JPS5864071A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS5864071A
JPS5864071A JP56163016A JP16301681A JPS5864071A JP S5864071 A JPS5864071 A JP S5864071A JP 56163016 A JP56163016 A JP 56163016A JP 16301681 A JP16301681 A JP 16301681A JP S5864071 A JPS5864071 A JP S5864071A
Authority
JP
Japan
Prior art keywords
electrode
layer
gallium arsenide
thick
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56163016A
Other languages
Japanese (ja)
Inventor
Hideaki Suzuki
英昭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56163016A priority Critical patent/JPS5864071A/en
Publication of JPS5864071A publication Critical patent/JPS5864071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photodetector which incorporates preferable filter characteristic for breaking wavelength of approx. 850nm by coating the surface of the photodetector directly with a thin gallium arsenide film. CONSTITUTION:A P type layer of 0.5mum thick is formed by ordinarily selective diffusion on an N type semiconductor wafer 4, and an aluminum electrode 7 is covered through an SiO2 layer 6 having a hole on the surface as a P side electrode. An N<+> type layer 8 of 0.3mum thick is diffused on the overall back surface, titanium gold series electrode 9 is deposited as an N side electrode. Thereafter, the wafer 4 is put in a vacuum depositing machine, semi-insulating gallium arsenide of specific resistance 10<5>OMEGA-cm is deposited as a deposition source in vacuum of 2X10<-7>Torr via resistance heating, thereby forming a polycrystalline gallium arsenide layer 10 of 3mum thick on the layer 6 on the wafer 4 and the electrode 7. Thereafter, the layer 10 on the external electrode leading part of the electrode 7 is selectively removed with an etchant containing sulfuric acid: hydrogen peroxide : water=1:1:1:.

Description

【発明の詳細な説明】 本発明は半導体受光装置に関し、特に、特定の波長より
も長い波長域にのみ感度を有する装置にか\わるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light receiving device, and particularly to a device that is sensitive only to a wavelength range longer than a specific wavelength.

半導体受光装置は、現在様々な応用範囲で広く用いられ
ているが、そのか′&pの応用例に於いて。
Semiconductor photodetectors are currently widely used in a variety of applications, including the following applications.

対象光源(信号源)に、発光ダイオード等の単色光光源
を使用する場合が多い。第1図は、この代表例として、
発光素子としてガリ′ウム砒素赤外発光ダイオードを用
い受光素子としてPN接合型シリコン受光ダイオードを
用いた時のスペクトルの関係を示したものである。この
場合、赤外発光ダイオードは中心波長940nm 、半
値巾2Qnmの発光スペクトル1を有するのに対し、シ
リコン受光ダ°イオードは最大感度が波長980nmK
ある受光スペクトル2の如き感度を持って“いる。しか
しシリコン受光ダイオードは波長的900 nm以下で
明らかに「不要感度」とも言うべき不必要な受光感度を
有しており、対象光源以外の周囲光によりこの発光−受
光系の信号対雑音比を低下させる原因となっている。
A monochromatic light source such as a light emitting diode is often used as the target light source (signal source). Figure 1 shows a typical example of this.
This figure shows the spectral relationship when a gallium arsenide infrared light emitting diode is used as a light emitting element and a PN junction type silicon light receiving diode is used as a light receiving element. In this case, an infrared light emitting diode has an emission spectrum 1 with a center wavelength of 940 nm and a half width of 2 Q nm, whereas a silicon light receiving diode has a maximum sensitivity at a wavelength of 980 nm.
However, silicon photodiodes have an unnecessary light-receiving sensitivity that can be called "unnecessary sensitivity" at wavelengths of 900 nm or less, and are sensitive to ambient light other than the target light source. This causes a reduction in the signal-to-noise ratio of this light emitting-light receiving system.

そこで通常用いられるのは受光素子に適当なフィルタを
前置し不要感度を抑制する方法で、その−例として黒色
染料を含むフィルタをシリコン受光ダイオードの前に設
けて可視域感度を低下させた時の受光スペクトル3を第
1図に示した。しかし、この染料フィルタを用いる方法
では受光スペクトル3に示すように遮断波長を7201
mよりも長くすることは困難であって、波長720〜Q
QQnm域に依然として大きな不要感度が存在する。
Therefore, a method that is usually used is to suppress unnecessary sensitivity by placing an appropriate filter in front of the photodetector.For example, a filter containing black dye is placed in front of the silicon photodetector diode to reduce the sensitivity in the visible range. The received light spectrum 3 is shown in FIG. However, in the method using this dye filter, the cutoff wavelength is 7201 as shown in reception spectrum 3.
It is difficult to make the wavelength longer than m, and the wavelength is 720~Q
There is still a large amount of unnecessary sensitivity in the QQnm region.

本発明はこの様な不要感度除去を目的としたものであり
、特に遮断波長的850nmの良好なフィルタ特性を内
蔵した受光装置を得る事、にある。
The purpose of the present invention is to eliminate such unnecessary sensitivity, and in particular, to obtain a light receiving device incorporating good filter characteristics at a cutoff wavelength of 850 nm.

本発明によれば、受光素子表面にガリウム砒素の薄膜を
直接被着しこのガリウム砒素薄膜がフィルタとし先手導
体受光装置を得る。
According to the present invention, a thin film of gallium arsenide is directly deposited on the surface of a light receiving element, and this thin film of gallium arsenide is used as a filter to obtain a leading conductor light receiving device.

次に、図面を参照して本発明をより詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

第2図は本発明の一実施例による半導体受光装置の断面
図を示したものである。比抵抗80o〜1.200n−
mのN型半導体ウェハー4に、通常の選択拡散によハ厚
さ0.5μのP型層5を設け、その表面に開口部を有す
る8i01 層6を通じてアル1=ウム電極7被着し、
これをP側電極として形成した。又、裏面には厚さ0.
3aのN中層8を全面拡散により形成した後、チタン−
全系電極9を蒸着し、N側電極とした。この後、半導体
ウェハー4を真空蒸着機に入れ、比抵抗10’n−αの
半絶縁性ガリウム砒素を蒸着源として、真空度2 X 
10−’Torr、で抵抗加熱によりガリウム砒素を蒸
着した。この時、半導体クエハー4を加熱しっ\、且つ
ウェハー4の温度が350〜400℃となる様、基板加
熱及び蒸着源とウェハー4の位置関係に注意を払り丸、
この様にして厚さ3μの多結晶ガリウム砒素層10を半
導体ウェハー4上の810.層q上およびアル著二りム
電極γ上に形成した。しかる後、アルミニーラム電M7
の、外部電極引出線部上のガリウム砒素層1oを硫酸:
過酸化水素:水=1:1:1なる組成の工、チンダ液で
選択的に除去した。この時゛ガリウム砒素層1oはP型
層5上に残存せしめ牡は曳いので、他の部分は除去して
もかまわ壜い。
FIG. 2 shows a sectional view of a semiconductor light receiving device according to an embodiment of the present invention. Specific resistance 80o~1.200n-
A P-type layer 5 with a thickness of 0.5 μm is provided on an N-type semiconductor wafer 4 of 1.0 m by ordinary selective diffusion, and an Al1=Um electrode 7 is deposited through an 8I01 layer 6 having an opening on its surface.
This was formed as a P-side electrode. Also, the back side has a thickness of 0.
After forming the N middle layer 8 of 3a by full-surface diffusion, titanium-
A whole system electrode 9 was deposited to serve as an N-side electrode. Thereafter, the semiconductor wafer 4 was placed in a vacuum evaporator, and the degree of vacuum was 2X using semi-insulating gallium arsenide with a specific resistance of 10'n-α as the evaporation source.
Gallium arsenide was deposited by resistance heating at 10-' Torr. At this time, the semiconductor wafer 4 is heated, and attention is paid to the substrate heating and the positional relationship between the vapor deposition source and the wafer 4 so that the temperature of the wafer 4 is 350 to 400°C.
In this way, the polycrystalline gallium arsenide layer 10 with a thickness of 3 μm is deposited on the semiconductor wafer 4 at 810. It was formed on the layer q and the aluminum electrode γ. After that, Aluminum Ramden M7
The gallium arsenide layer 1o on the external electrode lead wire part is treated with sulfuric acid:
It was selectively removed using a tinde solution with a composition of hydrogen peroxide:water=1:1:1. At this time, since the gallium arsenide layer 1o remains on the P-type layer 5 and is removed, other portions may be removed.

こ\で、上記半導体受光装置の製造条件につき、更に詳
述すれば次の通りである。
Now, the manufacturing conditions of the semiconductor light receiving device will be described in more detail as follows.

先ず蒸着時の半導体クエハー4の加熱温度については、
前述の350〜400℃の温度範囲より高い温度では、
より良好な多結晶ガリウム砒素膜10か形成されるが、
電&7のアル建ニウムとガリウム砒素膜lOとの反応が
生じ、選択的にガリウム−砒素を除去し先後もアル1=
ウム電極7の表面に変質を生じ、外部引出電極線の接続
技術上困難を生じ、−万より低い温度では得られたガリ
ウム砒素膜lOが光学的に不満足でフィルターとしての
連断波長を高くできなかった。
First, regarding the heating temperature of the semiconductor wafer 4 during vapor deposition,
At temperatures higher than the aforementioned temperature range of 350-400°C,
Although a better polycrystalline gallium arsenide film 10 is formed,
A reaction occurs between the aluminum and the gallium arsenide film lO, selectively removing the gallium and arsenic, and subsequently forming the aluminum
This causes deterioration of the surface of the gallium electrode 7, which causes difficulties in connecting the external lead electrode wire, and at temperatures lower than -10,000, the obtained gallium arsenide film 10 is optically unsatisfactory and cannot have a high continuous wavelength as a filter. There wasn't.

又、ガリウム砒素膜lOの膜厚について社厚さ2.5μ
以下では阻止域(〜85Qnm以下)に於いても比較的
高い光透過率を示し、一方厚さ5μ以上では、しばしば
クラックを生じたので、2.5〜5μの厚さが良く、最
適厚さとして3μを選んだ。
In addition, the film thickness of the gallium arsenide film 1O is 2.5 μm.
Below, it showed a relatively high light transmittance even in the stopband (~85Qnm or less), while at a thickness of 5μ or more, cracks often occurred, so a thickness of 2.5 to 5μ is good, and the optimal thickness is 3μ was selected as the

第3図は、この様にして得た受光素子片を外囲器として
エポキシ系樹脂で包み込んだ受光装置の相対感度11を
示したものである。
FIG. 3 shows the relative sensitivity 11 of a light receiving device in which the thus obtained light receiving element piece is wrapped in an epoxy resin as an envelope.

第3図の縦軸は相対感度を示したもので、第1図の縦軸
(感度)と等しくとっである。第3図から明らかな如く
、上記半導体受光装置では、約850nm以下の波長で
の感度は極めて低く、且つ、最大感度は染料フィルタを
前置した物(第1図の受光スペクトル3)と遜色ない事
がわかる。
The vertical axis in FIG. 3 indicates relative sensitivity, which is the same as the vertical axis (sensitivity) in FIG. As is clear from Figure 3, the sensitivity of the above semiconductor photodetector at wavelengths of approximately 850 nm or less is extremely low, and the maximum sensitivity is comparable to that of a device with a dye filter in front (light reception spectrum 3 in Figure 1). I understand.

以上、PN接合型受光部を持つ実施例について述べたが
1表面障壁型受光部を有する装置についても本発明の趣
旨を損う事な〈実施出来るのは明らかである。
Although an embodiment having a PN junction type light receiving section has been described above, it is clear that a device having a single surface barrier type light receiving section can be implemented without detracting from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の受光装置の受光スペクトル及び対象光
源の発光スペクトルを示す図である。第2図は本発明の
一冥施例による半導体受光装置の断面図、第3図は上記
実施例の受光スペクトルを示す図である。 1・・・・・・対象光源発光スペクトル、2.3・・・
・・・従来の受光素子の受光スペクトル、4・・・・・
・N型層、5・・・・・・P型層、6・・・・・・8i
0.膜、7・・・・・・アル建二りム電極、訃・・・・
・炉層、9・・・・・・チタン−金電極、10・・・・
・・ガリウム砒素層、11・・・・・・本実施例による
受光装置の受光スペクトル。 500QrrL’?00n、 1000.、。 i七 第1図 第2図 第3図
FIG. 1 is a diagram showing a light reception spectrum of a conventional light receiving device and an emission spectrum of a target light source. FIG. 2 is a sectional view of a semiconductor light receiving device according to one embodiment of the present invention, and FIG. 3 is a diagram showing a light receiving spectrum of the above embodiment. 1...Target light source emission spectrum, 2.3...
... Light receiving spectrum of conventional light receiving element, 4...
・N-type layer, 5...P-type layer, 6...8i
0. Membrane, 7... Aluminum membrane electrode, 7...
・Furnace layer, 9...Titanium-gold electrode, 10...
...Gallium arsenide layer, 11... Light reception spectrum of the light receiving device according to this example. 500QrrL'? 00n, 1000. ,. i7Figure 1Figure 2Figure 3

Claims (1)

【特許請求の範囲】[Claims] PN接合型又は表面障壁型の受光部を有するシリコン受
光素子に於いて、ガリウム砒素層を該受光部上に設けた
ことを特徴とする半導体受光装置。
1. A semiconductor light receiving device comprising a silicon light receiving element having a PN junction type or surface barrier type light receiving portion, and a gallium arsenide layer provided on the light receiving portion.
JP56163016A 1981-10-13 1981-10-13 Semiconductor photodetector Pending JPS5864071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163016A JPS5864071A (en) 1981-10-13 1981-10-13 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163016A JPS5864071A (en) 1981-10-13 1981-10-13 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS5864071A true JPS5864071A (en) 1983-04-16

Family

ID=15765586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163016A Pending JPS5864071A (en) 1981-10-13 1981-10-13 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS5864071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088569U (en) * 1983-11-22 1985-06-18 同和鉱業株式会社 Photodetector with infrared transmission filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051285A (en) * 1973-09-05 1975-05-08
JPS5591184A (en) * 1978-12-27 1980-07-10 Fujitsu Ltd Photodiode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051285A (en) * 1973-09-05 1975-05-08
JPS5591184A (en) * 1978-12-27 1980-07-10 Fujitsu Ltd Photodiode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088569U (en) * 1983-11-22 1985-06-18 同和鉱業株式会社 Photodetector with infrared transmission filter

Similar Documents

Publication Publication Date Title
US4078945A (en) Anti-reflective coating for silicon solar cells
JP3115148B2 (en) Method for manufacturing semiconductor device
CA1199097A (en) Preparation of photodiodes
JP4084958B2 (en) Manufacturing method of semiconductor light receiving device
JPH0677518A (en) Semiconductor photodetector
JPS5864071A (en) Semiconductor photodetector
US4301463A (en) Demultiplexing photodetector
JPH0758772B2 (en) Method of manufacturing solid-state imaging device
JPH0653537A (en) Semiconductor light receiving element
JP4137568B2 (en) Receiver
JP2670289B2 (en) Infrared detecting photodiode and method for manufacturing the same
JPS58162078A (en) Semiconductor photodetector
JP4401036B2 (en) Photodiode manufacturing method
JPS5938748B2 (en) semiconductor photodetector
Burrus et al. Large-area back-illuminated InGaAs/InP photodiodes for use at 1 to 1.6 μm wavelength
Ripoche et al. First life-test results on planar pin InGaAs/InP photodiodes passivated with SiO 2 or SiN x+ SiO 2 or SiN x layers
JPH01223779A (en) Infrared ray detector
JPH0316275A (en) Manufacture of semiconductor photodetector
JPS59149070A (en) Photodetector
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
CN116417526A (en) Method for improving uniformity of responsivity of APD (avalanche photo diode)
JPH02231775A (en) Compound semiconductor photodetector
JPS6159680B2 (en)
JPS58162077A (en) Semiconductor photodetector
JPS5935192B2 (en) Handmade Thai Yukousoshi