JPH02231775A - Compound semiconductor photodetector - Google Patents

Compound semiconductor photodetector

Info

Publication number
JPH02231775A
JPH02231775A JP1051787A JP5178789A JPH02231775A JP H02231775 A JPH02231775 A JP H02231775A JP 1051787 A JP1051787 A JP 1051787A JP 5178789 A JP5178789 A JP 5178789A JP H02231775 A JPH02231775 A JP H02231775A
Authority
JP
Japan
Prior art keywords
inp
cap layer
diffusion region
layer
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1051787A
Other languages
Japanese (ja)
Inventor
Shuzo Kagawa
修三 香川
Isao Ogawa
功 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1051787A priority Critical patent/JPH02231775A/en
Publication of JPH02231775A publication Critical patent/JPH02231775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the quantum efficiency, and to obtain sensitivity continuously extending over a wide wavelength range from a short wavelength to a long wavelength by specifying the thickness of an InP cap layer and the depth of a diffusion region. CONSTITUTION:An InGaAs light absorption layer 3 and an InP cap layer 4 are laminated successively onto one conductivity type InP substrate 1 doped in high concentration, and the opposite conductivity type diffusion region 6 reaching from the surface of the InP cap layer 4 to the InGaAs light absorption layer 3 and being doped in high concentration is formed. The thickness of the InP cap layer 4 is brought to 0.1mum or less while the depth of the diffusion region 6 is brought to 0.7mum or less. Accordingly, quantum efficiency is improved, and sensibility is acquired continuously extending over a wide wavelength range from a short wavelength of 0.7-0.8mum to a long wavelength of 1.3mum and 1.55mum.

Description

【発明の詳細な説明】 〔概要〕 InGaAs/InP  P I Nフォトダイオード
に関し,短波長から長波長までの広い波長範囲にわたり
連続して感度が得られるようにすることを目的とし. 高濃度にドープされた一導電型のInP基板上に.In
GaAs光吸収層およびInPキャップ層が順次積層さ
れ,InPキャップ層の表面からI nGaAs光吸収
層に到達する,高濃度にドープされた反対導電型の拡散
領域が形成された化合物半導体受光素子において.{n
Pキャップ層の厚さをO.lμm以下にする,と共に,
拡散領域の深さを0.7μm以下にするように構成する
. 〔産業上の利用分野〕 杢允明は.化合物半導体受光素子,特にInGaAs/
InP  PINフォトダイオードに関する.光通信に
用いられる光波長帯には,主に.次の3つがある. ■0.7〜0.8μm帯.これは.コンパクトディスク
(CD)用に開発された安価な半導体レーザを用いた,
近距離・中低速光通信システムに用いられる. ■1.3μm帯.これは,光ファイバーの材料分散が零
に近くなる波長帯で,長距離・大容量光通信システムに
用いられる. ■1.55μm帯.これは.光ファイバーの伝送損失が
最も小さくなる波長帯で.長距離・大容量光通信システ
ムに用いられる. 従来.0.7〜0.8μmの短波長帯には, S+を用
いた受光素子が使用され,1.3μmあるいは1.55
μmの長波長帯には. GeあるいはInPを用いた受
光素子が使用されている. 近年,同一の光ファイバーの中を短波長から長波長まで
の波長の異なった光を伝送させる光多重通信の実用化が
進められるのに伴って.同一の素子により短波長から長
波長までの全ての光を受けることのできる受光素子が望
まれている.また,計測用の受光素子についても,短波
長から長波長まで広い波長範囲にわたり連続して惑度の
得られるものが望まれている。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to provide an InGaAs/InP PIN photodiode with continuous sensitivity over a wide wavelength range from short wavelengths to long wavelengths. on a highly doped InP substrate of one conductivity type. In
In a compound semiconductor light-receiving element, a GaAs light absorption layer and an InP cap layer are sequentially laminated, and a heavily doped diffusion region of the opposite conductivity type is formed, which reaches the InGaAs light absorption layer from the surface of the InP cap layer. {n
The thickness of the P cap layer is set to O. lμm or less, and
The depth of the diffusion region is configured to be 0.7 μm or less. [Industrial field of application] Masaaki Moku. Compound semiconductor photodetector, especially InGaAs/
Regarding InP PIN photodiodes. The optical wavelength bands used for optical communications mainly include: There are three types: ■0.7-0.8μm band. this is. Using an inexpensive semiconductor laser developed for compact discs (CDs),
Used in short-range, medium-low speed optical communication systems. ■1.3μm band. This is a wavelength band in which the material dispersion of optical fibers is close to zero, and is used in long-distance, high-capacity optical communication systems. ■1.55μm band. this is. In the wavelength band where the transmission loss of optical fiber is the smallest. Used in long-distance, high-capacity optical communication systems. Conventional. For the short wavelength band of 0.7 to 0.8 μm, a light receiving element using S+ is used, and for the short wavelength band of 1.3 μm or 1.55 μm.
In the long wavelength band of μm. A photodetector using Ge or InP is used. In recent years, optical multiplex communication, which transmits light with different wavelengths from short to long wavelengths through the same optical fiber, has been put into practical use. A photodetector element that can receive all light from short wavelengths to long wavelengths using the same element is desired. Furthermore, it is desired that light-receiving elements for measurement be capable of continuously obtaining luminosity over a wide wavelength range from short wavelengths to long wavelengths.

〔従来の技術〕[Conventional technology]

(従来例1) 第3図は,従来のInGaAs/ In P  P I
 Nフォトダイオードを示す図である. 同図において,11はn’−1nP基板.12は厚さ5
〜8μmのn−−1nPバッファ層,13は厚さ2〜3
μmのn−−InGaAs光吸収層.14は厚さ約lμ
mのn−1nPキ+7プ層,15はSiN膜,16はn
−1nPキャップ層l4の表面がらn− InGaAs
光吸収層13に到達するp゛拡敗領域,17は反射防止
膜.18および19ぱ電極である。
(Conventional Example 1) Figure 3 shows the conventional InGaAs/In P P I
It is a diagram showing an N photodiode. In the figure, 11 is an n'-1nP substrate. 12 is thickness 5
~8μm n-1nP buffer layer, 13 is 2-3 thick
μm n--InGaAs light absorption layer. 14 has a thickness of approximately lμ
m n-1nP cap layer, 15 is SiN film, 16 is n
The surface of the -1nP cap layer l4 is n-InGaAs
17 is an anti-reflection film that reaches the light absorption layer 13. 18 and 19 are electrodes.

第3図に示す構造のInGaAs/InP  P I 
Nフォトダイオードにおいて,1.3μmおよび1.5
5μmの光は,  n−1nPキャップ層14を透過し
.ほぼ空乏領域となっているn− −1nGaAs光吸
収層13で吸収されるので,大きな量子効率が得られる
InGaAs/InP P I with the structure shown in Figure 3
For N photodiodes, 1.3 μm and 1.5
The 5 μm light passes through the n-1nP cap layer 14. Since the light is absorbed by the n--1nGaAs light absorption layer 13, which is almost a depletion region, a large quantum efficiency can be obtained.

しかし,  0.7 〜0.8,umの光は,  n−
1nPキャンプ層14中で吸収されてしまい,光により
発生したフォトキャリアは.空乏領域まで拡散して行く
間に死んでしまうため,量子効率(感度)が悪い,とい
う問題点がある. (従来例2) 従来例1の問題点を解決するために考えられたのが,第
4図に示すInGaAs/InP  P I Nフォト
ダイオードである。
However, light of 0.7 to 0.8 um is n-
Photocarriers generated by light are absorbed in the 1nP camp layer 14. The problem is that the quantum efficiency (sensitivity) is poor because it dies while it diffuses into the depletion region. (Conventional Example 2) In order to solve the problems of Conventional Example 1, an InGaAs/InP PIN photodiode shown in FIG. 4 was devised.

第4図において.21はn”−1nP基板,22は厚さ
2〜3μmのn−−InPバッファ層,23は厚さ2〜
3μmのn−−1nGaAs光吸収層,24はSiN膜
,25はp4拡散領域,26は反射防止膜,27および
28は電極である。
In Figure 4. 21 is an n''-1nP substrate, 22 is an n--InP buffer layer with a thickness of 2 to 3 μm, and 23 is a thickness of 2 to 3 μm.
A 3 μm n−1 nGaAs light absorption layer, 24 a SiN film, 25 a p4 diffusion region, 26 an antireflection film, and 27 and 28 electrodes.

この例のInGaAs/ In P  P I Nフォ
トダイオードは.第3図に示したInGaAs/ In
 P  P I Nフォトダイオードから.0.7〜0
.8μmの光を吸収してしまい.この波長帯の光に対す
る量子効率を悪くしていたn−1nPキャップ層を取り
除いた構造をしている. このような構造にすれば,0.7〜0.8μm帯の光に
対する量子効率は向上するが,バンドギャップの狭いn
− −InGaAs光吸収層23が表面にさらされSi
N膜24と界面を形成するために,表面準位密度が大き
くなり.暗電流が増大する.という問題が生じる. 〔発明が解決しようとする課題〕 従来例1のInGaAs/ In P  P I Nフ
ォトダイオードには,  n−InPキャンプ層が0.
9μm以下の光を吸収してしまい,この波長帯の光に対
する量子効率が悪い,という問題があった。
The InGaAs/In P P I N photodiode in this example is. InGaAs/In shown in Figure 3
From P P I N photodiode. 0.7~0
.. It absorbs light of 8 μm. It has a structure in which the n-1nP cap layer, which degrades the quantum efficiency for light in this wavelength range, has been removed. Such a structure improves the quantum efficiency for light in the 0.7-0.8 μm band, but the narrow bandgap n
- -The InGaAs light absorption layer 23 is exposed to the surface and the Si
In order to form an interface with the N film 24, the surface state density increases. Dark current increases. A problem arises. [Problems to be Solved by the Invention] The InGaAs/InP P I N photodiode of Conventional Example 1 has an n-InP camp layer of 0.
There is a problem in that it absorbs light of 9 μm or less, resulting in poor quantum efficiency for light in this wavelength band.

また,従来例1の問題点を解決した従来例2のInGa
As/InP  P I Nフォトダイオードには.バ
ンドギャップの狭いn− −InGaAs光吸収層が半
導体表面となりSiN膜と界面を形成するために,表面
準位密度が大きくなり.暗電流が増大する,という問題
があった. 本発明は,これらの問題点を解決して,短波長から長波
長までの広い波長範囲にわたり連続して感度が得られる
ようにした化合物半導体受光素子.特にInGaAs/
 In P  P I Nフォトダイオードを提供する
ことを目的とする。
In addition, InGa of conventional example 2 which solved the problems of conventional example 1
As/InP PIN photodiode. Since the n--InGaAs light absorption layer with a narrow bandgap becomes the semiconductor surface and forms an interface with the SiN film, the surface state density increases. The problem was that the dark current increased. The present invention is a compound semiconductor photodetector that solves these problems and provides continuous sensitivity over a wide wavelength range from short wavelengths to long wavelengths. Especially InGaAs/
The present invention aims to provide an In P P I N photodiode.

〔課題を解決するための手段) 上記の目的を達成するために,本発明に係る受光素子は
,高濃度にドープされた一導電型のInP基板上に, 
InGaAs光吸収層およびInPキャップ層が順次積
層され,InPキャンプ層の表面からInGaAs光吸
収層に到達する,高濃度にドープされた反対導電型の拡
散領域が形成された化合物半導体受光素子において,I
nPキャンプ層の厚さを0. 1μm以下にする,と共
に.拡散領域の深さを0.7μm以下にするように構成
する。
[Means for Solving the Problems] In order to achieve the above object, the light receiving element according to the present invention includes a highly doped InP substrate of one conductivity type.
In a compound semiconductor light-receiving element in which an InGaAs light absorption layer and an InP cap layer are sequentially laminated to form a heavily doped diffusion region of the opposite conductivity type that reaches the InGaAs light absorption layer from the surface of the InP camp layer, the I
The thickness of the nP camp layer is set to 0. In addition to making it 1 μm or less. The depth of the diffusion region is configured to be 0.7 μm or less.

〔作用〕[Effect]

本発明は,InPキャップ層が0.9μm以下の光を吸
収してしまい,この波長帯の光に対する量子効率が悪い
,という従来例1の問題点,および.バンドギャップの
狭いInGaAs光吸収層が半導体表面となりSiN膜
と界面を形成するために.表面準位密度が大きくなり,
暗電流が増大する.という従来例2の問題点を同時に解
決するためになされたものであり,そのポイントは,I
nPキャップ層を付けたままでも.0.9μm以下の光
がInGaAs光吸収層に到達することのできる構造条
件を解明する点にある. そのために.本発明者らは,InPキャップ層の厚さを
0.1μm,0.2#mおよび0.35,c+mとし,
それぞれに対して拡散領域の深さを0.7μmおよび1
.3μmとした計6種類のサンプルについて,0.78
,iImの光に対する量子効率を測定した.その結果を
次の表に示す。
The present invention solves the problems of Conventional Example 1, in which the InP cap layer absorbs light of 0.9 μm or less, resulting in poor quantum efficiency for light in this wavelength range, and. Because the InGaAs light absorption layer with a narrow bandgap becomes the semiconductor surface and forms an interface with the SiN film. The surface state density increases,
Dark current increases. This was done to simultaneously solve the problems of Conventional Example 2, and the point is that I
Even with the nP cap layer attached. The purpose of this study is to elucidate the structural conditions that allow light of 0.9 μm or less to reach the InGaAs light absorption layer. for that. The inventors set the thickness of the InP cap layer to 0.1 μm, 0.2 #m and 0.35, c+m,
The depth of the diffusion region was set to 0.7 μm and 1 μm, respectively.
.. For a total of six types of samples with a thickness of 3 μm, 0.78
, we measured the quantum efficiency of iIm for light. The results are shown in the table below.

(以下余白) 7mる A:InPキャンプ層の厚さ(μm) B:拡散領域の深さ(μm) (不純物濃度I X 1 0 ”C!m−”以上のIn
Pモニタ・ウェハによる値) この表から.InPキャップ層が薄くなるほど.また.
拡散領域の深さが浅くなるほど,0.78μm光に対す
る量子効率が大きくなることがわかる。
(Left below) 7m A: Thickness of InP camp layer (μm) B: Depth of diffusion region (μm) (Impurity concentration I
Values determined by P monitor wafer) From this table. The thinner the InP cap layer is, the more Also.
It can be seen that the shallower the depth of the diffusion region, the greater the quantum efficiency for 0.78 μm light.

実用的な量子効率を75%以上とすると, InPキャ
ップ層の厚さは0.1μm以下に,また.拡散領域の深
さは0.7μm以下にすればよい,ということになる。
If the practical quantum efficiency is 75% or more, the thickness of the InP cap layer should be 0.1 μm or less. This means that the depth of the diffusion region should be 0.7 μm or less.

本発明は,以上の知見に基づいてなされたものであり,
高濃度にドープされた一導電型のInP基板上に, I
nGaAs光吸収層およびInPキャップ層が順次積層
され.InPキャップ層の表面からInGaAs光吸収
層に到達する,高濃度にドープされた反対導電型の拡散
領域が形成された化合物半導体受光素子において.In
Pキャップ層の厚さを0.1μm以下にする.と共に.
拡散領域の深さを0.7μm以下にするように構成する
. このように構成することにより.0.7〜0.8μmの
短波長から1.3μmおよび1.55μmの長波長まで
の広い波長範囲にわたり連続して感度の得られるInG
aAs/InP  P I Nフォトダイオードを得る
ことができる。
The present invention was made based on the above findings, and
On a highly doped InP substrate of one conductivity type, I
An nGaAs light absorption layer and an InP cap layer are sequentially laminated. In a compound semiconductor photodetector in which a heavily doped diffusion region of the opposite conductivity type is formed that reaches an InGaAs light absorption layer from the surface of an InP cap layer. In
The thickness of the P cap layer should be 0.1 μm or less. With.
The depth of the diffusion region is configured to be 0.7 μm or less. By configuring it like this. InG that provides continuous sensitivity over a wide wavelength range from short wavelengths of 0.7 to 0.8 μm to long wavelengths of 1.3 μm and 1.55 μm
An aAs/InP PIN photodiode can be obtained.

〔実施例〕〔Example〕

第1図は.本発明の一実施例構成であるInGaAs/
InP  PINフォトダイオードを示す図である。
Figure 1 is. InGaAs/
FIG. 2 is a diagram showing an InP PIN photodiode.

第1図において,1はn”−InP基板.2はn−In
Pバッファ層,3はn− −1nGaAs光吸収層,4
はn−4nPキ+7プ層,5はSiN膜,6はp9拡散
領域,7は反射防止膜.8および9は電極である。
In Figure 1, 1 is an n''-InP substrate. 2 is an n-InP substrate.
P buffer layer, 3 is n--1nGaAs light absorption layer, 4
is an n-4nP cap layer, 5 is a SiN film, 6 is a p9 diffusion region, and 7 is an antireflection film. 8 and 9 are electrodes.

以下.第1図に示すInGaAs/ In P  P 
I Nフォトダイオードの作製方法を説明する。
below. InGaAs/In P P shown in Figure 1
A method for manufacturing an IN photodiode will be explained.

素子の作製には.クロライドVPE法により成長させた
In P / InGaAs/ In Pのダブル・ヘ
テロ構造のエビタキシャル・ウェハを用いた。成長温度
は,670℃である。
For manufacturing the device. An epitaxial wafer with a double heterostructure of InP/InGaAs/InP grown by the chloride VPE method was used. The growth temperature is 670°C.

n−−1nPバッファ層2は不純物濃度8X1014e
ll − ’で厚さ2.5 μn,  n− −1nG
aAs光吸収層3は不純物濃度2X I Q ”a++
−”で厚さ1.7μm,n 一InPキャップ層4は不
純物濃度6 X 1 0 ”cm−’で厚さ0.11μ
mである.このうち,  n−1nPキャンプ層4は.
素子作製の際に0.05μm全面エッチングするため,
チップ状態における最終の厚さは0.06μmである。
n--1nP buffer layer 2 has an impurity concentration of 8×1014e
ll-', thickness 2.5 μn, n--1nG
The aAs light absorption layer 3 has an impurity concentration of 2X I Q ”a++
InP cap layer 4 has an impurity concentration of 6 x 10 cm and a thickness of 0.11 μm.
It is m. Among these, the n-1nP camp layer 4 is.
Because the entire surface is etched by 0.05 μm during device fabrication,
The final thickness in the chip state is 0.06 μm.

その後,プラズマCVD法によりパフシベーシッン膜と
してのSiN膜5を形成し,受光部を穴開けし, Zn
拡散を行って,p0拡敗領域6を形成する, Zn拡散
は,ZnPzをソースとし,500℃.7分以下により
行う。これを不純物濃度1×10Ithal− ’以上
のInPモニタ・ウェハにより測定したところ,p゛拡
散領域6の拡散深さは.0.7μmであった. 次いで.プラズマCVD法によりSiNを堆積させて.
反射防止膜7を形成する。本実施例の反射防止膜7は,
屈折率1.82で膜厚l200人の単層膜である。これ
により,0.78μm光に対しては98.7%の透過率
が得られ.1.3μm光に対しては91.6%の透過率
が得られる。
After that, a SiN film 5 as a puffy basis film is formed by plasma CVD method, a hole is made for the light receiving part, and a Zn film is formed.
Zn diffusion is performed to form the p0 diffusion region 6 using ZnPz as a source at 500°C. Do this for 7 minutes or less. When this was measured using an InP monitor wafer with an impurity concentration of 1×10 Ithal-' or higher, the diffusion depth of the p diffusion region 6 was found to be . It was 0.7 μm. Next. Deposit SiN by plasma CVD method.
An antireflection film 7 is formed. The antireflection film 7 of this example is as follows:
It is a single layer film with a refractive index of 1.82 and a film thickness of 1200 mm. As a result, a transmittance of 98.7% was obtained for 0.78 μm light. A transmittance of 91.6% is obtained for 1.3 μm light.

最後に. Ti/Pt/^Uなどの電極8およびAu/
Ge/Niなどの電極9を形成する。
lastly. Electrodes 8 such as Ti/Pt/^U and Au/
An electrode 9 of Ge/Ni or the like is formed.

以上の工程により得られた本実施例のInGaAs/I
nP  PINフォトダイオードの暗電流特性を第2図
に示す。通常の動作電圧5Vにおける暗電流は約30p
Aであり.従来のInGaAs/ In P  P I
Nフォトダイオードと比べても同じように小さい。
InGaAs/I of this example obtained through the above steps
FIG. 2 shows the dark current characteristics of the nP PIN photodiode. Dark current at normal operating voltage of 5V is approximately 30p
It is A. Conventional InGaAs/In P P I
It is also small compared to an N photodiode.

暗電流がバイアス電圧5v近傍で大きく増加している.
これは, n− −1nGaAs光吸収層中の電界が1
.5 X 1 0’ V/3以上となり,トンネル電流
が発生しているためである,と考えられる。
The dark current increases significantly near the bias voltage of 5V.
This means that the electric field in the n- -1nGaAs light absorption layer is 1
.. It is thought that this is because the voltage is 5×10' V/3 or more, and a tunnel current is generated.

量子効率は逆バイアス電圧領域においてほぼ一定で.0
.78μm光に対しては76%,1.3μm光に対して
は81%の値が得られた. 〔発明の効果〕 本発明によれば,0.7〜0.8μmの短波長から1.
3μmおよび1.55μmの長波長までの広い波1長範
囲にわたり連続して感度の得られるInGaAs/In
P  PINフォトダイオードを得ることができる. 1 : n” −1nP基板 2= n− −1nPバソファ層 3 : n− −1nGaAs光吸収層4:n−1nP
キャップ層 5:SiN膜 6:p゛拡散領域 7:反射防止膜 aria極 9:電極
The quantum efficiency is almost constant in the reverse bias voltage region. 0
.. A value of 76% for 78 μm light and 81% for 1.3 μm light was obtained. [Effects of the Invention] According to the present invention, from short wavelengths of 0.7 to 0.8 μm to 1.
InGaAs/In with continuous sensitivity over a wide wavelength range up to long wavelengths of 3 μm and 1.55 μm
A P PIN photodiode can be obtained. 1: n''-1nP substrate 2 = n--1nP bathophore layer 3: n--1nGaAs light absorption layer 4: n-1nP
Cap layer 5: SiN film 6: P diffusion region 7: antireflection film aria pole 9: electrode

Claims (1)

【特許請求の範囲】 高濃度にドープされた一導電型のInP基板(1)上に
、InGaAs光吸収層(3)およびInPキャップ層
(4)が順次積層され、InPキャップ層(4)の表面
からInGaAs光吸収層(3)に到達する、高濃度に
ドープされた反対導電型の拡散領域(6)が形成された
化合物半導体受光素子において。 InPキャップ層(4)の厚さを0.1μm以下にする
、と共に、拡散領域(6)の深さを0.7μm以下にし
た ことを特徴とする化合物半導体受光素子。
[Claims] An InGaAs light absorption layer (3) and an InP cap layer (4) are sequentially laminated on a highly doped InP substrate (1) of one conductivity type. In a compound semiconductor light-receiving element in which a heavily doped diffusion region (6) of the opposite conductivity type is formed which reaches an InGaAs light absorption layer (3) from the surface. A compound semiconductor light-receiving element characterized in that the thickness of the InP cap layer (4) is 0.1 μm or less, and the depth of the diffusion region (6) is 0.7 μm or less.
JP1051787A 1989-03-03 1989-03-03 Compound semiconductor photodetector Pending JPH02231775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051787A JPH02231775A (en) 1989-03-03 1989-03-03 Compound semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051787A JPH02231775A (en) 1989-03-03 1989-03-03 Compound semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH02231775A true JPH02231775A (en) 1990-09-13

Family

ID=12896654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051787A Pending JPH02231775A (en) 1989-03-03 1989-03-03 Compound semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH02231775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249380A (en) * 1991-02-05 1992-09-04 Sharp Corp Photodetector with built-in circuit
CN1330004C (en) * 2003-04-15 2007-08-01 株式会社东芝 Semiconductor optical recieving device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257743A (en) * 1986-05-01 1987-11-10 Nec Corp Probing card for inspection device for integrated circuit
JPS63124475A (en) * 1986-11-13 1988-05-27 Nec Corp Semiconductor photodetector
JPS63227053A (en) * 1987-03-17 1988-09-21 Matsushita Electric Ind Co Ltd Semiconductor photodetector
JPS63232471A (en) * 1987-03-20 1988-09-28 Fujitsu Ltd Semiconductor photodetector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257743A (en) * 1986-05-01 1987-11-10 Nec Corp Probing card for inspection device for integrated circuit
JPS63124475A (en) * 1986-11-13 1988-05-27 Nec Corp Semiconductor photodetector
JPS63227053A (en) * 1987-03-17 1988-09-21 Matsushita Electric Ind Co Ltd Semiconductor photodetector
JPS63232471A (en) * 1987-03-20 1988-09-28 Fujitsu Ltd Semiconductor photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249380A (en) * 1991-02-05 1992-09-04 Sharp Corp Photodetector with built-in circuit
CN1330004C (en) * 2003-04-15 2007-08-01 株式会社东芝 Semiconductor optical recieving device and manufacturing method thereof
US7309884B2 (en) 2003-04-15 2007-12-18 Kabushiki Kaisha Toshiba Semiconductor light receiving device and method of fabricating the same

Similar Documents

Publication Publication Date Title
Pearsall et al. The Ga0. 47In0. 53As homojunction photodiode—A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm
CN106024922B (en) Phototransistor based on GeSn materials and preparation method thereof
JPH0338887A (en) Semiconductor photodetector
Takeda et al. Contributions of Franz–Keldysh and Avalanche Effects to Responsivity of a Germanium Waveguide Photodiode in the $\hbox {L} $-Band
CN105185845A (en) Si-PIN photodetector introducing micro-structure silicon in P layer and N layer and preparation method thereof
CN210467859U (en) High-speed photoelectric detector
US4894703A (en) Restricted contact, planar photodiode
JPH02231775A (en) Compound semiconductor photodetector
US4990989A (en) Restricted contact planar photodiode
JPH04342174A (en) Semiconductor photoelectric receiving element
FR2518817A1 (en) PHOTODIODE WITH SEPARATE ABSORPTION AND AVALANCHE ZONES
JPH04263475A (en) Semiconductor photodetector and manufacture thereof
CN108987530B (en) Method for manufacturing photoelectric detector
JPS59149070A (en) Photodetector
RU221645U1 (en) Semiconductor Photodiode for Infrared Radiation
JPS6180875A (en) Semiconductor device
CN113437168A (en) Field-effect conduction channel photoelectric detector and preparation method thereof
Andrievski et al. High speed InGaAs photodetector modules for fibre optic communications
JPS61267376A (en) Semiconductor device
JPS595681A (en) Semiconductor light receiving device
JPS62169377A (en) Semiconductor device
JPH0316275A (en) Manufacture of semiconductor photodetector
JP2767877B2 (en) Manufacturing method of semiconductor light receiving element
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JPH04263474A (en) Manufacture of semiconductor photodetective element