JPS5869738A - Radiation-resistant optical fiber - Google Patents

Radiation-resistant optical fiber

Info

Publication number
JPS5869738A
JPS5869738A JP56166668A JP16666881A JPS5869738A JP S5869738 A JPS5869738 A JP S5869738A JP 56166668 A JP56166668 A JP 56166668A JP 16666881 A JP16666881 A JP 16666881A JP S5869738 A JPS5869738 A JP S5869738A
Authority
JP
Japan
Prior art keywords
optical fiber
dopant
core
radiation
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56166668A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Masao Nishimura
西村 真雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP56166668A priority Critical patent/JPS5869738A/en
Publication of JPS5869738A publication Critical patent/JPS5869738A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01271Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by centrifuging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01291Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process
    • C03B37/01297Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process by melting glass powder in a mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:The titled optical fiber having improved radiation resistance and transmission characteristics, by forming a clad on the outer periphery of a quartz core containing a dopant consisting of Ce. CONSTITUTION:A mixed powder 4 of fine powdery SiO2 in the form of soot obtained by the thermal decomposition and flame hydrolysis of SiCl4 and CeCl4 in the vapor phase and fine powdery CeO2 as a dopant is packed in a quartz glass tube 5. The quartz glass tube 5 is then held by a holding tool 6 capable of freely rising and lowering and rotating, and inserted in a heating furnace 7 to vitrify the mixed powder 4, which is integrated with the quartz glass tube 5 to give a base material for an optical fiber. The resultant base material is then spun by the conventional method to afford an optical fiber 1 consisting of a core 2 containing Ce as a dopant and a clad 3 around the clad 2. Thus, the optical fiber 1, having no increase in loss to make the transmission impossible even by the application of radiation, and suitable for constituting a communication system around atomic energy facilities, etc. is obtained.

Description

【発明の詳細な説明】 本発明は耐放射線光ファイバに関°する。[Detailed description of the invention] The present invention relates to radiation-resistant optical fibers.

光ファイバを用いる通信システムにおいて、これを原子
炉や核融合炉などの付近に設備した場合、放射線による
光ファイバの損失増が起こり、しかもその損失増がかな
シ大きいため、通信システムを無意味なものにしてしま
っている。
In a communication system that uses optical fiber, if it is installed near a nuclear reactor or fusion reactor, the loss of the optical fiber increases due to radiation, and the increase in loss is so large that the communication system becomes meaningless. It has become a thing.

そこでこれにつき検討され、セリウムを含む硅酸塩ガラ
ス(多成分ガラス)製の光ファイバでは、放射線照射に
よる損失増が比較的小さいという報告がなされている。
This has been studied, and it has been reported that optical fibers made of cerium-containing silicate glass (multicomponent glass) have a relatively small increase in loss due to radiation irradiation.

しかし上記の硅酸塩ガラス光ファイバの場合、放射線照
射以前の問題として未照射のときでも損失が大きく、し
たがって通信用としての実用性はかなり乏しい。
However, in the case of the above-mentioned silicate glass optical fiber, the loss is large even when it is not irradiated as a problem before being irradiated with radiation, and therefore its practicality for communications is quite poor.

本発明は上記の実情に鑑み、耐放射線特性と伝送特性と
の双方を満足させる光ファイバを新たに提供せんとする
もので、以下その構成を図示の実施例により説明する。
In view of the above-mentioned circumstances, the present invention aims to provide a new optical fiber that satisfies both radiation resistance characteristics and transmission characteristics, and its configuration will be explained below with reference to illustrated embodiments.

第1図において、(l)はSi型の光ファイバで6り、
+21はそのコア、(3)はコア外周のクラッドである
In Fig. 1, (l) is a Si type optical fiber.
+21 is the core, and (3) is the cladding around the core.

上記における光ファイバ(1)では、コア(2)がセリ
ウム(Ce02  )を含む石英系(Si02 )、ク
ラッド(3)が石英系となっており、そのコア(2)は
ドープ剤としてセリウムを含有していることにより、ク
ラッド(3)よりも屈折率が高くなっている。
In the above optical fiber (1), the core (2) is quartz-based (Si02) containing cerium (Ce02), the cladding (3) is quartz-based, and the core (2) contains cerium as a dopant. As a result, the refractive index is higher than that of the cladding (3).

こうした構成の光ファイバ(1)は、そのコア(2)が
セリウムを含有しているので、放射線被曝下においても
伝送特性は殆ど変化せず、もちろんこのコア(2)は5
i02を主成分としているから伝送特性も高く、シたが
ってこの光ファイバt11の場合、もとより低損失であ
るとともに放射線照射を受けた際の耐放射線特性も良好
であるといえる。
Since the core (2) of the optical fiber (1) with such a configuration contains cerium, the transmission characteristics hardly change even under radiation exposure.
Since it has i02 as its main component, it has high transmission characteristics, and therefore, in the case of this optical fiber t11, it can be said that it has low loss and good radiation resistance when exposed to radiation.

なお、コア(2)を構成する組成物としては、前述した
5102、CeO2の2つたけとする他、耐放射線特性
を損わない範囲内で、GeO2、P205.8 b20
sなどのドープ剤を上記8i02  CeO□系に含有
させることがある。
The composition constituting the core (2) is the above-mentioned 5102 and CeO2, as well as GeO2 and P205.8 b20 within a range that does not impair radiation resistance properties.
A dopant such as s may be included in the 8i02 CeO□ system.

つき゛に本発明光ファイバの製造例を第2図面の簡単な
説明する0 第2図において、(4)はSiO□微粉およびCe 0
2微粉を混合してなる混合粉末、(5)は該混合粉末(
4)を充填状態で収容している石英ガラス管であり、上
記混合粉末(4)での5i02微粉、CeO2微粉は、
気相状態にある8iCt4、CeC1+を熱分解反応、
火炎加水分解反応させることにより生成されたスート状
の融化物である。
A manufacturing example of the optical fiber of the present invention will be briefly explained in the second drawing.
A mixed powder formed by mixing two fine powders, (5) is the mixed powder (
4) is housed in a filled state, and the 5i02 fine powder and CeO2 fine powder in the mixed powder (4) are as follows:
Thermal decomposition reaction of 8iCt4 and CeC1+ in the gas phase,
It is a soot-like molten product produced by flame hydrolysis reaction.

上記のごとく混合粉末(4)が充填されている石英ガラ
ス管(5)は、第2図に示す上下動自在かつ回転自在な
挟持具(6)により保持された後、電気炉などの加熱炉
(7)内へ内挿されて熱処理を受けるのであり、この際
の熱処理によって混合粉末(4)は透明ガラス化され、
石英ガラス管(5)と一体化される。
The quartz glass tube (5) filled with the mixed powder (4) as described above is held by a vertically movable and rotatable clamping tool (6) shown in Fig. 2, and then placed in a heating furnace such as an electric furnace. (7) and undergoes heat treatment, and the heat treatment at this time turns the mixed powder (4) into transparent vitrification.
It is integrated with a quartz glass tube (5).

つまり上記によシ光ファイバ用母材がつくられ、混合粉
末(4)はコア用ガラス層、石英ガラス管(5)はクラ
ッド用ガラス層となる。
That is, the base material for the optical fiber is produced as described above, the mixed powder (4) becomes the glass layer for the core, and the quartz glass tube (5) becomes the glass layer for the cladding.

以下、こうしてつくられた光フアイバ用母材は常法にし
たがって紡糸され、前述した光ファイバ(IJとなる。
Thereafter, the optical fiber base material thus produced is spun according to a conventional method to form the above-mentioned optical fiber (IJ).

なお、上記光ファイバ(1)を得る場合、その母材をV
AD法で製造するようにしてもよく、この場合では、セ
リウムイオンを含む溶液を超音波ネプライザで露化し、
これをコア層形成用のフレーム(火炎)中に導入してド
ープすればよ10 以上説明した通り、本発明ではコアとその外周のクラッ
ドとを備えた光ファイバにおいて、上記コアはドープ剤
を含む石英系よりなり、そのドープ剤の一部または全部
がセリウムからなることを特徴よしている。
In addition, when obtaining the above optical fiber (1), its base material is V
It may also be produced by the AD method, in which case a solution containing cerium ions is exposed with an ultrasonic nebulizer,
This can be introduced into a flame for forming a core layer and doped.10 As explained above, in the present invention, in an optical fiber comprising a core and a cladding around the outer periphery, the core contains a dopant. It is characterized in that it is made of quartz-based material, and that part or all of its doping agent is made of cerium.

したがってコアが石英系でおることによシ高い伝送特性
が確保できるだけでなく、該コアのドープ剤としてセリ
ウムが含有されているから放射線照射を受けても通信不
能を来すような損失増は起らないことになる0 この結果、原子力設備等の周辺において通信システムを
構成するのに好適な光ファイバとなシ得る。
Therefore, by having a core made of quartz, not only can high transmission characteristics be ensured, but since the core contains cerium as a dopant, there is no increase in loss that would cause communication failure even when exposed to radiation. As a result, an optical fiber suitable for constructing a communication system in the vicinity of nuclear facilities, etc. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光ファイバの断面図、第2図は同光ファ
イバの製造例を示した略示説明図である。 (1)・・・・・光ファイバ (2)・・・・・コア (3)・・・・・クラッド 第1図 第 21ya
FIG. 1 is a sectional view of the optical fiber of the present invention, and FIG. 2 is a schematic illustration showing an example of manufacturing the same optical fiber. (1)...Optical fiber (2)...Core (3)...Clad Fig. 1 Fig. 21ya

Claims (1)

【特許請求の範囲】[Claims] コアとその外周のクラッドとを備えた光ファイバにおい
て、上記コアはドープ剤を含む石英系よりなシ、そのド
ープ剤の一部または全部がセリウムからなる耐放射線光
ファイバ。
A radiation-resistant optical fiber comprising a core and a cladding around the core, wherein the core is made of quartz-based material containing a dopant, and the dopant is partially or entirely made of cerium.
JP56166668A 1981-10-19 1981-10-19 Radiation-resistant optical fiber Pending JPS5869738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56166668A JPS5869738A (en) 1981-10-19 1981-10-19 Radiation-resistant optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56166668A JPS5869738A (en) 1981-10-19 1981-10-19 Radiation-resistant optical fiber

Publications (1)

Publication Number Publication Date
JPS5869738A true JPS5869738A (en) 1983-04-26

Family

ID=15835508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56166668A Pending JPS5869738A (en) 1981-10-19 1981-10-19 Radiation-resistant optical fiber

Country Status (1)

Country Link
JP (1) JPS5869738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204205A (en) * 1986-03-04 1987-09-08 Mitsubishi Cable Ind Ltd Quartz optical fiber
WO2008068331A1 (en) * 2006-12-07 2008-06-12 Silitec Fibers Sa Method for fabricating a preform, a preform, an optical fiber and an amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204205A (en) * 1986-03-04 1987-09-08 Mitsubishi Cable Ind Ltd Quartz optical fiber
WO2008068331A1 (en) * 2006-12-07 2008-06-12 Silitec Fibers Sa Method for fabricating a preform, a preform, an optical fiber and an amplifier
EP1942083A1 (en) * 2006-12-07 2008-07-09 Datwyler Fiber Optics S.A. Method and apparatus for fabricating a preform for an active optical fiber, active optical fiber and amplifier
US8720230B2 (en) 2006-12-07 2014-05-13 Silitec Fibers Sa Method for fabricating an optical fiber preform

Similar Documents

Publication Publication Date Title
Maurer Glass fibers for optical communications
US3868170A (en) Method of removing entrapped gas and/or residual water from glass
US3884550A (en) Germania containing optical waveguide
US3853384A (en) Optical transmission line
US3756690A (en) Optical waveguide light modulator
US20050284183A1 (en) Fiber optic cable and process for manufacturing
GB2180832A (en) Fabrication of optical fibres
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
US4518407A (en) Optical fibre preform manufacture
JPS5869738A (en) Radiation-resistant optical fiber
JPS6280606A (en) Single mode optical fiber
JPS61191544A (en) Quartz base optical fiber
JPS599491B2 (en) Method for manufacturing base material for optical fiber
JPS60122744A (en) Manufacture of simple-mode fiber
JPS61158303A (en) Formation of quartz optical waveguide
JP3310159B2 (en) Method for producing transparent glass body for Co-doped optical attenuator
JPS60153004A (en) Single-mode optical fiber
KR830001299B1 (en) Optical fiber
JPS6251215B2 (en)
JP2831842B2 (en) Manufacturing method of optical fiber base material
JPS6136130A (en) Manufacture of preform for polarization-keeping optical fiber
JP3668804B2 (en) Manufacturing method of fiber core rod for optical attenuator
JPS61197438A (en) Method of converting porous parent material for optical fiber into clarified glass
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPS58120533A (en) Glass fiber for optical communication