JPH0226789B2 - - Google Patents

Info

Publication number
JPH0226789B2
JPH0226789B2 JP16533881A JP16533881A JPH0226789B2 JP H0226789 B2 JPH0226789 B2 JP H0226789B2 JP 16533881 A JP16533881 A JP 16533881A JP 16533881 A JP16533881 A JP 16533881A JP H0226789 B2 JPH0226789 B2 JP H0226789B2
Authority
JP
Japan
Prior art keywords
resistance
resistor
resistors
relative ratio
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16533881A
Other languages
Japanese (ja)
Other versions
JPS5867058A (en
Inventor
Atsushi Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP16533881A priority Critical patent/JPS5867058A/en
Priority to DE8282104644T priority patent/DE3273527D1/en
Priority to EP82104644A priority patent/EP0066263B2/en
Publication of JPS5867058A publication Critical patent/JPS5867058A/en
Priority to US06/867,422 priority patent/US4725876A/en
Publication of JPH0226789B2 publication Critical patent/JPH0226789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は特に半導体集積回路におけるイオン注
入抵抗に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to ion implantation resistors in semiconductor integrated circuits.

近年、半導体集積回路は高集積化に伴なうパツ
ケージ熱抵抗などの問題によりますます小回路電
流化が進んでいる。回路電流を減らす設計の際要
求される条件の1つに、回路使用抵抗の値を大き
くすることがあげられる。比較的大きな抵抗値を
有する抵抗には、種々の構造のものが提案されて
いるが、最近はこの種の抵抗としてイオン注入抵
抗がよく用いられる。
In recent years, semiconductor integrated circuits have become increasingly smaller in circuit current due to problems such as package thermal resistance that accompanies higher integration. One of the conditions required when designing to reduce circuit current is to increase the value of the resistor used in the circuit. Various structures have been proposed for resistors having relatively large resistance values, and recently, ion implanted resistors are often used as this type of resistor.

従来、イオン注入抵抗同志間の抵抗値の相対比
を正確にとる必要がある場合は、それら抵抗形状
には制限あり、第1図又は第2図のような形状に
つくられている。すなわち、第1図のように、抵
抗R1、R2においてそれら抵抗領域3の角部の数
および抵抗領域3の長さをそろえるか、あるいは
第2図の様に抵抗R1、R2の形状をまつたく同じ
にするかであつた。尚、第1図において、3,6
は、抵抗が形成されるべき部分がN型であればア
クセプタ不純物をイオン注入によつて形成した低
濃度抵抗領域であり、2,5はアルミニウム配線
用コンタクト窓、そして1,4はイオン注入領域
3,6とアルミニウム配線とのコンタクトをとる
為の高濃度ボロン拡散領域である。また、領域
1,4は例えばNPNトランジスタのベースと同
時に形成される。
Conventionally, when it is necessary to accurately determine the relative ratio of resistance values between ion-implanted resistors, there are restrictions on the shapes of these resistors, and they are made in shapes as shown in FIG. 1 or 2. That is, as shown in FIG. 1, the number of corners and the length of the resistance regions 3 in resistors R 1 and R 2 are made the same, or as shown in FIG. The idea was to make the shapes exactly the same. In addition, in Figure 1, 3, 6
is a low concentration resistance region formed by ion implantation of acceptor impurities if the part where the resistance is to be formed is N type, 2 and 5 are contact windows for aluminum wiring, and 1 and 4 are ion implanted regions. This is a high concentration boron diffusion region for making contact between 3 and 6 and the aluminum wiring. Further, regions 1 and 4 are formed simultaneously with the base of the NPN transistor, for example.

相対比を良好にする抵抗(R1、R2)の角部の
数をそろえる理由は、イオン注入領域3,6の層
抵抗(以下、層抵抗をρSと呼ぶ)のバラツキによ
り、角部の抵抗が大きくバラツいてしまうからで
ある。言いかえれば、このコーナー部の抵抗のバ
ラツキが、相対比をとる抵抗間でコーナー数が異
なつた場合、相対比のズレの原因となるので、相
対比をとる抵抗同志はコーナー数をそろえなけれ
ばならない。
The reason why the number of corners of the resistances (R 1 , R 2 ) is made to be the same in order to improve the relative ratio is that the number of corners of the resistances (R 1 , R 2 ) is made the same due to variations in the layer resistance (hereinafter, layer resistance is referred to as ρ S ) of the ion implanted regions 3 and 6. This is because the resistance varies greatly. In other words, if the number of corners differs between resistors that take a relative ratio, this variation in resistance at the corner will cause a discrepancy in the relative ratio, so resistors that take a relative ratio must have the same number of corners. It won't happen.

第2図において、8,12はアクセプタ不純物
がイオン注入された低濃度抵抗領域、9,13は
Al配線用コンタクト窓で、7,11はイオン注
入領域8,12とAl配線のコンタクトをとる為
のP型不純物領域、そして10,14は複数のイ
オン注入領域を接続する高濃度ボロン拡散領域
で、この領域10,14は領域7,11と共に
NPNトランジスタのベースと同時に形成される。
特に第2図で示した抵抗R1、R2は、回路接続の
ためのAl配線とイオン注入抵抗(R1、R2)とを
レイアウト上交差させなければならないとき用い
る抵抗形状である。すなわち、構造上イオン注入
抵抗の上は酸化膜の段差が大きく、このために
Al配線の段切れを生ずる恐れがある。これは、
抵抗値の変化をなくすためにイオン注入抵抗工程
が一番後になされるので、それまでの表面の
SiO2膜がかなり厚くなつているからである。そ
れ故、高濃度領域10,14で低濃度領域間を接
続し、そしてこの上をAl配線するものである。
この場合、相対比をとる抵抗は相似形として、拡
散後のベース横広がりによる抵抗値のズレを打消
して相対比をとつている。
In FIG. 2, 8 and 12 are low concentration resistance regions into which acceptor impurities are ion-implanted, and 9 and 13 are low concentration resistance regions.
In the contact window for Al wiring, 7 and 11 are P-type impurity regions for making contact between the ion implantation regions 8 and 12 and the Al wiring, and 10 and 14 are high concentration boron diffusion regions that connect multiple ion implantation regions. , these regions 10 and 14 together with regions 7 and 11
Formed at the same time as the base of the NPN transistor.
In particular, the resistors R 1 and R 2 shown in FIG. 2 have a resistor shape used when the Al wiring for circuit connection and the ion-implanted resistors (R 1 , R 2 ) must intersect in terms of layout. In other words, due to the structure, there is a large step in the oxide film above the ion-implanted resistor.
There is a risk of breaking the Al wiring. this is,
In order to eliminate changes in resistance, the ion implantation resistor process is performed last, so the surface
This is because the SiO 2 film is considerably thicker. Therefore, the low concentration regions are connected by the high concentration regions 10 and 14, and Al wiring is provided thereon.
In this case, the resistors that take the relative ratio are of similar shapes, and the relative ratio is taken by canceling out the difference in resistance value due to the lateral spread of the base after diffusion.

このように、従来の相対比を良好にするための
イオン注入抵抗は自由な抵抗形状にできず、この
ためマスクレイアウト上支障があつた。
As described above, the conventional ion-implanted resistor for improving the relative ratio cannot be formed into a free resistor shape, which causes problems in mask layout.

以下、抵抗形状の異なる二つの抵抗を例にとつ
て、従来のかかる問題点をより詳細に説明する。
Hereinafter, such conventional problems will be explained in more detail using two resistors having different resistance shapes as an example.

まず、第3図に示した通常の形状のイオン注入
抵抗の抵抗値Rは、マスクパターン上での抵抗領
域18の幅をW、長さをLとすると、抵抗領域1
8およびこれとAl配線とのコンタクトをとるた
めの高濃度領域17の不純物拡散横広がりを考慮
すれば下の(1)式で示される。
First, the resistance value R of the normally shaped ion implanted resistor shown in FIG.
8 and the lateral spread of impurity diffusion in the high concentration region 17 for making contact with the Al wiring, the following equation (1) is obtained.

R=ρS・L(1−ΔL/L)/W(1+ΔW/
W)+α……(1) (1)式において、ρSはイオン注入抵抗領域18の
層抵抗、△L、△Wは不純物の横広がり拡散によ
り生じた抵抗領域18の設計値の長さLおよび幅
Wからのズレ、そしてαはAl配線とのコンタク
ト部および高濃度領域17での抵抗である。この
場合、このαはイオン注入抵抗領域18の抵抗値
に対して無視できるので一般に削除される。ま
た、第3図おいて、16は抵抗が形成される例え
ば集積回路におけるエピタキシヤル層、15は他
の回路素子から電気的に絶縁するための分離層で
ある。
R=ρ S・L(1−ΔL/L)/W(1+ΔW/
W)+α...(1) In equation (1), ρ S is the layer resistance of the ion-implanted resistance region 18, and ΔL and ΔW are the length L of the design value of the resistance region 18 caused by the lateral spread and diffusion of impurities. and deviation from the width W, and α is the resistance at the contact portion with the Al wiring and the high concentration region 17. In this case, this α can be ignored with respect to the resistance value of the ion-implanted resistance region 18, so it is generally deleted. Further, in FIG. 3, 16 is an epitaxial layer in which a resistor is formed, for example in an integrated circuit, and 15 is a separation layer for electrically insulating it from other circuit elements.

今、相対比を良好にとる必要のある2つの抵抗
R1、R2を第4図のように形成したとすると、こ
れら抵抗R1、R2間の抵抗の相対比R2/R1は、(1)
式により各々の抵抗値を求めて(2)式のようにな
る。
Now, two resistors need to have a good relative ratio.
Assuming that R 1 and R 2 are formed as shown in Figure 4, the relative ratio of resistance R 2 /R 1 between these resistors R 1 and R 2 is (1)
Calculate each resistance value using the formula as shown in formula (2).

R2/R1=L−3・△L/L−2・△L……
(2) ここで、第4図に示した抵抗R1、R2は第2図
で示した抵抗と同様に形成されている。すなわ
ち、抵抗R2はL1、L2およびL3の設計値長さをも
つ抵抗領域21を高濃度層19で直列接続し、そ
して両端にコンタクト部の高濃度層20を形成し
て配線部としたものである。抵抗R2はL4、L5
長さをもつ抵抗領域23を高濃度層22で直列接
続し、そして両端にコンタクト部の高濃度層24
をつくつて配線部としたものである。便宜上相対
比を1としている。すなわち、抵抗R2の全抵抗
領域21の長さ(L1+L2+L3)と抵抗R1の全抵
抗領域23の長さ(L4+L5)をLとし、さらに
抵抗領域21,23の幅W、W′を同一に設計し
ている。また、横方向拡がり拡散による変化△
L1、△L2、△L3、△L4および△L5は同じとする。
R 2 /R 1 =L-3・△L/L-2・△L……
(2) Here, the resistors R 1 and R 2 shown in FIG. 4 are formed similarly to the resistors shown in FIG. 2. That is, the resistor R 2 is formed by connecting resistance regions 21 having design lengths L 1 , L 2 and L 3 in series with a high concentration layer 19, and forming a high concentration layer 20 as a contact portion at both ends to form a wiring portion. That is. The resistor R 2 has resistance regions 23 having lengths L 4 and L 5 connected in series with a high concentration layer 22, and a high concentration layer 24 of a contact portion at both ends.
This is used as a wiring section. For convenience, the relative ratio is set to 1. That is, the length of the total resistance area 21 of the resistor R 2 (L 1 +L 2 +L 3 ) and the length of the total resistance area 23 of the resistor R 1 (L 4 +L 5 ) are defined as L, and further the length of the total resistance area 21 of the resistance area 21 and 23 is The widths W and W' are designed to be the same. In addition, changes due to lateral spread and diffusion △
It is assumed that L 1 , △L 2 , △L 3 , △L 4 and △L 5 are the same.

(2)式からわかるように、相対比を正確にとるた
めに抵抗長を同じに設計しても、相対比1とはな
らずに3・△L、2・△Lが誤差となつている。
これは、全抵抗領域21が二つの高濃度領域19
で接続されているのに対し、抵抗領域23は1つ
の高濃度領域22で接続されているため、これら
高濃度領域19,22の横方向拡がり拡散が抵抗
長Lに誤差を与えているからである。つまり、こ
のような形状では正確な相対比が得られない。
As can be seen from equation (2), even if the resistance lengths are designed to be the same in order to accurately obtain the relative ratio, the relative ratio will not be 1 and errors will be 3・△L and 2・△L. .
This means that the total resistance region 21 is divided into two high concentration regions 19
However, since the resistance region 23 is connected by one high concentration region 22, the lateral spread and diffusion of these high concentration regions 19 and 22 gives an error to the resistance length L. be. In other words, with such a shape, an accurate relative ratio cannot be obtained.

(2)式から、ある二つの抵抗AおよびB間の相対
比RA/RBの一般式を導びくと(3)式のようになる。
From equation (2), a general equation for the relative ratio R A /R B between two resistances A and B is derived as shown in equation (3).

RA/RB=βL−n′△L/L n△L……(3
) ここでnとn′はイオン注入部と高濃度領域部の
交差する面を両端とするイオン注入部の本数で、
以下イオン注入抵抗の数と呼ぶ。又、βは抵抗A
の抵抗長Lと抵抗Bの抵抗長Lの比例定数であ
る。以下これを抵抗比例定数と呼ぶ。(3)式より相
対比をとるイオン注入抵抗同志の抵抗を構成する
イオン注入抵抗の数が異なるほど相対比がずれる
ことを表わしている。
R A /R B =βL−n′△L/L n△L……(3
) Here, n and n' are the number of ion implanted parts whose ends are the intersection of the ion implanted part and the high concentration region,
Hereinafter, this will be referred to as the number of ion implanted resistors. Also, β is the resistance A
It is a proportionality constant between the resistance length L of the resistor B and the resistance length L of the resistor B. Hereinafter, this will be referred to as the resistance proportionality constant. Equation (3) shows that the relative ratio differs as the number of ion implanted resistors forming the resistance of the ion implanted resistors differs.

以上のことから、イオン注入抵抗の相対比が最
も良いのは、第5図で示すようなイオン注入抵抗
26,29の数が等しく抵抗比例定数βが1のと
きの抵抗形状である。これは、高濃度領域25,
28の横広がりによる相対比のずれが、(3)式より
(4)式のとおりとなるからである。尚、イオン注入
抵抗26,29の巾は等しいとする。
From the above, the best relative ratio of ion-implanted resistances is the resistance shape in which the numbers of ion-implanted resistors 26 and 29 are equal and the resistance proportionality constant β is 1, as shown in FIG. This is a high concentration area 25,
From equation (3), the relative ratio shift due to the lateral spread of 28 is
This is because equation (4) holds true. It is assumed that the widths of the ion implantation resistors 26 and 29 are equal.

R3/R4=L−3・△L/L−3・△L=1…
…(4) この様に従来イオン注入抵抗間の相対比を正確
にとる場合は、第5図の様に二つの抵抗が相似形
の場合にのみ可能であつた。このことは、マスク
レイアウト上のペレツト縮少化を困難にし大きな
障害となつていた。
R 3 /R 4 =L-3・△L/L-3・△L=1…
(4) In this way, accurately determining the relative ratio between ion-implanted resistors has been possible only when the two resistors have similar shapes as shown in FIG. This has made it difficult to reduce the size of pellets on the mask layout, posing a major obstacle.

本発明は、この様な欠点をのぞくもので、その
目的はマスクレイアウト上で相対比をとるイオン
注入抵抗の形状を自由に設定でき、しかも精度良
く抵抗の相対比をとり得るイオン注入抵抗を有す
る半導体装置を提供することにある。
The present invention has been developed to overcome these drawbacks, and its purpose is to provide an ion-implanted resistor that can freely set the shape of the ion-implanted resistor that takes the relative ratio on the mask layout, and that can also take the relative ratio of the resistors with high accuracy. The purpose of the present invention is to provide semiconductor devices.

本発明の基本原理を、図面により従来技術と対
比させて説明すると、第6図のごとくイオン注入
抵抗に流れる電流の方向を「向き」、イオン注入
抵抗による電圧降下分を「大きさ」とするベクト
ルを想定すれば、従来技術では相対比をとる抵抗
はベクトルの「大きさ」「本数」「方向の順番」を
合せていたのに対し、本願では相対比をとる抵抗
は、第7図の様にベクトルの「方向の順序」に無
関係にイオン注入抵抗の数を抵抗比に概略そろえ
て相対比をとるものである。
To explain the basic principle of the present invention in comparison with the conventional technology using drawings, as shown in Fig. 6, the direction of the current flowing through the ion implantation resistor is the "direction", and the voltage drop due to the ion implantation resistor is the "magnitude". Assuming a vector, in the conventional technology, the resistance that takes the relative ratio matches the "size", "number", and "order of direction" of the vector, whereas in the present application, the resistance that takes the relative ratio matches the resistance that takes the relative ratio as shown in Fig. 7. Similarly, the relative ratio is calculated by roughly matching the number of ion-implanted resistors to the resistance ratio, regardless of the "order of direction" of the vectors.

次に本発明の一実施例を第8図に示し、詳細に
説明を加える。第8図で示した抵抗は、第4図で
示した抵抗に本発明を適用したもので、この場合
は相対比1を目的としている。そのために、抵抗
R1のイオン注入抵抗領域23′の一ケ所に高濃度
領域49を抵抗領域23′にまたがつて形成し、
そして抵抗R2の抵抗部分の全長(L1′+L2′+L3′)
と抵抗R1のそれの全長(L4′+L5′+L6′)と同一
に設計している。第8図のように、高濃度領域4
9を抵抗領域23′に重複させたことで、抵抗
R1、R2間の実質的イオン注入抵抗部分の数がそ
ろい、故に(3)式よりこの場合の相対比は(5)式とな
る。尚、抵抗巾は同じとする。
Next, one embodiment of the present invention is shown in FIG. 8 and will be described in detail. The resistor shown in FIG. 8 is obtained by applying the present invention to the resistor shown in FIG. 4, and in this case, the relative ratio is 1. To that end, resistance
A high concentration region 49 is formed at one place in the ion implanted resistance region 23' of R1 , spanning the resistance region 23',
And the total length of the resistor part of resistor R 2 (L 1 ′ + L 2 ′ + L 3 ′)
and the total length of resistor R 1 (L 4 ′ + L 5 ′ + L 6 ′). As shown in Figure 8, high concentration area 4
By overlapping 9 with the resistance area 23', the resistance
The number of substantial ion-implanted resistance parts between R 1 and R 2 is the same, so from equation (3), the relative ratio in this case becomes equation (5). It is assumed that the resistance width is the same.

R2/R1=L−3△L/L−3△L=1……
(5) (5)式は拡散の横広がりによらず精度良く相対比
がとれる事を示す。
R 2 /R 1 =L-3△L/L-3△L=1...
(5) Equation (5) shows that the relative ratio can be obtained with good accuracy regardless of the lateral spread of diffusion.

第9図は本発明の第2の実施例である。これ
は、マスクレイアウトの関係で抵抗R8は図の様
に一つの抵抗領域53で縦長の形状をとらねばな
らず、又抵抗R7は3つの抵抗領域55を高濃度
層56で接続して形成され、かつこれらの相対比
R7=R8/2をねらいマスク上の抵抗R7の抵抗長と 抵抗R8の抵抗長の比R8/R7=2としたモデルで
ある。このために、抵抗R8にはこれと重複する
高濃度層52が5ケ所に形成されている。この場
合の相対比は、(3)式よりβ=2、n′=6、n=3
であるから R8/R7=2L−6△L/L−3△L=2……(6
) となる。(6)式より抵抗R7とR8の相対比が精度良
くとれることが理解できる。
FIG. 9 shows a second embodiment of the invention. This is because, due to the mask layout, the resistor R8 must have a vertically elongated shape with one resistor region 53 as shown in the figure, and the resistor R7 is formed by connecting three resistor regions 55 with a high concentration layer 56. and the relative ratio of these
This model aims for R7 = R8/2, and the ratio of the resistance length of resistor R7 on the mask to the resistance length of resistor R8 is set as R8/R7 = 2. For this purpose, high concentration layers 52 are formed at five locations in the resistor R8 to overlap with the resistor R8. In this case, the relative ratios are β = 2, n' = 6, n = 3 from equation (3).
Therefore, R8/R7=2L−6△L/L−3△L=2……(6
) becomes. From equation (6), it can be seen that the relative ratio of resistors R7 and R8 can be determined with good accuracy.

又、抵抗の相対比が整数倍でない場合も本発明
は適用される。例えば、10KΩの抵抗RAと36KΩ
の抵抗RBのイオン注入抵抗の相対比をとる場合
を考える。このとき、抵抗RAのイオン注入抵抗
数が2とすると、抵抗RBのイオン注入抵抗数は
n′=3.6×2=7.2で概略7本とすれば良い。従つ
て、(3)式よりR2/R1=3.6−7△L/L−2△L= 3.6(L−1.95△L)/L−2△L≒3.6ととなる。この
ように、 イオン注入抵抗の数を抵抗値の比に概略そろえれ
ば精度が最も良くなる。
Furthermore, the present invention is applicable even when the relative ratio of resistances is not an integral multiple. For example, resistor R A of 10KΩ and 36KΩ
Consider the case of taking the relative ratio of the ion implantation resistance of the resistance R B of . At this time, if the ion implantation resistance number of resistor R A is 2, the ion implantation resistance number of resistor R B is
n' = 3.6 x 2 = 7.2, which is approximately 7 lines. Therefore, from equation (3), R 2 /R 1 =3.6-7ΔL/L-2ΔL=3.6(L-1.95ΔL)/L-2ΔL≈3.6. In this way, accuracy will be best if the number of ion-implanted resistors is roughly matched to the resistance value ratio.

この抵抗の相対比が整数倍ではない場合を、別
の例で図面により詳述する。第10図がその例
で、R10:R9=1:1.75の相対比が要求されてい
るとする。この場合は、イオン注入抵抗数を整数
として計設を容易ならしめるために、それらの最
小公倍数をとつてR10:R9=4:7とする。その
形状は、例えば第10図に示すように抵抗R10
2つの抵抗領域60をもち、そして高濃度領域6
1でこれらを2分割するように形成する。抵抗
R9は3つの抵抗領域63を有し、このうち2つ
を2つの高濃度領域62で3分割するように形成
する。従つて、これらの相対比は(3)式よりβ=7/
4、n′=7、n=4であるから R9/R10=7/4L−7・△L/L−4△L=1
.75……(7) となり、(7)式より抵抗の相対比が整数倍でない場
合でも精度良く相対比がとれていることが理解で
きる。
The case where this relative ratio of resistances is not an integral multiple will be explained in detail with reference to another example. An example is shown in FIG. 10, where a relative ratio of R10:R9=1:1.75 is required. In this case, in order to facilitate design by setting the ion implantation resistance number as an integer, the least common multiple thereof is taken to be R 10 :R 9 =4:7. For example, as shown in FIG. 10, the resistor R 10 has two resistance regions 60 and a high concentration region 6.
1 to divide them into two. resistance
R9 has three resistance regions 63, two of which are divided into three by two high concentration regions 62. Therefore, from equation (3), the relative ratio of these is β=7/
4. Since n'=7 and n=4, R9/R10=7/4L-7・△L/L-4△L=1
.75...(7), and it can be seen from equation (7) that even when the relative ratio of resistance is not an integral multiple, the relative ratio can be obtained with good accuracy.

第11図で示した本発明の実施例は、抵抗の相
対比が整数倍で主抵抗体のイオン注入抵抗を並列
接続として本願を用いて相対比をとつた場合であ
る。すなわち、R11:R12=1:2の相対比が要
求されており、R11を2つのイオン注入抵抗69
を高濃度層67,68で並列接続して構成してい
る。R12は一つの抵抗領域66で形成されてい
る。これら抵抗領域66,69は同一形状であ
る。従つて、(1)式より R11=R12/2=ρS/2L(1−ΔL/L)/W(
1+ΔW/W) であり、相対比R12/R11=2で精度良く相対比
がとれている。
The embodiment of the present invention shown in FIG. 11 is a case where the relative ratio of the resistances is an integer multiple, and the ion-implanted resistors of the main resistors are connected in parallel, and the relative ratio is determined using the present invention. In other words, a relative ratio of R11:R12=1:2 is required, and R11 is replaced by two ion-implanted resistors 69.
are connected in parallel with high concentration layers 67 and 68. R 12 is formed by one resistive region 66. These resistance regions 66 and 69 have the same shape. Therefore, from equation (1), R 11 = R 12 /2 = ρ S /2L(1-ΔL/L)/W(
1+ΔW/W), and the relative ratio R12/R11=2, so the relative ratio can be obtained with good accuracy.

第12図の実施例は抵抗の相対比が整数倍でな
く、主抵抗体のイオン注入抵抗を並列接続して本
願を用い相対比をとる場合である。すなわち、第
10図の実施例と同様に抵抗の最小公倍数に設定
し相対比をとるのであるが、例ではR13:R14
1:1.75をR13:R14=4:7とし、抵抗比の反
比例に相当するイオン注入抵抗を並列接続してや
れば良い。すなわち、R13は7つのイオン注入抵
抗75を並列に、そしてR14は4つの領域72を
並列にそれぞれ高濃度層70,73で接続すれ
ば、 R14/R13=ρS(L−ΔL/L/4(W+ΔW/
W)/ρS(L−ΔL/L/7(W+ΔW/W)=7/4 となる。
In the embodiment shown in FIG. 12, the relative ratio of the resistances is not an integral multiple, but the ion-implanted resistors of the main resistors are connected in parallel and the relative ratio is determined using the present invention. That is, as in the embodiment shown in Fig. 10, the relative ratio is calculated by setting the resistance to the least common multiple, but in the example, R 13 :R 14 =
1:1.75 to R13:R14=4:7, and ion implantation resistors corresponding to the inverse proportion of the resistance ratio are connected in parallel. That is, if R13 connects seven ion-implanted resistors 75 in parallel, and R14 connects four regions 72 in parallel with high concentration layers 70 and 73, R14 / R13 = ρ S (L-ΔL/L /4(W+ΔW/
W)/ρ S (L-ΔL/L/7(W+ΔW/W)=7/4.

第13図の実施例は、抵抗の相対比が整数倍
で、抵抗の一方R15が二つの高濃度層80により
実質的に3つのイオン注入抵抗81の直列接続、
他方R16が高濃度層77による抵抗領域78の直
列および並列接続として相対比をとつた例であ
る。(1)式よりR15、R16は R15=3L−3△L/W+△W R16=L−△L/W+△W+L−△L/2(W+△W)
= 3(L−△L)/2(W+△W) となり、これらの相対比R15/R16=2で正確な相対 比がとれる。
In the embodiment of FIG. 13, the relative ratio of the resistances is an integral multiple, and one of the resistances R 15 is substantially connected in series with three ion-implanted resistances 81 by two high concentration layers 80.
On the other hand, R 16 is an example in which the relative ratio is taken as a series and parallel connection of the resistance region 78 by the high concentration layer 77. From formula (1), R 15 and R 16 are R 15 = 3L-3△L/W+△W R 16 = L-△L/W+△W+L-△L/2 (W+△W)
= 3(L-ΔL)/2(W+ΔW), and an accurate relative ratio can be obtained with these relative ratios R 15 /R 16 =2.

第14図の実施例は、抵抗の相対比が整数倍で
ない場合で、R17:R18=1.5:1.25のときであ
る。本例も抵抗比に合せ、相対比をとる抵抗を直
列・並列接続として組合せ相対比をとつている。
In the embodiment shown in FIG. 14, the relative ratio of the resistances is not an integral multiple, and R17:R18=1.5:1.25. This example also takes the relative ratio by connecting resistors in series and parallel to take the relative ratio.

この様に本願を用いる事により、イオン注入抵
抗の相対比はその形状を相似形とする事なく、抵
抗比に合せイオン注入抵数を設定すれば形状に無
関係に、精度良く相対比がとれるので、今後の半
導体集積回路の小回路電流化に対して大いに役立
つ。
In this way, by using the present application, the relative ratio of ion implantation resistors can be determined with high precision regardless of the shape by setting the ion implantation resistor according to the resistance ratio, without making the shapes similar. This will be of great help in the future miniaturization of semiconductor integrated circuits.

尚、以上は、P型基板にN型エピタキシヤル層
を形成し、イオン注入抵抗領域はP型、例えばボ
ロンの低濃度注入で形成され、高濃度領域はボロ
ンの拡散、それもNPNトランジスタのベース領
域拡散を同時に形成されるものであるが、N型基
板にP型エピタキシヤル層を形成してN型不純不
純物を用いてもよい。
In the above, an N-type epitaxial layer is formed on a P-type substrate, the ion implantation resistance region is formed by low concentration implantation of P type, for example, boron, and the high concentration region is formed by boron diffusion, which is also the base of an NPN transistor. Although region diffusion is formed at the same time, a P-type epitaxial layer may be formed on an N-type substrate and N-type impurities may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、従来技術によりつくら
れた正確な相対比を要求される二つの抵抗を示す
平面図、第3図は一般的な抵抗の平面図、第4図
は従来技術による二つの抵抗を示す平面図、第5
図は従来技術による正確な相対比を有する二つの
抵抗の平面図、第6図は従来技術により正確な相
対比を得るための基本思想を示した二つの抵抗の
平面図、第7図は本発明の基本思想を示した二つ
の抵抗の平面図、第8図乃至第14図は、それぞ
れ本発明の実施例を示す二つの抵抗の平面図であ
る。 1,4,7,10,11,14,17,19,
20,22,24,25,27,28,30,1
9,20,22,24,49,52,56,6
1,62,67,68,70,73,77,80
……P型高濃度層、2,5,9,13……コンタ
クト窓、3,6,8,12,18,21,23,
26,29,53,55,60,63,66,7
2,75,78,81……P型低濃度イオン注入
抵抗領域。
Figures 1 and 2 are plan views showing two resistors made using conventional technology that require accurate relative ratios, Figure 3 is a plan view of a typical resistor, and Figure 4 is based on conventional technology. Top view showing two resistors, 5th
The figure is a plan view of two resistors with an accurate relative ratio according to the prior art, Figure 6 is a plan view of two resistors showing the basic idea for obtaining an accurate relative ratio according to the prior art, and Figure 7 is a plan view of the book. FIGS. 8 to 14 are plan views of two resistors showing the basic idea of the invention, respectively, showing embodiments of the invention. 1, 4, 7, 10, 11, 14, 17, 19,
20, 22, 24, 25, 27, 28, 30, 1
9, 20, 22, 24, 49, 52, 56, 6
1,62,67,68,70,73,77,80
... P-type high concentration layer, 2, 5, 9, 13 ... Contact window, 3, 6, 8, 12, 18, 21, 23,
26, 29, 53, 55, 60, 63, 66, 7
2, 75, 78, 81...P-type low concentration ion implantation resistance region.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに異なる平面形状の第1および第2の半
導体抵抗領域でそれぞれ構成される第1および第
2の抵抗を有し、前記第1の半導体抵抗領域は前
記第1の抵抗の抵抗値を決定するための少なくと
も一つのイオン注入領域を含み、前記第2の半導
体抵抗領域は前記第2の抵抗の抵抗値を決定する
ための少なくとも二つのイオン注入領域とこれら
を相互接続しかつ前記第2の抵抗の抵抗値に実質
的に寄与しない高不純物濃度領域とを含む半導体
装置において、前記第1の半導体抵抗領域のイオ
ン注入領域および前記第2の半導体抵抗領域のイ
オン注入領域の少なくとも一方を対応する抵抗の
抵抗値に実質的に寄与しない高不純物濃度領域に
より複数の部分に分割して、前記第1および第2
の抵抗の抵抗値をそれぞれ実質的に決定するイオ
ン注入領域の数の比を前記第1および第2の抵抗
の抵抗比に等しくしたことを特徴とする半導体装
置。
1 have first and second resistors respectively configured of first and second semiconductor resistor regions having mutually different planar shapes, and the first semiconductor resistor region determines the resistance value of the first resistor. the second semiconductor resistor region interconnects at least two ion implant regions for determining the resistance value of the second resistor; in a semiconductor device including a high impurity concentration region that does not substantially contribute to the resistance value of at least one of the ion implantation region of the first semiconductor resistance region and the ion implantation region of the second semiconductor resistance region. The first and second regions are divided into a plurality of regions by high impurity concentration regions that do not substantially contribute to the resistance value of the
A semiconductor device characterized in that the ratio of the number of ion implanted regions that substantially determines the resistance value of each of the resistors is equal to the resistance ratio of the first and second resistors.
JP16533881A 1981-05-27 1981-10-16 Semiconductor device Granted JPS5867058A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16533881A JPS5867058A (en) 1981-10-16 1981-10-16 Semiconductor device
DE8282104644T DE3273527D1 (en) 1981-05-27 1982-05-27 Semiconductor device having two resistors
EP82104644A EP0066263B2 (en) 1981-05-27 1982-05-27 Semiconductor device having two resistors
US06/867,422 US4725876A (en) 1981-05-27 1986-05-15 Semiconductor device having at least two resistors with high resistance values

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533881A JPS5867058A (en) 1981-10-16 1981-10-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5867058A JPS5867058A (en) 1983-04-21
JPH0226789B2 true JPH0226789B2 (en) 1990-06-12

Family

ID=15810432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533881A Granted JPS5867058A (en) 1981-05-27 1981-10-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5867058A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182860A (en) * 1982-04-21 1983-10-25 Hitachi Ltd Semiconductor integrated circuit device
JPS6179249A (en) * 1984-09-26 1986-04-22 Nec Corp Semiconductor device
JPH0445254Y2 (en) * 1984-12-19 1992-10-23

Also Published As

Publication number Publication date
JPS5867058A (en) 1983-04-21

Similar Documents

Publication Publication Date Title
JPS6114743A (en) Method of forming resistance element
US6393714B1 (en) Resistor arrays for mask-alignment detection
US20010049881A1 (en) Methods and circuits for mask-alignment detection
EP0066263B2 (en) Semiconductor device having two resistors
JPH0226789B2 (en)
JP2626060B2 (en) Semiconductor device and manufacturing method thereof
US6684520B1 (en) Mask-alignment detection circuit in x and y directions
JPS6031263A (en) Semiconductor integrated circuit device
JPS6256666B2 (en)
JP3113202B2 (en) Semiconductor device
JPH0311107B2 (en)
JPS6352783B2 (en)
JP2687469B2 (en) Semiconductor device
JPS63166256A (en) Semiconductor device and manufacture thereof
JP2844844B2 (en) Driving multi-output semiconductor integrated circuit
JPS6320864A (en) Semiconductor device
JPS58100449A (en) Semiconductor device
JP3116356B2 (en) Semiconductor device
JPS6142945A (en) Semiconductor device
JPH0511669B2 (en)
JPS60137051A (en) Semiconductor device
JPS6179249A (en) Semiconductor device
JPS6232639A (en) Input protective circuit of semiconductor device and manufacture thereof
JPS61176147A (en) Manufacture of semiconductor device
JPH01260849A (en) Manufacture of semiconductor device