JP3310159B2 - Method for producing transparent glass body for Co-doped optical attenuator - Google Patents
Method for producing transparent glass body for Co-doped optical attenuatorInfo
- Publication number
- JP3310159B2 JP3310159B2 JP07105396A JP7105396A JP3310159B2 JP 3310159 B2 JP3310159 B2 JP 3310159B2 JP 07105396 A JP07105396 A JP 07105396A JP 7105396 A JP7105396 A JP 7105396A JP 3310159 B2 JP3310159 B2 JP 3310159B2
- Authority
- JP
- Japan
- Prior art keywords
- optical attenuator
- base material
- glass
- transparent glass
- glass body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/01433—Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/40—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
- C03B2203/26—Parabolic or graded index [GRIN] core profile
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/08—Doped silica-based glasses containing boron or halide
- C03C2201/12—Doped silica-based glasses containing boron or halide containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/30—Doped silica-based glasses containing metals
- C03C2201/40—Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2203/00—Production processes
- C03C2203/40—Gas-phase processes
- C03C2203/42—Gas-phase processes using silicon halides as starting materials
- C03C2203/46—Gas-phase processes using silicon halides as starting materials fluorine containing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、石英系ファイバにCo
(コバルト)をドープすることによって光を吸収させ、
任意の減衰特性を持った光減衰器を得るためのCoドー
プ光減衰器用透明ガラス体の製造方法に関する。BACKGROUND OF THE INVENTION The present invention relates to a quartz-based
Absorb light by doping (cobalt),
The present invention relates to a method of manufacturing a transparent glass body for a Co-doped optical attenuator to obtain an optical attenuator having an arbitrary attenuation characteristic.
【0002】[0002]
【従来の技術】光ファイバのコア部分にCo(コバル
ト)等の遷移金属をドープした遷移金属ドープファイバ
は、光を吸収することによって伝送光を減衰する。従っ
て、このような光ファイバを適当な長さに切断してモジ
ュール化することによって、光減衰器としての応用が期
待されている。図2には、このような石英ガラス中の遷
移金属元素による光吸収特性を示すグラフを図示した。
このグラフの横軸は光ファイバ中を伝搬される光の波
長、縦軸は損失を表している。この図に示すように、石
英ガラス中の遷移金属元素Coの光吸収は波長依存性を
持つ。即ち波長が1.3μm(1300nm)よりも
1.55μm(1550nm)における光のエネルギー
吸収が大きいため、そのままではCoドープファイバを
用いた光減衰器が波長依存性を持つことになり、広い帯
域での使用は伝送信号に悪影響を及ぼす。そこで、次の
ような構造が考えられている。2. Description of the Related Art A transition metal-doped fiber in which a transition metal such as Co (cobalt) is doped in a core portion of an optical fiber attenuates transmission light by absorbing light. Therefore, application as an optical attenuator is expected by cutting such an optical fiber into an appropriate length to form a module. FIG. 2 is a graph showing the light absorption characteristics of such a transition metal element in quartz glass.
The horizontal axis of this graph represents the wavelength of light propagating in the optical fiber, and the vertical axis represents loss. As shown in this figure, the light absorption of the transition metal element Co in quartz glass has wavelength dependence. That is, since the energy absorption of light at a wavelength of 1.55 μm (1550 nm) is larger than that at 1.3 μm (1300 nm), an optical attenuator using a Co-doped fiber has a wavelength dependency as it is, and a wide band. The use of a harmful effect on transmitted signals. Then, the following structure is considered.
【0003】図3には、波長依存性をなくすようにした
光減衰器の縦断面図を示す。この例では光減衰器をシン
グルモードファイバにより構成する。そして、そのコア
の中心部にCoドープ領域1を設け外周部は高純度石英
領域2とする。この例ではCoドープ領域1を半径bに
設定し、コア全体の半径をaに設定している。このaと
bとの比を適当に選定し、且つCoドープ領域1のCo
の分布を適当に選定すれば、光ファイバ全体として波長
依存性を完全になくすことができる。上記のような光減
衰器を製造するための光ファイバは、次のように製造す
る。FIG. 3 is a longitudinal sectional view of an optical attenuator in which the wavelength dependency is eliminated. In this example, the optical attenuator is constituted by a single mode fiber. Then, a Co-doped region 1 is provided at the center of the core, and a high-purity quartz region 2 is provided at the outer periphery. In this example, the radius of the Co-doped region 1 is set to b, and the radius of the entire core is set to a. The ratio between a and b is appropriately selected, and the Co-doped region 1
If the distribution is appropriately selected, the wavelength dependence of the entire optical fiber can be completely eliminated. An optical fiber for manufacturing the above-described optical attenuator is manufactured as follows.
【0004】まず、VAD法(火炎加水分解法)等によ
り作製されたSiO2 (シリカ)を主成分とするステッ
プインデックス型多孔質母材を製造する。この多孔質母
材をその収縮率が60%〜75%(かさ密度0.5〜
0.3g/cm3 )ぐらいに一旦仮焼結する。次に遷移金
属Coの塩化物等を溶かしたメタノール溶液に多孔質母
材を浸漬させ、その後取り出した多孔質母材を乾燥す
る。これによって、溶液のメタノールを蒸発させ多孔質
母材中に遷移金属塩化物を沈着させる。次に、塩素(C
l2 )やヘリウム(He)を含むハロゲンガス雰囲気中
で乾燥母材を加熱処理した後に透明ガラス化する。これ
をコアロッドとすれば上記のような光減衰器の材料が完
成する。なお、この種の光ファイバ製造技術は例えば特
公昭58−3980号公報、特開平5−301734号
公報、特開平3−50130号公報に記載されている。First, a step index type porous base material mainly composed of SiO 2 (silica) manufactured by a VAD method (flame hydrolysis method) or the like is manufactured. This porous base material has a shrinkage rate of 60% to 75% (bulk density of 0.5 to 75%).
Temporarily sinter about 0.3 g / cm 3 ). Next, the porous base material is immersed in a methanol solution in which a chloride of transition metal Co or the like is dissolved, and then the taken out porous base material is dried. This causes the methanol in the solution to evaporate and deposit the transition metal chloride in the porous matrix. Next, chlorine (C
l 2 ) and then heat-treating the dried base material in a halogen gas atmosphere containing helium (He), followed by vitrification. If this is used as a core rod, the material of the optical attenuator as described above is completed. Incidentally, this type of optical fiber manufacturing technique is described in, for example, Japanese Patent Publication No. 58-3980, Japanese Patent Application Laid-Open No. 5-301732, and Japanese Patent Application Laid-Open No. 3-50130.
【0005】[0005]
【発明が解決しようとする課題】ところで、上記のよう
な従来のCoドープ光減衰器用透明ガラス体の製造方法
には次のような解決すべき課題があった。石英多孔質ガ
ラス製の母材に対しできるだけ多くのドーパントをドー
プすることができれば、高い減衰率のファイバが製造で
きる。しかしながら、ドーパント濃度を次第に高めてい
くと、ガラスの結晶化が起こりやすく、全体として透明
なガラスを得ることが困難になる。特に、先に説明した
ようにコアの中心部より周辺部のCo濃度分布が高くな
り、この部分でガラスの結晶化が生じやすくなる。この
部分のCo濃度分布が0.5wt%以下の場合にはガラ
スの結晶化はほとんど生じない。しかしながら、Co濃
度分布の最大値が1wt%を超えると、その部分で結晶
化が起こりやすくなるという問題があった。However, the above-mentioned conventional method for producing a transparent glass body for a Co-doped optical attenuator has the following problems to be solved. If the preform made of quartz porous glass can be doped with as many dopants as possible, a fiber with a high attenuation rate can be manufactured. However, when the dopant concentration is gradually increased, crystallization of the glass is likely to occur, and it is difficult to obtain a transparent glass as a whole. In particular, as described above, the Co concentration distribution in the peripheral portion is higher than that in the central portion of the core, and crystallization of the glass is likely to occur in this portion. If the Co concentration distribution in this portion is 0.5 wt% or less, crystallization of the glass hardly occurs. However, when the maximum value of the Co concentration distribution exceeds 1 wt%, there is a problem that crystallization is likely to occur in that portion.
【0006】本発明は以上の点に着目してなされたもの
で、高い濃度でCoをドープした場合にも結晶化を防止
し透明度の高いガラスを得ることができるCoドープ光
減衰器用透明ガラス体の製造方法を提供することを目的
とするものである。The present invention has been made in view of the above points, and a transparent glass body for a Co-doped optical attenuator capable of preventing crystallization and obtaining a highly transparent glass even when Co is doped at a high concentration. It is an object of the present invention to provide a production method of
【0007】[0007]
【課題を解決するための手段】本発明の方法は、CoO
を添加した石英系多孔質ガラス製の母材をSiF4 を含
有したHe雰囲気下で加熱処理をした後透明ガラス化す
ることを特徴とするものである。SUMMARY OF THE INVENTION The method of the present invention comprises the steps of
Is characterized in that a quartz-based porous glass base material to which is added is heat-treated in a He atmosphere containing SiF 4 , and then is made vitreous.
【0008】[0008]
【作用】Coイオンを含浸させ乾燥させた母材は、Cl
2 とHeの雰囲気下で加熱した後、SiF4 を含有した
Heにより熱処理することで、ガラス中のCoOを減少
させ、CoF2 に変換する。これにより、ガラスの結晶
化を起こりにくくしてガラスを透明にする。The base material impregnated with Co ions and dried is Cl
After heating in an atmosphere of 2 and He, heat treatment is performed with He containing SiF 4 to reduce CoO in the glass and convert it to CoF 2 . Thereby, crystallization of the glass is less likely to occur and the glass is made transparent.
【0009】[0009]
【実施例】以下、本発明を図の実施例を用いて詳細に説
明する。図1は、本発明の方法を示す母材の正面図であ
る。本発明は次のような手順により実施される。まず、
先に説明したとおり、火炎加水分解法によって石英ロッ
ド上にガラススートを堆積させ、直径70mm、長さ30
0mm、外形誤差0.3%のグレーテッドインデックス型
スート状母材を製造する。その後、これを電気炉で加熱
し、かさ密度が0.4g/cm3 になるように仮焼結を行
う。そして、その母材をCoCl2 ・6H2 Oを9.5
wt%溶解したメタノール溶液に浸漬して20時間放置
する。その後、これを取り出して自然乾燥する。次にC
l2 流量が毎分35cc、He流量が毎分16リッター
の雰囲気で1190℃の温度で加熱処理する。その後、
更にSiF4 を毎分200cc、He流量毎分16リッ
トルの雰囲気で1190℃の温度で加熱処理を行う。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 is a front view of a base material showing the method of the present invention. The present invention is implemented by the following procedure. First,
As described above, glass soot was deposited on a quartz rod by the flame hydrolysis method and had a diameter of 70 mm and a length of 30 mm.
A graded index soot-shaped base material having 0 mm and an outer shape error of 0.3% is manufactured. Thereafter, this is heated in an electric furnace and pre-sintered so that the bulk density becomes 0.4 g / cm 3 . Then, the base material is made up of 9.5 with CoCl 2 .6H 2 O.
It is immersed in a methanol solution in which wt% is dissolved and left for 20 hours. Then, take out and air dry. Then C
Heat treatment is performed at a temperature of 1190 ° C. in an atmosphere in which the flow rate of l 2 is 35 cc per minute and the flow rate of He is 16 liters per minute. afterwards,
Further, heat treatment is performed at a temperature of 1190 ° C. in an atmosphere of SiF 4 at a rate of 200 cc / min and a He flow rate of 16 L / min.
【0010】図1に示したのはこの加熱処理の状態を示
す。母材5は矢印のように回転しながら、電気炉中で保
持される。ここにSiF4 とHeガスを流しながら加熱
する。これによって、図の下側にも示したように次のよ
うな化学反応が起きる。 SiF4 +2CoO → SiO2 +2CoF2 このような反応を生じさせた後、更に加熱処理し透明ガ
ラス化する。こうしてガラス化したロッドをファイバコ
アロッドとし、22.4mmに切断したフェルールを装着
しコネクタ化すると減衰量20dBの光減衰器が得られ
た。FIG. 1 shows the state of this heat treatment. The base material 5 is held in the electric furnace while rotating as shown by the arrow. Here, heating is performed while flowing SiF 4 and He gas. As a result, the following chemical reaction occurs as shown in the lower part of the figure. SiF 4 + 2CoO → SiO 2 + 2CoF 2 After such a reaction is caused, the glass is further heated to form a transparent glass. The vitrified rod was used as a fiber core rod, and a ferrule cut to 22.4 mm was attached to form a connector. As a result, an optical attenuator having an attenuation of 20 dB was obtained.
【0011】上記のようにSiF4 とHeを含む雰囲気
内で母材を加熱処理すると、多孔質の母材内部にこのガ
スが侵入し上記のような式の化学反応が起きる。これに
よって、多孔質の母材5の中に含まれるCoOがCoF
2 に変換される。このような変換が生じた場合に、焼結
しガラス化した後のガラスロッドは結晶化が起こりにく
い。これによって、十分透明な減衰器に適したガラスロ
ッドが得られる。When the base material is heat-treated in an atmosphere containing SiF 4 and He as described above, this gas penetrates into the inside of the porous base material, and a chemical reaction of the above formula occurs. As a result, CoO contained in the porous base material 5 becomes CoF
Converted to 2 . When such conversion occurs, crystallization of the glass rod after sintering and vitrification is unlikely to occur. This results in a glass rod suitable for a sufficiently transparent attenuator.
【0012】本発明は以上の実施例に限定されない。上
記実施例における乾燥工程や熱処理工程の条件等は、母
材の回転や引き上げ等各種の製造条件に応じて適切に変
更して差し支えない。また、加熱処理する場合のガスの
流量も化学反応が適切に進行するように任意に選定して
差し支えない。The present invention is not limited to the above embodiment. The conditions of the drying step and the heat treatment step in the above embodiment may be appropriately changed according to various manufacturing conditions such as rotation and lifting of the base material. In addition, the flow rate of the gas in the heat treatment may be arbitrarily selected so that the chemical reaction proceeds appropriately.
【0013】[0013]
【発明の効果】以上説明した本発明のCoドープ光減衰
器用透明ガラス体によれば、母材をSiF4 を含有した
He雰囲気下で加熱処理するので、母材中のCoOがC
oF2に変換され、結晶化が起こりにくい構造に変化し
て、十分透明度の高い光減衰器用ガラス体が製造でき
る。According to the transparent glass body for a Co-doped optical attenuator of the present invention described above, the base material is subjected to a heat treatment in a He atmosphere containing SiF 4 , so that CoO in the base material becomes C
It is converted into oF 2 and changes to a structure in which crystallization hardly occurs, so that a glass body for an optical attenuator having sufficiently high transparency can be manufactured.
【図1】本発明の製造方法を示す母材の正面図である。FIG. 1 is a front view of a base material showing a manufacturing method of the present invention.
【図2】石英ガラス中の遷移金属元素による光吸収特性
を示すグラフである。FIG. 2 is a graph showing light absorption characteristics by a transition metal element in quartz glass.
【図3】波長依存性をなくすようにした光減衰器の縦断
面図である。FIG. 3 is a longitudinal sectional view of an optical attenuator in which wavelength dependency is eliminated.
【図4】従来の光減衰器用光ファイバの屈折率分布を示
すグラフである。FIG. 4 is a graph showing a refractive index distribution of a conventional optical fiber for an optical attenuator.
5 母材 5 Base material
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G02B 6/00 311 G02B 6/00 311 356 356A (72)発明者 長瀬 亮 東京都新宿区西新宿3丁目19番2号 日 本電信電話株式会社内 (72)発明者 熊谷 旭 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 森下 裕一 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 有賀 由美 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 深田 知周 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 牟田 健一 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (56)参考文献 特開 昭63−139028(JP,A) 特開 平4−139029(JP,A) 特開 平6−219757(JP,A) 特開 平4−108627(JP,A) 特開 平1−179734(JP,A) 特開 昭62−100448(JP,A) 特開 平3−218935(JP,A) 特開 平7−69671(JP,A) 特開 昭57−11845(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 20/00 C03B 8/00 - 8/04 C03B 37/014 C03C 3/06 C03C 13/04 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI G02B 6/00 311 G02B 6/00 311 356 356A (72) Inventor Ryo Nagase 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Date Inside the Telegraph and Telephone Co., Ltd. (72) Asahi Kumagai 2-1-1, Sakae Oda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Showa Electric Wire & Cable Co., Ltd. No. 1 Inside Showa Electric Wire & Cable Co., Ltd. (72) Inventor Yumi Ariga 2-1-1 Sakae Oda, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Inside Showa Electric Wire & Cable Co., Ltd. 2-1, 1-1 Sakae Oda-ku Showa Electric Wire & Cable Co., Ltd. (72) Inventor Kenichi Muta 2-1-1 Sakae Oda, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Showa (56) References JP-A-63-139028 (JP, A) JP-A-4-139029 (JP, A) JP-A-6-219757 (JP, A) JP-A-4-108627 ( JP, A) JP-A-1-179934 (JP, A) JP-A-62-100448 (JP, A) JP-A-3-218935 (JP, A) JP-A-7-69671 (JP, A) JP 57-11845 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 20/00 C03B 8/00-8/04 C03B 37/014 C03C 3/06 C03C 13/04
Claims (1)
の母材を、 SiF4 を含有したHe雰囲気下で加熱処理をした後透
明ガラス化することを特徴とするCoドープ光減衰器用
透明ガラス体の製造方法。1. A transparent glass for a Co-doped optical attenuator, which comprises subjecting a base material made of quartz-based porous glass to which CoO has been added to heat treatment in a He atmosphere containing SiF 4 , and then turning the glass transparent. How to make the body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07105396A JP3310159B2 (en) | 1996-03-01 | 1996-03-01 | Method for producing transparent glass body for Co-doped optical attenuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07105396A JP3310159B2 (en) | 1996-03-01 | 1996-03-01 | Method for producing transparent glass body for Co-doped optical attenuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09235131A JPH09235131A (en) | 1997-09-09 |
JP3310159B2 true JP3310159B2 (en) | 2002-07-29 |
Family
ID=13449403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07105396A Expired - Fee Related JP3310159B2 (en) | 1996-03-01 | 1996-03-01 | Method for producing transparent glass body for Co-doped optical attenuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3310159B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9725878D0 (en) * | 1997-12-05 | 1998-02-04 | Imperial College | Vapour deposition |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS603013B2 (en) * | 1980-06-20 | 1985-01-25 | 科学技術庁無機材質研究所長 | Manufacturing method of colored silica glass |
JPS62100448A (en) * | 1985-10-25 | 1987-05-09 | Furukawa Electric Co Ltd:The | Production of optical transmission glass raw material |
JPH0742131B2 (en) * | 1986-12-01 | 1995-05-10 | 住友電気工業株式会社 | Method for manufacturing glass base material for optical fiber |
JP2620275B2 (en) * | 1988-01-11 | 1997-06-11 | 住友電気工業株式会社 | Glass manufacturing method |
JPH03218935A (en) * | 1990-01-23 | 1991-09-26 | Shin Etsu Chem Co Ltd | Rare earth element-doped quartz glass and its production |
JPH04108627A (en) * | 1990-08-27 | 1992-04-09 | Furukawa Electric Co Ltd:The | Method for sintering porous glass body |
JP3379647B2 (en) * | 1990-09-27 | 2003-02-24 | 住友電気工業株式会社 | Optical fiber manufacturing method |
DE4225654A1 (en) * | 1992-08-03 | 1994-02-10 | Heraeus Quarzglas | Process for the production of doped glass |
JP2991901B2 (en) * | 1993-09-07 | 1999-12-20 | 信越石英株式会社 | Ultraviolet absorbing silica glass and method for producing the same |
-
1996
- 1996-03-01 JP JP07105396A patent/JP3310159B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09235131A (en) | 1997-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1271316A (en) | Optical waveguide manufacture | |
US4690504A (en) | Quartz glass-made optical fibers and a method for the preparation thereof | |
US4643751A (en) | Method for manufacturing optical waveguide | |
JPH0915464A (en) | Single-mode optical transmission fiber and its manufacture | |
AU741032B2 (en) | Decreased h2 sensitivity in optical fiber | |
JP3310159B2 (en) | Method for producing transparent glass body for Co-doped optical attenuator | |
JP2931026B2 (en) | Method for producing rare earth element doped glass | |
JP3188309B2 (en) | Method for manufacturing optical fiber preform for optical amplifier | |
JP3668804B2 (en) | Manufacturing method of fiber core rod for optical attenuator | |
US7058269B2 (en) | Reconstructed glass for fiber optic applications | |
JP3300224B2 (en) | Method for producing quartz-based doped glass | |
JPH0281004A (en) | Optical fiber and its production | |
JP3315786B2 (en) | Optical amplifier type optical fiber | |
JP3027075B2 (en) | Method for producing rare earth element-doped quartz glass fiber preform | |
JPH0791088B2 (en) | Rare-earth element-doped silica glass optical fiber preform and method for producing the same | |
JP3157000B2 (en) | Optical waveguide | |
JPH0244031A (en) | Production of nonlinear optical glass | |
JPS61158303A (en) | Formation of quartz optical waveguide | |
JPH0813689B2 (en) | Manufacturing method of optical fiber preform | |
JPH0829956B2 (en) | Method for producing halogen-containing glass | |
JPH051224B2 (en) | ||
JPS6265948A (en) | Production of base material for optical fiber | |
JPH0471018B2 (en) | ||
JPS63285137A (en) | Quartz based fiber for optical communication and production thereof | |
JPS61197438A (en) | Method of converting porous parent material for optical fiber into clarified glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |