JPS5867058A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5867058A
JPS5867058A JP16533881A JP16533881A JPS5867058A JP S5867058 A JPS5867058 A JP S5867058A JP 16533881 A JP16533881 A JP 16533881A JP 16533881 A JP16533881 A JP 16533881A JP S5867058 A JPS5867058 A JP S5867058A
Authority
JP
Japan
Prior art keywords
resistance
resistor
resistors
region
relative ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16533881A
Other languages
Japanese (ja)
Other versions
JPH0226789B2 (en
Inventor
Atsushi Kishi
岸 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP16533881A priority Critical patent/JPS5867058A/en
Priority to DE8282104644T priority patent/DE3273527D1/en
Priority to EP82104644A priority patent/EP0066263B2/en
Publication of JPS5867058A publication Critical patent/JPS5867058A/en
Priority to US06/867,422 priority patent/US4725876A/en
Publication of JPH0226789B2 publication Critical patent/JPH0226789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To take the relative ratio of ion injection resistors with high accuracy regardless of shape by setting the number of the ion injection resistors while being conformed to a resistance ratio without resembling the shape in the relative ratio of the ion injection resistors. CONSTITUTION:A high-concentration region 49 is formed at one position of the ion injection resistor region 23' of the resistor R1 while being crossed on the resistor region 23', and the full length (L1'+L2'+L3') of the resistor sections of the resistor R2 and the full length (L4'+L5'+L6') of those of the resistor R1 are equally designed. The number of the substantial ion injection resistor sections between the resistors R1 and R2 is uniform because the high-concentration region 49 is overlapped on the resistor region 23'.

Description

【発明の詳細な説明】 本発明は特に半導体集積回路におけるイオン注入抵抗に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to ion implantation resistors in semiconductor integrated circuits.

近年、半導体集積回路は高集積化に伴なうバ。In recent years, semiconductor integrated circuits have undergone significant changes as they become more highly integrated.

ケージ熱抵抗などの問題によりますます小回路電流化が
進んでいる。回路電流を減らす設計の際要求される条件
の1つに、回路使用抵抗の値を大きくすることがあげら
れる。比較的大きな抵抗値を有する抵抗には、種々の構
造のものが提案されているが、最近はこの種の抵抗とし
てイオン注入抵抗がよく用いられている。
Due to problems such as cage thermal resistance, circuit currents are becoming smaller and smaller. One of the conditions required when designing to reduce circuit current is to increase the value of the resistor used in the circuit. Although various structures have been proposed for resistors having relatively large resistance values, ion-implanted resistors have recently been frequently used as this type of resistor.

従来、イオン注入抵抗同志間の抵抗値の相対比を正確に
とる必要がある場合は、それら抵抗形状には制限あ如、
第1図又は第2図のような形状につくられている。すな
わち、第1図のように、抵抗R1% R1においてそれ
ら抵抗領域30角部の数および抵抗領域3の長さをそろ
えるか、あるいは第2図の様に抵抗81、鳥の形状をま
ったく同じにするかであった。尚、@1図において、3
.6は、抵抗が形成されるべき部分がN型であればアク
セプタ不純物をイオン注入によって形成した低濃度抵抗
領域であり、2.5はアルミニウム配線用コンタクト窓
、セして1.4はイオン注入領域3.6とアルζニウム
配線とのコンタクトをとる為の高浪度ボロン拡散領域で
おる。また、領域1.4F1例ILF1NPN )ラン
ジスタのベースと同時に形成される。
Conventionally, when it is necessary to accurately measure the relative ratio of resistance values between ion-implanted resistors, there are restrictions on the shape of these resistors.
It is made in the shape shown in Fig. 1 or 2. In other words, as shown in Fig. 1, the number of corners of the resistance regions 30 and the length of the resistance regions 3 are made the same in the resistance R1% R1, or the resistor 81 and the shape of the bird are made exactly the same as shown in Fig. 2. It was either. In addition, in figure @1, 3
.. 6 is a low concentration resistance region formed by ion implantation of acceptor impurities if the part where the resistance is to be formed is N type, 2.5 is a contact window for aluminum wiring, and 1.4 is ion implantation. This is a high-intensity boron diffusion region for making contact between region 3.6 and the aluminum ζ wiring. In addition, the region 1.4F1 example ILF1NPN) is formed at the same time as the base of the transistor.

相対比を良好にする抵抗(馬、R6)の角部の数をそろ
える塩山は、イオン注入領域3.60層抵抗(以下、庵
・抵抗をR8と呼ぶ)のバラツキにより、角部の抵抗が
大きくパランいてしまうからである。
Enzan has the same number of corners of the resistance (R6) that improves the relative ratio.Due to variations in the ion-implanted region 3.60 layer resistance (hereinafter referred to as R8), the resistance of the corners is This is because there will be a big gap.

言いかえれば、このコーナ一部の抵抗のバラツキが、相
対比をとる抵抗間でコーナー数が異なった場合、相対比
のズレの原因となるので、相対比をとる抵抗同志はコー
ナー数をそろえなければならない。
In other words, if this variation in resistance at some corners causes a difference in the number of corners between resistors that take relative ratios, it will cause a discrepancy in the relative ratio, so resistors that take relative ratios must have the same number of corners. Must be.

第2図において、8,12はアクセプタ不純物がイオン
注入された低濃度抵抗領域、9.13はM配線用コンタ
クト窓で、7.11はイオン注入領域8.12とM配線
のコンタクトをとる為のP型不純物領域、そして10.
14は複数のイオン注入領域を接続する高濃度ボロン拡
散領域で、この領域10.14は領域7.11と共にN
PN)ランジスタのベースと同時に形成される。特に第
2図で示した抵抗比1、馬は、回路接続のためのM配線
とイオン注入抵抗(R1、R1)とをレイアウト上交差
させなけれはならないとき用いる抵抗形状である。すな
わち、構造上イオン注入抵抗の上は酸化膜の段差が大き
く、このためにM配線の段切れを生ずる恐れがある。こ
れは、抵抗値の変化をなくすためにイオン注入抵抗工程
が一番後になされるので、それまでの表面の8i0fJ
[がかなシ厚くなっているからである。それ故、高濃度
領域10,14で低濃度領域間を接続し、そしてこの上
をAJ配線するものである。この場合、相対比をとる抵
抗は相似形として、拡散後のベース横広が9による抵抗
値のズレな打消して相対比をとっている。
In Figure 2, 8 and 12 are low concentration resistance regions into which acceptor impurities are ion-implanted, 9.13 is a contact window for M wiring, and 7.11 is for making contact between ion implantation region 8.12 and M wiring. P-type impurity region, and 10.
14 is a high concentration boron diffusion region connecting multiple ion implantation regions, and this region 10.14 and region 7.11 are N
PN) formed at the same time as the base of the transistor. In particular, the resistance ratio 1 shown in FIG. 2 is a resistance shape used when the M wiring for circuit connection and the ion-implanted resistors (R1, R1) must intersect in terms of layout. That is, due to the structure, there is a large step in the oxide film above the ion-implanted resistor, and this may cause a break in the M wiring. This is because the ion implantation resistor process is performed last to eliminate changes in resistance, so the 8i0fJ of the surface up to that point is
[This is because the wall is getting thicker.] Therefore, the low concentration regions are connected by the high concentration regions 10 and 14, and the AJ wiring is provided on the high concentration regions 10 and 14. In this case, the relative ratio of the resistors is taken as a similar figure, and the difference in resistance value due to the base lateral spread 9 after diffusion is canceled out to take the relative ratio.

このように、従来の相対比を良好にするためのイオン注
入抵抗は自由な抵抗形状にできず、このためマスクレイ
アウト上支障があった。
As described above, the conventional ion-implanted resistor for improving the relative ratio cannot be formed into a free resistor shape, which poses a problem in mask layout.

以下、抵抗形状の異なる二つの抵抗を例にとって、従来
のかかる問題点をよシ詳細に説明する。
Hereinafter, such conventional problems will be explained in more detail using two resistors with different resistance shapes as an example.

まず、箒3図に示した通常の形状のイオン注入抵抗の抵
抗値Rは、マスクパターン上での抵抗領域180幅をW
1長さをLとすると、抵抗領域18およびこれとM配線
とのコンタクトをとるための高濃度領域17の不純物拡
散横広がシを考慮すれば下の(1)式で示される。
First, the resistance value R of the ion-implanted resistor of the normal shape shown in Figure 3 is the width of the resistance region 180 on the mask pattern W.
1 length is L, the following equation (1) is given by taking into consideration the lateral spread of impurity diffusion in the resistance region 18 and the high concentration region 17 for making contact with the M wiring.

(1)式において、R8はイオン注入抵抗領域180層
抵抗、ΔL1ΔWは不純物の横広がシ拡散により生じた
抵抗飼域18の設計値の長さLおよびfiWからのズレ
、そしてαはAI配線とのコンタクト部および高濃度領
域17での抵抗である。この場合、このαはイオン注入
抵抗領域18の抵抗値に対して無視できるので一般に削
除される。また、第3図おいて、16は抵抗が形成され
る例えば集積回路におけるエピタキシャル層、15は他
の回路素子から電気的に絶縁するための分離層である。
In equation (1), R8 is the resistance of the ion-implanted resistance region 180 layer, ΔL1ΔW is the deviation from the designed length L and fiW of the resistance range 18 caused by the lateral diffusion of impurities, and α is the AI wiring This is the resistance at the contact portion with the high concentration region 17 and the high concentration region 17. In this case, this α can be ignored with respect to the resistance value of the ion-implanted resistance region 18, so it is generally deleted. Further, in FIG. 3, 16 is an epitaxial layer in which a resistor is formed, for example in an integrated circuit, and 15 is a separation layer for electrically insulating from other circuit elements.

今、相対比を良好にとる必要のある2つの抵抗1’?、
、、R,を第4図のように形成したとすると、これら抵
抗R,、R,間の抵抗の相対比Kl/R井% (1)式
により各々の抵抗値を求めて(2)式のようになる。
Now, two resistors 1' that need to have a good relative ratio? ,
, , R, are formed as shown in Fig. 4, the relative ratio of resistance between these resistors R, , R, Kl/R% is determined by equation (1), and the resistance value of each is determined by equation (2). become that way.

七L−3・ΔL =、、お工・・・・・・・・・(2) ここで、@4図に示した抵抗R1% ”lは第2図で示
した抵抗と同様に形成されている。すなわち、抵抗−は
L1%Llおよびり、の設計値長さをもつ抵抗領域21
を高濃度819で直列接続し、そして両端にコンタクト
部の高濃度Wk2oを形成して配線部としたものである
。抵抗R2はL4、L、の長さをもつ抵抗領域23を高
濃度層22で直列接続し、そして両端にコンタクト部の
高濃度層24をつくって配線部としたものである。便宜
上相対比を1としている。すなわち、抵抗R2の全抵抗
領域21の長さくり、+L、+L、)と抵抗R1の全抵
抗領域23の長さく L4 + Ll )をLとし、さ
らに抵抗領域21.23の幅W、 W/を同一に設計し
ている。また、横方内拡がり拡散による変化ΔL1、Δ
−1ΔL1%ΔL4およびΔL、は同じとする。
7L-3・ΔL =......(2) Here, the resistance R1% shown in Figure @4 is formed in the same way as the resistance shown in Figure 2. In other words, the resistance - is a resistance region 21 with a design value length of L1%Ll and .
are connected in series with a high concentration 819, and high concentration Wk2o of a contact portion is formed at both ends to form a wiring portion. The resistor R2 is constructed by connecting resistance regions 23 having lengths L4 and L in series with a high concentration layer 22, and forming a contact portion of a high concentration layer 24 at both ends to serve as a wiring portion. For convenience, the relative ratio is set to 1. That is, the length of the total resistance area 21 of the resistor R2, +L, +L, ) and the length of the total resistance area 23 of the resistor R1, L4 + Ll), are L, and the width of the resistance area 21.23 is W, W/ are designed identically. In addition, changes due to lateral inward spreading diffusion ΔL1, Δ
−1ΔL1%ΔL4 and ΔL are the same.

(戸式かられかるように、相対比を正確にとるために抵
抗長を同じに設計しても、相対比1とはならずに3・Δ
L、2・ΔLが誤差となっている。これは、全抵抗領域
21が二つの高濃度領域19で接続されているのに対し
、抵抗領域23は1つの高濃度領域22で接続されてい
るため、これら高濃度領域19,220横方向拡がシ拡
散が抵抗長Lに誤差を与えているからである。つマシ、
このような形状では正確な相対比が得られない。
(As you can see from the door type, even if the resistance length is designed to be the same in order to take the relative ratio accurately, the relative ratio will not be 1, but 3・Δ
The error is L, 2·ΔL. This is because the entire resistance region 21 is connected by two high concentration regions 19, whereas the resistance region 23 is connected by one high concentration region 22. This is because diffusion causes an error in the resistance length L. Tsumashi,
With such a shape, accurate relative ratios cannot be obtained.

(2)式から、ある二つの抵抗人および8間の相対比R
A/RBの一般式を導びくと(3)式のようになる。
From equation (2), the relative ratio R between two resistance persons and 8
The general formula for A/RB is derived as formula (3).

ここでnとn′はイオン注入部と高濃度領域部の交差す
る面を両端とするイオン注入部の本数で、以下イオン注
入抵抗の数と叶ぶ。又、βは抵抗人の抵抗長りと抵抗B
の抵抗*Lの比例定数である。
Here, n and n' are the number of ion implanted parts whose ends are the planes where the ion implanted part and the high concentration region intersect, which corresponds to the number of ion implanted resistors. Also, β is the resistance length of the resistance person and resistance B
It is the proportionality constant of resistance *L.

以下これを抵抗比例定数と呼ぶ。(3)式より相対比を
とるイオン注入抵抗同志の抵抗を構成するイオン注入抵
抗の数が異なるはど相対比がずれることを表わしている
Hereinafter, this will be referred to as the resistance proportionality constant. Equation (3) shows that the relative ratio of ion-implanted resistors differs when the number of ion-implanted resistors that make up the resistance differs.

以上のことから、イオン注入抵抗の相対比が蛭も良いの
は、亀5図で示すようなイオン注入抵抗26.29の数
が等しく抵抗比例定数βが1のときの抵抗形状である。
From the above, the relative ratio of the ion implantation resistances is good in the resistance shape when the number of ion implantation resistors 26 and 29 are equal and the resistance proportionality constant β is 1 as shown in Figure 5.

これは、高濃度領域25.28の横広が9による相対比
のずれが、(3)式より(4)式のとおりとなるからで
ある。尚、イオン注入抵抗26.29の巾は勢しいとす
る。
This is because the relative ratio shift due to the lateral spread 9 of the high concentration region 25.28 is as shown in equation (4) rather than equation (3). It is assumed that the width of the ion implantation resistors 26 and 29 is large.

この様に従来イオン注入抵抗間の相対比を正確にとる場
合は、第5図の様に二つの抵抗が相似形の場合にのみ可
能であった。このことは、マスクレイアウト上のベレッ
ト縮少化を困難にし大きな障害となっていた。
In the past, accurately determining the relative ratio between ion-implanted resistors was possible only when the two resistors were similar in shape, as shown in FIG. This has made it difficult to reduce the size of the pellets on the mask layout, posing a major obstacle.

本発明は、この様な欠点をのぞくもので、その目的はマ
スクレイアウト上で相対北上とるイオン注入抵抗の形状
を自由に設定でき、しかも精度良く抵抗の相対比をとシ
得るイオン注入抵抗を有する半導体装置を提供すること
にある。
The present invention eliminates these drawbacks, and its purpose is to provide an ion-implanted resistor that can freely set the shape of the ion-implanted resistor that is relatively northward on the mask layout, and that can also accurately change the relative ratio of the resistors. The purpose of the present invention is to provide semiconductor devices.

本発明の基本原理を、図面により従来技術と対抗による
電圧降下分を「大きさ」とするベクトルを想定すれば、
従来技術では相対比をとる抵抗はベクトルの「大きさ」
 「本数」 「方向の順番」を合せていたのに対し、本
願では相対比をとる抵抗は、第7図の様にベクトルの「
方向の順序」に無関係にイオン注入抵抗の数を抵抗比に
概略そろえて相対比をとるものである。
The basic principle of the present invention can be explained by assuming a vector whose "magnitude" is the voltage drop due to the conventional technology and the opposition, as shown in the drawing.
In conventional technology, the resistance that takes the relative ratio is the "magnitude" of the vector.
Whereas the "number" and "order of direction" were matched, in this application, the resistance that takes the relative ratio is the "number" of the vector as shown in Figure 7.
In this method, the number of ion-implanted resistors is roughly matched to the resistance ratio and the relative ratio is calculated, regardless of the directional order.

次に本発明の一実施例を第8図に示し、詳細に説明を加
える。第8図で示した抵抗は、第4図で示した抵抗に本
発明を適用したもので、この場合は相対比lを目的とし
ている。そのために、抵抗R3のイオン注入抵抗領域2
3′の一ケ所に高濃度領域49を抵抗領域23′にまた
がって形成し、そして抵抗鳥の抵抗部分の全長(Ll’
+L、’+L、勺と抵抗R1のそれの全長(L、’+ 
L、’+ L、つと同一に設計している。第8図のよう
に、高濃度領域49を抵抗領域23′に重複させたこと
で、抵抗R,、R,間の実質的イオン注入抵抗部分の数
がそろい、故に(3)式よりこの場合の相対比は(5)
式となる。尚、抵抗中は同じとする。
Next, one embodiment of the present invention is shown in FIG. 8 and will be described in detail. The resistor shown in FIG. 8 is an application of the present invention to the resistor shown in FIG. 4, and in this case, the relative ratio l is intended. For this purpose, the ion-implanted resistance region 2 of the resistor R3 is
A high concentration region 49 is formed at one place in 3' across the resistance region 23', and the entire length of the resistance part of the resistance bird (Ll'
+L,'+L, the total length of the ridge and that of resistor R1 (L,'+
It is designed the same as L, '+ L, and one. As shown in FIG. 8, by overlapping the high-concentration region 49 with the resistance region 23', the number of substantial ion-implanted resistance parts between the resistances R, , R, is the same, and therefore, according to equation (3), in this case The relative ratio of is (5)
The formula becomes The same applies during resistance.

七−L−3ΔL −r;■=”・・・・・・・・・(5)(5)式は拡散
の横広がシによらず精度良く相対比がとれる事を示す。
7-L-3ΔL-r; ■=” (5) Equation (5) shows that the relative ratio can be determined with high accuracy regardless of the lateral spread of diffusion.

第9図は本発明の第2の実施例である。これは、マスク
レイアウトの関係で抵抗R8は図の様に一つの抵抗領域
53で縦長の形状をとらねばなあず、又抵抗R〒は3つ
の抵抗領域55を高濃度層56で接続して形成され、か
つこれらの相対比R’y=旦互をねらいマスク上の抵抗
R7の抵抗長と抵抗R8の抵抗長の比R8/R7=2と
したモデルである。このために、抵抗R,にはこれと重
複する高濃度層52が5ケ所に形成されている。この場
合の相対比は、(3)式よシβ=2、rl=6、n=3
であるからR82L−6ΔL TcT(T:■τ= 2 ……・・e(6)となる。(
6)式よシ抵抗R7とR8の相対比が精度良くとれるこ
とが理解できる。
FIG. 9 shows a second embodiment of the invention. This is because, due to the mask layout, the resistor R8 must have a vertically elongated shape with one resistor region 53 as shown in the figure, and the resistor R is formed by connecting three resistor regions 55 with a high concentration layer 56. In this model, the ratio of the resistance length of the resistor R7 and the resistance length of the resistor R8 on the mask is set to R8/R7=2, aiming at the relative ratio R'y=1 of these. For this purpose, high concentration layers 52 are formed at five locations in the resistor R, overlapping with the resistor R. In this case, the relative ratio is according to equation (3) β = 2, rl = 6, n = 3
Therefore, R82L-6ΔL TcT(T: ■τ= 2...e(6).
6) It can be seen that the relative ratio of resistors R7 and R8 can be determined with high accuracy according to formula.

又、抵抗の相対比が整数倍でない場合も本発明は適用さ
れる。例えば、lOKΩの抵抗Raと36にΩの抵抗R
Bのイオン注入抵抗の相対比tとる場合を考える。この
とき、抵抗Rムのイオン注入抵抗数が2とすると、抵抗
RBのイオン注入抵抗数は11’ = 3.6X 2 
= 7.2で概略7本とすれば良い。従って、(3)式
となる。このように1イオン注入抵抗の数を抵抗値の比
に概略そろえれば精度が最も良くなる。
Furthermore, the present invention is applicable even when the relative ratio of resistances is not an integral multiple. For example, a resistance Ra of lOKΩ and a resistance R of 36Ω
Consider the case where the relative ratio t of the ion implantation resistance of B is taken. At this time, if the ion implantation resistance number of the resistor Rm is 2, the ion implantation resistance number of the resistor RB is 11' = 3.6X 2
= 7.2, which should be approximately 7 lines. Therefore, equation (3) is obtained. In this way, if the number of ion-implanted resistors is approximately equal to the ratio of the resistance values, the accuracy will be the best.

この抵抗の相対比が整数倍ではない場合を、別の例で図
面により詳述する。第1θ図がその例で、RIO:R9
=−1: 1.75の相対比が要求されているとする。
The case where this relative ratio of resistances is not an integral multiple will be explained in detail with reference to another example. Figure 1θ is an example of this, RIO:R9
Suppose that a relative ratio of =-1:1.75 is required.

この場合は、イオン注入抵抗数を隻数として針設を容易
ならしめるために、それらの最小公倍数をとって几、。
In this case, in order to make the needle installation easier by using the number of ion implanted resistors as the number of vessels, take the least common multiple of them.

:R,=4:?とする。その形状は、例えは第10図に
示すように抵抗R8゜は2つの抵抗領域60をもち、そ
して高濃度領域61でこれらを2分割するように形成す
る。抵抗R9は3つの抵抗領域63を有し、このうち2
つを2つの高濃度領域62で3分割するように形成する
。従って、これらの相対比は(3)式よシβ=−7−1
rt’ = 7. n=4であるから となり、(7)式より抵抗の相対比が整数倍でない場合
でも精度良く相対比がとれていることが理解できる。
:R,=4:? shall be. Its shape is, for example, as shown in FIG. 10, where the resistor R8° has two resistance regions 60 and is divided into two by a high concentration region 61. Resistor R9 has three resistance regions 63, two of which
1 is formed so as to be divided into three by two high concentration regions 62. Therefore, the relative ratio of these is given by equation (3): β=-7-1
rt' = 7. This is because n=4, and it can be understood from equation (7) that even when the relative ratio of the resistances is not an integral multiple, the relative ratio can be determined with good accuracy.

第11図で示した本発明の実施例は、抵抗の相対比が整
数倍で主抵抗体のイオン注入抵抗を並列接続として本願
を用いて相対比をとった場合であ求されてお、p、R1
1を2つのイオン注入抵抗69を高1[m67.68で
並列接続して構成している。R11は一つの抵抗領域6
6で形成されている。
The embodiment of the present invention shown in FIG. 11 is obtained when the relative ratio of the resistances is an integer multiple and the ion-implanted resistors of the main resistor are connected in parallel, and the relative ratio is calculated using the present invention. , R1
1 is constructed by connecting two ion-implanted resistors 69 in parallel with a height of 1 [m67.68]. R11 is one resistance region 6
It is formed by 6.

これら抵抗領域66.69は同一形状である。従って、
(1)式よシ であシ、相対比R12/R11=2で精度良く相対比が
とれている。
These resistance regions 66, 69 have the same shape. Therefore,
As shown in equation (1), the relative ratio R12/R11=2, and the relative ratio can be obtained with high accuracy.

第12図の実施例は抵抗の相対比が整数倍でなく、主抵
抗体のイオン注入抵抗を並列接続して本願を用い相対比
をとる場合である。すなわち、第1O図の実施例と同様
に抵抗の赦小公倍数に設定し相対比をとるのであるが、
例ではR1,: R,4== 1:1.75をR13:
R14=4ニアとし、抵抗比の反比例に相幽するイオン
注入抵抗を並列接続してやれば良い。すなわち、R13
は7つのイオン注入抵抗75を並列に、そしてR14は
4つの領域72を並列にそれぞれ高濃度層70.73で
接続すれは、となる。
In the embodiment shown in FIG. 12, the relative ratio of the resistances is not an integral multiple, but the ion-implanted resistors of the main resistors are connected in parallel and the relative ratio is determined using the present invention. In other words, as in the embodiment shown in Figure 1O, the resistance is set to a common multiple of resistance and the relative ratio is calculated.
In the example, R1,: R,4 == 1:1.75 to R13:
It is sufficient to set R14=4 near and connect ion-implanted resistors in parallel in inverse proportion to the resistance ratio. That is, R13
When R14 connects seven ion-implanted resistors 75 in parallel, and R14 connects four regions 72 in parallel with high concentration layers 70 and 73, the result is as follows.

第13図の実施例は、抵抗の相対比が!I数倍で、抵抗
の一方R4が二つの高濃度層80によシ実質的に3つの
イオン注入抵抗81の直列接続、他方馬・が高濃度J@
’77による抵抗領域78の直列および並列接続として
相対比をとった例である。(1)式より馬8、几1.は 3L−3ΔL R+、、″ニーW罹冨7 がとれる。
In the embodiment shown in FIG. 13, the relative ratio of resistance is ! One of the resistors R4 is connected in series with three ion-implanted resistors 81 by two high concentration layers 80, and the other resistor R4 is connected in series with high concentration J@
This is an example in which relative ratios are taken as series and parallel connections of resistance regions 78 according to '77. From formula (1), horse 8, 几 1. can be obtained as 3L-3ΔL R+, .

第14図の実施例は、抵抗の相対比が整数倍でない場合
で、R17:R18=1.5:1.25のときである。
In the embodiment shown in FIG. 14, the relative ratio of the resistances is not an integral multiple, and R17:R18=1.5:1.25.

本例も抵抗比に合せ、相対比をとる抵抗を直列・並列W
c続として組合せ相対比をとっている。
In this example, the resistors that take the relative ratio are connected in series and parallel W.
The relative combination ratio is taken as a series.

この様に本願を用いる事によシ、イオン注入抵抗の相対
比はその形状を相似形とする事なく、抵抗比に合せイオ
ン注入紙数を設定すれは形状に無関係に、精度良く相対
比がとれるので、今後の半導体集積回路の小回路電流化
に対して太いに役立つO 尚、以上は、P型基板にN型エピタキシャル層を形成し
、イオン注入抵抗領域はP型、例えばボロンの低濃度注
入で形成され、高濃度領域はボロンノ拡散、それ4NP
N)ランジスタのペース領域拡散を同時に形成されるも
のであるが、N型基板にP型エピタキシャル層を形成し
てN型不純不純物を用いてもよい。
As described above, by using the present application, the relative ratio of ion implanted resistors can be determined with high accuracy by setting the number of ion implanted sheets according to the resistance ratio, without making their shapes similar. In the above, an N-type epitaxial layer is formed on a P-type substrate, and the ion implantation resistance region is made of P-type, for example, a low concentration of boron. Formed by implantation, high concentration region is boron diffusion, it is 4NP
N) Although the transistor space region diffusion is formed at the same time, a P-type epitaxial layer may be formed on an N-type substrate and N-type impurities may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2囚は、従来技術によりつくられた正確
な相対比を要求される二つの抵抗を示す平面図、第3図
は一般的な抵抗の平面図、94図は従来技術による二つ
の抵抗を示す平面図、第5図は従来技術によゐ正確な相
対比を有する二つの抵抗の平面図、第6図は従来技術に
より正確な相対比を得るための基本思想を示した二つの
抵抗の平面図、第71は本発明の基本思想を示した二つ
の抵抗の平匍図、第8図乃至l114図は、それぞれ本
発明の実施例を示す二つの抵抗の平面図である。 1.4.7.10.11.14.17.19.20.2
2.24.25.27.28.30119.20.22
.24.49.52.56.61.62.67.68.
70.73.77.80・・・・・・P型高濃度層、2
.5.9.13・・・・・・コンタクト窓、3.6.8
.12.18.21,23.26.29.53.55.
60.63.66.72.75.78.81・・・・・
・P厘低濃度イオン注入抵抗領域。 #l 図 番2[ 8 草3 図 A’ 2             /z7第4 回 ”41?3 Rtθ         R9 6り /;’/2                    
  2//輩l1国 番12 図 78 R/6 羊13 1?/、3 θO 15 目 牟 14 図
Figures 1 and 2 are plan views showing two resistors made by the prior art that require accurate relative ratios, Figure 3 is a plan view of a general resistor, and Figure 94 is a plan view of two resistors made by the prior art. Fig. 5 is a plan view showing two resistors having an accurate relative ratio according to the prior art, and Fig. 6 is a plan view showing the basic idea for obtaining an accurate relative ratio using the prior art. No. 71 is a plan view of two resistors showing the basic idea of the present invention, and Figs. 8 to 114 are plan views of two resistors showing embodiments of the present invention, respectively. 1.4.7.10.11.14.17.19.20.2
2.24.25.27.28.30119.20.22
.. 24.49.52.56.61.62.67.68.
70.73.77.80...P-type high concentration layer, 2
.. 5.9.13・・・Contact window, 3.6.8
.. 12.18.21, 23.26.29.53.55.
60.63.66.72.75.78.81...
・P low concentration ion implantation resistance region. #l Figure number 2 [ 8 Grass 3 Figure A' 2 /z7 4th "41?3 Rtθ R9 6ri/;'/2
2//Kai l1 Country number 12 Figure 78 R/6 Sheep 13 1? /, 3 θO 15 Memu 14 Fig.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体抵抗領域と、該抵抗領域を複数個に分
割するがごときこれと重複して形成された該抵抗領域と
同一導電型でかつ該抵抗領域よシも高不純物濃度の半導
体領域とを含む抵抗素子を具備してなる半導体装置。
A semiconductor resistor region of one conductivity type, and a semiconductor region formed overlappingly with the resistor region, which is the same conductivity type as the resistor region and which also has a high impurity concentration, such as dividing the resistor region into a plurality of parts. A semiconductor device comprising a resistance element including:
JP16533881A 1981-05-27 1981-10-16 Semiconductor device Granted JPS5867058A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16533881A JPS5867058A (en) 1981-10-16 1981-10-16 Semiconductor device
DE8282104644T DE3273527D1 (en) 1981-05-27 1982-05-27 Semiconductor device having two resistors
EP82104644A EP0066263B2 (en) 1981-05-27 1982-05-27 Semiconductor device having two resistors
US06/867,422 US4725876A (en) 1981-05-27 1986-05-15 Semiconductor device having at least two resistors with high resistance values

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533881A JPS5867058A (en) 1981-10-16 1981-10-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5867058A true JPS5867058A (en) 1983-04-21
JPH0226789B2 JPH0226789B2 (en) 1990-06-12

Family

ID=15810432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533881A Granted JPS5867058A (en) 1981-05-27 1981-10-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5867058A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182860A (en) * 1982-04-21 1983-10-25 Hitachi Ltd Semiconductor integrated circuit device
JPS6179249A (en) * 1984-09-26 1986-04-22 Nec Corp Semiconductor device
JPS61106047U (en) * 1984-12-19 1986-07-05

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182860A (en) * 1982-04-21 1983-10-25 Hitachi Ltd Semiconductor integrated circuit device
JPH0325943B2 (en) * 1982-04-21 1991-04-09 Hitachi Ltd
JPS6179249A (en) * 1984-09-26 1986-04-22 Nec Corp Semiconductor device
JPS61106047U (en) * 1984-12-19 1986-07-05
JPH0445254Y2 (en) * 1984-12-19 1992-10-23

Also Published As

Publication number Publication date
JPH0226789B2 (en) 1990-06-12

Similar Documents

Publication Publication Date Title
JPS59198733A (en) Semiconductor integrated circuit device
US5821590A (en) Semiconductor interconnection device with both n- and p-doped regions
EP0066263B2 (en) Semiconductor device having two resistors
JPS5867058A (en) Semiconductor device
US4034395A (en) Monolithic integrated circuit having a plurality of resistor regions electrically connected in series
JPH0311107B2 (en)
JP2867934B2 (en) Semiconductor device and manufacturing method thereof
US3885994A (en) Bipolar transistor construction method
JP2797371B2 (en) Master slice type semiconductor integrated circuit device and method of manufacturing the same
JPS6262466B2 (en)
JPH0997876A (en) Semiconductor device and its manufacture
JP2687469B2 (en) Semiconductor device
JPS58100449A (en) Semiconductor device
JPS6241422B2 (en)
JPS6320864A (en) Semiconductor device
JP2617217B2 (en) Method for manufacturing semiconductor device
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPH0511669B2 (en)
JPS6031263A (en) Semiconductor integrated circuit device
JPH09260588A (en) Semiconductor device
JPS59155163A (en) Semiconductor device
JP2836318B2 (en) Semiconductor device
JPH05198749A (en) Semiconductor device
JPS61176147A (en) Manufacture of semiconductor device
JPS62188258A (en) Manufacture of semiconductor integrated circuit