu Kato Surplus sludge control in sewage treatment process
JPS5784791A (en) * 1980-11-12 1982-05-27 Hitachi Ltd Control system for sludge amount
JPS5845795A (en) * 1981-09-14 1983-03-17 Toshiba Corp Controlling means for purification of sewage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196171A (en) * 1975-02-21 1976-08-23
JPS5547189A (en) * 1978-09-29 1980-04-03 Mitsubishi Electric Corp Total sludge quantity controller in active sludge treatment process
JPS55134696A (en) * 1979-04-09 1980-10-20 Nobutsugu Kato Surplus sludge control in sewage treatment process
JPS5784791A (en) * 1980-11-12 1982-05-27 Hitachi Ltd Control system for sludge amount
JPS5845795A (en) * 1981-09-14 1983-03-17 Toshiba Corp Controlling means for purification of sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184982A (en) * 2021-04-19 2021-07-30 西安建筑科技大学 Strengthening method and device for improving sedimentation performance of activated sludge

Similar Documents

Publication Publication Date Title
JP5996819B1 (en) Aeration control method for activated sludge
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
KR100638158B1 (en) Sewage treatment system
JP2017006894A (en) Method for controlling the amount of aeration in activated sludge
WO2022213620A1 (en) Online model water quality conversion method and system, electronic device, and medium
JP2012030232A (en) Phosphorous removal device in sewage disposal plant
CN114380378A (en) Intelligent phosphorus-control drug feeding method and device and storage medium
JP2014147936A (en) Controller for biological water treatment apparatus
JP2017109170A (en) Aeration control apparatus, and aeration control method
JPS5876189A (en) System for purification of water with active sludge
JP6219239B2 (en) Water treatment plant
JP4132921B2 (en) Anaerobic treatment facility and monitoring method thereof
JP4620391B2 (en) Sewage treatment equipment
JP6726954B2 (en) Sewage treatment control device
JP3707526B2 (en) Waste water nitrification method and apparatus
JP2007000859A (en) Phosphorous removal device in sewage disposal plant
JP2000325980A (en) Sewage treatment method and apparatus
JP2000325991A (en) Control device of biological water treatment apparatus
JP2017121595A (en) Monitor and control system using activated-sludge process
CN115259413B (en) Air quantity control method for accurate aeration system
JP4190177B2 (en) Method and apparatus for adding organic carbon source in biological denitrification treatment
JP5791762B2 (en) Control device for biological water treatment equipment
JP5575211B2 (en) Control device for biological water treatment equipment
JP2010269276A (en) Method and apparatus for controlling water treatment
CN220467720U (en) Accurate carbon source feeding system