JPH0758772B2 - Method of manufacturing solid-state imaging device - Google Patents

Method of manufacturing solid-state imaging device

Info

Publication number
JPH0758772B2
JPH0758772B2 JP61189075A JP18907586A JPH0758772B2 JP H0758772 B2 JPH0758772 B2 JP H0758772B2 JP 61189075 A JP61189075 A JP 61189075A JP 18907586 A JP18907586 A JP 18907586A JP H0758772 B2 JPH0758772 B2 JP H0758772B2
Authority
JP
Japan
Prior art keywords
film
imaging device
state imaging
diffusion region
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61189075A
Other languages
Japanese (ja)
Other versions
JPS6344761A (en
Inventor
義光 広島
茂則 松本
規央 美濃
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP61189075A priority Critical patent/JPH0758772B2/en
Publication of JPS6344761A publication Critical patent/JPS6344761A/en
Publication of JPH0758772B2 publication Critical patent/JPH0758772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はビデオカメラ等に用いられる固体撮像装置の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid-state imaging device used in a video camera or the like.

従来の技術 第2図の従来のインターライン型CCD撮像装置の単位画
素の断面模式図であり、これを参照して従来の製造方法
を以下に説明する。P形シリコン基板1中に、pn接合フ
ォトダイオードを形成するN形領域2と、CCD転送チャ
ネルとなるN形領域3と、画素分離のためのチャンルス
ストッパ領域4とを選択的に形成する。次にゲート酸化
膜6′を形成し、この上に多結晶シリコン転送ゲート5
を形成し、その後表面に二酸化シリコン膜6を形成す
る。次に、N形領域2の上の領域を除いてアルミニウム
で形成した遮光膜7を形成し、表面に保護絶縁膜のため
にリン珪酸ガラス(PSG)膜8を均一に形成する。
2. Description of the Related Art FIG. 2 is a schematic cross-sectional view of a unit pixel of the conventional interline CCD image pickup device of FIG. 2, and a conventional manufacturing method will be described below with reference to this. In a P-type silicon substrate 1, an N-type region 2 which forms a pn junction photodiode, an N-type region 3 which becomes a CCD transfer channel, and a channel stopper region 4 for pixel separation are selectively formed. Next, a gate oxide film 6'is formed, on which the polycrystalline silicon transfer gate 5 is formed.
And then a silicon dioxide film 6 is formed on the surface. Next, a light-shielding film 7 made of aluminum is formed except for the region above the N-type region 2, and a phosphosilicate glass (PSG) film 8 is uniformly formed on the surface as a protective insulating film.

上記の製造方法で形成されたCCD撮像装置の単位画素に
おいて、N形領域2の上部から入射した光により生成さ
れる信号電荷は、N形領域2に蓄積された後CCD転送チ
ャネルとなるN形領域3に転送され、出力信号として読
み出される。
In the unit pixel of the CCD image pickup device formed by the above manufacturing method, the signal charge generated by the light incident from the upper portion of the N-type region 2 is accumulated in the N-type region 2 and becomes an N-type CCD transfer channel. It is transferred to the area 3 and read as an output signal.

発明が解決しようとする問題点 しかしながら、第2図に示したような単位画素を有する
CCD撮像素子の製造方法では、光入力を全く遮断したと
しても出力成分(暗時成分または暗電流と呼ばれ、一種
の熱的に生成される“もれ電流”)が観測される。しか
もこの成分は温度上昇に伴って増加する。このような暗
電流が増大すると、垂直CCD転送チャネルの転送可能な
信号電荷量が小さくなるという問題とともに、暗電流そ
のものの変動によるノイズが発生し、撮像特性を劣化さ
せるという問題を誘起する。
Problems to be Solved by the Invention However, it has a unit pixel as shown in FIG.
In the method of manufacturing a CCD image sensor, an output component (called a dark component or dark current, which is a kind of "leakage current" that is generated thermally) is observed even if the light input is completely cut off. Moreover, this component increases with increasing temperature. When such a dark current increases, the amount of signal charge that can be transferred in the vertical CCD transfer channel becomes small, and noise is generated due to the fluctuation of the dark current itself, which causes a problem of deteriorating imaging characteristics.

このような暗電流の発生原因として、シリコン基板1の
表面に存在する表面準位があげられる。特にpn接合の接
合部近傍の表面準位が重要で、これを介して熱的に励起
する電荷が暗電流の大部分を占める。一方表面準位密度
の低減には、前述のアルミニウム遮光膜7の形成後、例
えば450℃の温度で水素を10%程度含む窒素雰囲気中で3
0分程度のアニール処理が行なわれる。この処理は表面
準位の原因となるSiとSiO2界面のSiのダングリングボン
ド(Siの未結合手)を水素で終端化することをはかった
ものである。しかしながら、撮像装置の高集積化、小型
化の要請は単位画素あたりの信号電荷を減少させ、相対
的に暗電流成分を大きくさせる。したがって界面準位密
度のより一層の低減化が必要とされている。
The surface level existing on the surface of the silicon substrate 1 is a cause of the dark current. In particular, the surface level near the junction of the pn junction is important, and the charge that is thermally excited through this accounts for most of the dark current. On the other hand, to reduce the surface state density, after forming the aluminum light-shielding film 7 described above, for example, in a nitrogen atmosphere containing about 10% hydrogen at a temperature of 450 ° C., 3
Annealing treatment is performed for about 0 minutes. This treatment aims to terminate the dangling bond (Si dangling bond) of Si at the interface between Si and SiO 2 that causes the surface state with hydrogen. However, the demand for higher integration and smaller size of the image pickup device reduces the signal charge per unit pixel and relatively increases the dark current component. Therefore, it is necessary to further reduce the interface state density.

問題点を解決するための手段 この問題点を解決するために本発明の固体撮像装置の製
造方法は、一導電形のシリコン基板中に、フォトダイオ
ードとなる逆導電形の拡散領域を選択的に形成する工程
と、少なくとも前記拡散領域及びその近傍の正面に酸化
シリコン膜を形成する工程と、前記酸化シリコン膜の上
に水素を含有するシリコン窒化膜からなる保護絶縁膜を
前記拡散領域上では薄くなるように形成する工程と、熱
処理を施して前記拡散領域及びその近傍の表面の界面準
位密度を低減する工程とを備えたものである。
Means for Solving the Problems In order to solve this problem, a method for manufacturing a solid-state imaging device according to the present invention is directed to a silicon substrate of one conductivity type, in which a diffusion region of an opposite conductivity type serving as a photodiode is selectively formed. A step of forming, a step of forming a silicon oxide film on at least the diffusion region and the front surface in the vicinity thereof, and a protective insulating film made of a silicon nitride film containing hydrogen on the silicon oxide film is thin on the diffusion region. And a step of performing heat treatment to reduce the interface state density of the diffusion region and the surface in the vicinity thereof.

作用 この構成により、熱処理を施したときシリコン窒化膜か
ら水素がシリコン基板表面に大量に拡散して水素の浸透
効果を大きくすることが可能となり、拡散領域の表面近
傍の界面準位密度をさらに低減させることができる。
Function With this structure, when heat treatment is performed, hydrogen can be diffused in large amounts from the silicon nitride film to the surface of the silicon substrate, increasing the hydrogen penetration effect, and further reducing the interface state density near the surface of the diffusion region. Can be made.

実施例 以下、図面を参照して本発明の一実施例に詳細に説明す
る。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の固体撮像装置の製造方法の一実施例を
示すインターライン転送方式CCD撮像装置の画素部断面
模式図である。第1図に示した製造方法を従来の第2図
に示した製造方法と比較した場合、表面保護絶縁膜とし
てPSG膜8の上にプラズマCVD法により形成されたシリコ
ンナイトライド(Si3N4)膜9を設け、さらにこのSi3N4
膜9をフォトダイオードとなるN形領域2の上部10のみ
周囲より薄層化したのち、熱処理を施す点が異なる。そ
の他は全く同様であるので、同一符号を用いてその詳述
を省略する。
FIG. 1 is a schematic cross-sectional view of a pixel portion of an interline transfer CCD image pickup device showing an embodiment of a method for manufacturing a solid-state image pickup device of the present invention. When the manufacturing method shown in FIG. 1 is compared with the conventional manufacturing method shown in FIG. 2, a silicon nitride (Si 3 N 4) formed by plasma CVD on the PSG film 8 is used as a surface protection insulating film. ) A film 9 is provided, and this Si 3 N 4 is further added.
A different point is that the film 9 is thinned from the surroundings only in the upper portion 10 of the N-type region 2 to be a photodiode and then heat-treated. Since the others are exactly the same, the detailed description thereof will be omitted by using the same reference numerals.

一般にプラズマCVD法で生成されるSi3N4膜は現在の半導
体技術ではPSGなどと同様に表面の保護絶縁膜などとし
て広く用いられており、Naイオン、水分等の浸入を防止
する性質にすぐれている。そして原料ガスにSiH4を用い
るために原子数にして通常20〜30%の水素を含有すると
いう特性を有している。このため本発明による固体撮像
装置の製造方法においては、プラズマSi3N4膜9の形成
後比較的低温での熱処理を施すことにより、Si3N4膜9
からP形シリコン基板1側へ多量の水素を容易に拡散さ
せることができる。
Generally, Si 3 N 4 film produced by plasma CVD method is widely used as a protective insulating film on the surface in the same way as PSG in the present semiconductor technology, and it has an excellent property of preventing the infiltration of Na ions and water. ing. Since SiH 4 is used as a raw material gas, it has a characteristic that it usually contains 20 to 30% of hydrogen. Therefore, in the solid-state imaging device manufacturing method according to the present invention, the Si 3 N 4 film 9 is formed by performing the heat treatment at a relatively low temperature after forming the plasma Si 3 N 4 film 9.
A large amount of hydrogen can be easily diffused from the P to the P-type silicon substrate 1 side.

本発明の大きな特徴は、暗電流の主な発生原因であるPN
接合部近傍表面の界面準位密度を、熱処理によりSi3N4
膜9からシリコン基板表面へ水素を拡散させて十分に低
減させると同時に、分光感度特性等の光電変換特性に影
響するフォトダイオードの上部10に位置するSi3N4膜9
の膜厚を部分的にエッチングにより膜厚をうすくしてい
ることである。
A major feature of the present invention is that PN, which is the main cause of dark current
The interface state density of the surface in the vicinity of the joint was changed to Si 3 N 4 by heat treatment.
At the same time as diffusing hydrogen from the film 9 to the surface of the silicon substrate to sufficiently reduce it, at the same time, the Si 3 N 4 film 9 located on the upper portion 10 of the photodiode that affects photoelectric conversion characteristics such as spectral sensitivity characteristics.
That is, the film thickness is partially reduced by etching.

Si3N4膜は屈折率が通常1.9〜2.3程度であり、その干渉
効果あるいは膜自身の光吸収により、フォトダイオード
の上部に0.2μm以上の厚みで形成した場合、分光感度
特性が変動し、カラー化には不利となるからである。本
実施例においては従来構造と全く同様の光電変換特性を
有するフォトダイオードとなっている。
The Si 3 N 4 film usually has a refractive index of about 1.9 to 2.3, and when it is formed with a thickness of 0.2 μm or more on the upper part of the photodiode due to the interference effect or the light absorption of the film itself, the spectral sensitivity characteristics vary, This is because it is disadvantageous for colorization. In this embodiment, the photodiode has the same photoelectric conversion characteristics as the conventional structure.

なおpn接合フォトダイオード接合部の直上部のSi3N4
がうすくなった場合においてもプラズマSi3N4膜による
暗電流低減効果は変らない。
Even if the Si 3 N 4 film just above the pn junction photodiode junction becomes thin, the dark current reduction effect of the plasma Si 3 N 4 film does not change.

ここで上記実施例のインターライン転送方式CCD撮像装
置の製造方法を簡単に述べる。フォトダイオードを含む
半導体素子が形成されたP形シリコン基板1上に二酸化
シリコン膜6を形成し、この二酸化シリコン膜6上にア
ルミニウム膜を蒸着し、反応性イオンエッチング法など
でアルミニウム遮光膜7をN形領域2の上部を除いて形
成し、さらに表面全面にPSG膜8およびプラズマCVD法に
よりSi3N4膜9を順次形成する。つづいてフォトダイオ
ードとなるN形領域2の上部10のみ選択的に部分エッチ
ングし、Si3N4膜9をうすくする。その後、N290%、H2
が10%のガス中で450℃、15〜30分間のアニール処理を
行う。
Here, a method of manufacturing the interline transfer type CCD image pickup device of the above embodiment will be briefly described. A silicon dioxide film 6 is formed on a P-type silicon substrate 1 on which a semiconductor element including a photodiode is formed, an aluminum film is deposited on the silicon dioxide film 6, and an aluminum light-shielding film 7 is formed by a reactive ion etching method or the like. It is formed except the upper portion of the N-type region 2, and the PSG film 8 and the Si 3 N 4 film 9 are sequentially formed on the entire surface by the plasma CVD method. Subsequently, only the upper portion 10 of the N-type region 2 to be the photodiode is selectively etched to thin the Si 3 N 4 film 9. Then N 2 90%, H 2
Anneal at 450 ° C for 15-30 minutes in 10% gas.

なお、本発明は上記実施例に限られるものでなく、Si3N
4膜9をPSG膜6中に設けても良い。またSi3N4膜に代え
て、同様の性質、即ち400℃〜450℃で水素を容易に放出
する特性を有する他の物質(例えばプラズマCVD法によ
るSiO2膜)を用いても同様の効果が得られる。
It should be noted that the present invention is not limited to the above embodiment, but Si 3 N
The four films 9 may be provided in the PSG film 6. Also, instead of the Si 3 N 4 film, the same effect can be obtained by using another substance having the same property, that is, the property of easily releasing hydrogen at 400 ° C. to 450 ° C. (for example, the SiO 2 film formed by the plasma CVD method). Is obtained.

発明の効果 以上のように本発明の固体撮像装置の製造方法によれ
ば、暗電流が極めて小さく、かつ、干渉効果等による分
光感度特性の変動がなく、さらにNaイオン、水分等の浸
入による特性変動の小さい高画質、高信頼性の固体撮像
装置が実現できる。
As described above, according to the method for manufacturing a solid-state imaging device of the present invention, the dark current is extremely small, and there is no change in the spectral sensitivity characteristics due to the interference effect, and the characteristics due to the infiltration of Na ions, water, etc. It is possible to realize a solid-state imaging device with high image quality and high reliability with little fluctuation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による一実施例の固体撮像装置の製造方
法を示す単位画素の断面模式図、第2図は従来の固体撮
像装置の製造方法を示す単位画素の断面模式図である。 1……P形シリコン基板、2……フォトダイオードを形
成するN形領域、3……CCD転送チャネルとなるN形領
域、4……P+形チャンネルストッパ、5……多結晶シリ
コン転送ゲート、6……二酸化シリコン膜、7……アル
ミニウム遮光膜、8……リン珪酸ガラス(PSG)膜、9
……シリコンナイトライド(Si3N4)膜、10……フォト
ダイオードの上部。
FIG. 1 is a schematic cross-sectional view of a unit pixel showing a method for manufacturing a solid-state imaging device according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a unit pixel showing a method for manufacturing a conventional solid-state imaging device. 1 ... P-type silicon substrate, 2 ... N-type region forming a photodiode, 3 ... N-type region serving as CCD transfer channel, 4 ... P + type channel stopper, 5 ... polycrystalline silicon transfer gate, 6 ... Silicon dioxide film, 7 ... Aluminum light-shielding film, 8 ... Phosphosilicate glass (PSG) film, 9
…… Silicon nitride (Si 3 N 4 ) film, 10 …… Upper part of the photodiode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電形のシリコン基板中に、フォトダイ
オードとなる逆導電形の拡散領域を選択的に形成する工
程と、少なくとも前記拡散領域及びその近傍の表面に酸
化シリコン膜を形成する工程と、前記酸化シリコン膜の
上に水素を含有するシリコン窒化膜からなる保護絶縁膜
を前記拡散領域上では薄くなるように形成する工程と、
熱処理を施して前記拡散領域及びその近傍の表面の界面
準位密度を低減する工程とを備えたことを特徴とする固
体撮像装置の製造方法。
1. A step of selectively forming a diffusion region of an opposite conductivity type to be a photodiode in a silicon substrate of one conductivity type, and a step of forming a silicon oxide film on at least the surface of the diffusion region and its vicinity. And a step of forming a protective insulating film made of a silicon nitride film containing hydrogen on the silicon oxide film so as to be thin on the diffusion region,
And a step of performing heat treatment to reduce the interface state density of the diffusion region and the surface in the vicinity thereof.
JP61189075A 1986-08-12 1986-08-12 Method of manufacturing solid-state imaging device Expired - Fee Related JPH0758772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189075A JPH0758772B2 (en) 1986-08-12 1986-08-12 Method of manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189075A JPH0758772B2 (en) 1986-08-12 1986-08-12 Method of manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS6344761A JPS6344761A (en) 1988-02-25
JPH0758772B2 true JPH0758772B2 (en) 1995-06-21

Family

ID=16234886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189075A Expired - Fee Related JPH0758772B2 (en) 1986-08-12 1986-08-12 Method of manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH0758772B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227570A (en) * 1990-02-01 1991-10-08 Matsushita Electron Corp Method of manufacturing solid-state image pickup device
JPH0567767A (en) * 1991-03-06 1993-03-19 Matsushita Electron Corp Solid-state image pick-up device and manufacture thereof
JPH056986A (en) * 1991-06-27 1993-01-14 Sharp Corp Solid-state image sensing device
KR930017195A (en) * 1992-01-23 1993-08-30 오가 노리오 Solid state imaging device and its manufacturing method
KR100399955B1 (en) * 2001-11-19 2003-09-29 주식회사 하이닉스반도체 Method of image sensor for reducing dark current
WO2004055898A1 (en) 2002-12-13 2004-07-01 Sony Corporation Solid-state imaging device and production method therefor
JP3840214B2 (en) 2003-01-06 2006-11-01 キヤノン株式会社 Photoelectric conversion device, method for manufacturing photoelectric conversion device, and camera using the same
JP2006332124A (en) * 2005-05-23 2006-12-07 Matsushita Electric Ind Co Ltd Solid-state image pickup element and manufacturing method thereof
JP4900228B2 (en) * 2007-12-18 2012-03-21 ソニー株式会社 Manufacturing method of solid-state imaging device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066856A (en) * 1983-09-22 1985-04-17 Matsushita Electronics Corp Manufacture of semiconductor element

Also Published As

Publication number Publication date
JPS6344761A (en) 1988-02-25

Similar Documents

Publication Publication Date Title
US20060061674A1 (en) Solid state imaging device, method of manufacturing same, and digital camera
JPH04286361A (en) Solid-state image sensing device
KR20090034763A (en) Solid state imaging device, method of manufacturing the same, and imaging apparatus
JP2005158940A (en) Photoelectric transfer device and image pickup system
JPH0758772B2 (en) Method of manufacturing solid-state imaging device
JP2006332124A (en) Solid-state image pickup element and manufacturing method thereof
JP2004071817A (en) Imaging sensor
JPS6344760A (en) Solid state image sensor
JPH01274468A (en) Manufacture of solid-state image sensing device
JP2012124275A (en) Solid-state imaging device, method for manufacturing the same, and electronic apparatus provided with the same
JPH0992813A (en) Solid state image pickup device and its manufacture
JPS62190870A (en) Solid-state image pickup device and manufacture thereof
JPH06140615A (en) Manufacture of solid-state image pick-up device
JPH04263469A (en) Solid-state image sensing device
JPH06132515A (en) Solid-state imaging device
JP2002324899A (en) Method for manufacturing solid-state image pickup element
JPH10112532A (en) Image sensing device
JPH0832045A (en) Solid state image pickup element and its manufacture
JPS60145776A (en) Solid-state image pickup device
JPS60102769A (en) Solid image pick-up device
JPH02156670A (en) Solid-state image pickup element
JPS6046674A (en) Solid-state image pickup device
JPH0590551A (en) Solid-state image pick-up device
JPH07130975A (en) Solid-state image sensing element
JP2005175072A (en) Solid state imaging apparatus and its fabricating process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees