JPS62190870A - Solid-state image pickup device and manufacture thereof - Google Patents

Solid-state image pickup device and manufacture thereof

Info

Publication number
JPS62190870A
JPS62190870A JP61034669A JP3466986A JPS62190870A JP S62190870 A JPS62190870 A JP S62190870A JP 61034669 A JP61034669 A JP 61034669A JP 3466986 A JP3466986 A JP 3466986A JP S62190870 A JPS62190870 A JP S62190870A
Authority
JP
Japan
Prior art keywords
film
dark current
light
solid
photosensitive pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61034669A
Other languages
Japanese (ja)
Inventor
Shigenori Matsumoto
松本 茂則
Norihisa Mino
規央 美濃
Yoshimitsu Hiroshima
広島 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61034669A priority Critical patent/JPS62190870A/en
Publication of JPS62190870A publication Critical patent/JPS62190870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To obtain a solid-state image pickup device having a high quality of image and good characteristics by forming a film made of a substance which discharge hydrogen ions on a part of a protective insulating film to accurately compensate the variation in a dark current due to the variation in a temperature. CONSTITUTION:A plasma silicon nitride (Si3N4) film 17 of approx. 300-1,000Angstrom is formed on a PSG film 15 as a surface protective insulating film. Since a large quantity of hydrogen ions are readily diffused from the film 17 to a substrate 8 side in a relatively low temperature treatment in the manufacturing steps after forming the film 17, they arrive at a boundary between an SiO2 film 12 and the substrate 8 so that the ions for reducing a boundary level are readily saturated. Thus, since the difference of the hydrogen diffusion due to the presence or absence of an aluminum film is entirely eliminated, the generation of the difference between the dark current of an OB region 7' and the dark current of a photodetecting region 6' is obviated, the variations in the dark currents due to the temperature in both the regions 6', 7' become equal to accurately compensate the variations in the dark current due to the temperature change in the region 6'.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はビデオカメラ等に用いられる固体撮像装置およ
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device used in a video camera or the like and a method for manufacturing the same.

従来の技術 第2図は、従来の電荷結合素子(COD)を用いたイン
ターライン転送方式の固体撮像装置における感光画素部
2、垂直CCDシフトレジスタ3、水平CODシフトレ
ジスタ4、出力部5の配置図を示している。上記撮像装
置1上の大部分の領域は受光領域6となっており、一部
の領域は黒レベル生成用のオプティカルブラック領域(
以下、OB領領域呼ぶ)7となっており、このOB領域
7は図中斜線で示すように感光画素部2の上がアルミニ
ウム膜でおおわれて光入力が遮断されている0 第3図は、第2図中のA−A’線で切断したときの上記
固体撮像装#1における受光部6の一部およびOB領域
7の一部の断面構造を示す模式図である。ここで、8は
P形シリコン基板、9は上記基板8とは逆導電形であっ
て上記基板表面の一部ニ設ケラレタN+層(第2図の感
光画素部2に相当)、10は同じく上記基板表面で上記
N層層9に隣接して設けられたN層(第2図の垂直CO
Dレジスタ3に相当)、11は素子分離用のチャンネル
ストッパ部、12は酸化シリコン(S 102 )膜、
13.14は上記5102膜12中に形成された多結晶
シリコン電極、15は同じく前記Si○2膜12上に前
記感光画素部用N層層8の上方部に対応する部分を除い
て形成された光シールド用のアルミニウム膜、16は上
記アルミニウム膜15および前記S 102膜12の上
に形成された保護絶縁のためのリン珪酸ガラス(PSG
)膜である。
Conventional technology FIG. 2 shows the arrangement of a photosensitive pixel section 2, a vertical CCD shift register 3, a horizontal COD shift register 4, and an output section 5 in a conventional interline transfer type solid-state imaging device using a charge-coupled device (COD). The figure shows. Most of the area on the imaging device 1 is a light receiving area 6, and some areas are optical black areas (
This OB area 7 has an aluminum film covering the photosensitive pixel portion 2 to block light input, as shown by diagonal lines in the figure. 2 is a schematic diagram showing a cross-sectional structure of a portion of the light receiving section 6 and a portion of the OB region 7 in the solid-state imaging device #1 when cut along the line AA' in FIG. 2. FIG. Here, 8 is a P-type silicon substrate, 9 is a conductivity type opposite to that of the substrate 8, and a part of the surface of the substrate is provided with a vignetting N+ layer (corresponding to the photosensitive pixel portion 2 in FIG. 2), and 10 is the same. An N layer (vertical CO in FIG. 2) provided adjacent to the N layer 9 on the surface of the substrate.
11 is a channel stopper portion for element isolation, 12 is a silicon oxide (S 102 ) film,
13 and 14 are polycrystalline silicon electrodes formed in the 5102 film 12, and 15 are polycrystalline silicon electrodes formed on the Si○2 film 12 except for the portion corresponding to the upper part of the N layer 8 for the photosensitive pixel portion. An aluminum film 16 for a light shield is a phosphosilicate glass (PSG) for protective insulation formed on the aluminum film 15 and the S102 film 12.
) is a membrane.

上記固体撮像装置1においては、受光部6に光が入射す
ることによって生成される信号電荷は感光画素部N” 
9に蓄積された後、垂直COD +/ジスタ用N層1o
に転送され、さらに転送りロックパルスによって垂直C
ODレジスタ3内を水平CODレジスタ4方向に転送さ
れる。そして、水平CODレジスタ4に転送されてきた
信号電荷は水平方向に転送されて出力部6より電圧変換
され読み出される。
In the solid-state imaging device 1, the signal charges generated by light entering the light receiving section 6 are transferred to the photosensitive pixel section N''
After being accumulated in 9, vertical COD +/N layer 1o for
is transferred to vertical C by further transfer lock pulse.
The data is transferred within the OD register 3 in the direction of the horizontal COD register 4. The signal charge transferred to the horizontal COD register 4 is transferred in the horizontal direction, converted into a voltage, and read out from the output section 6.

なお、上記固体撮像装置1においては、光入力を全く遮
断したとしても出力成分(暗時出力成分または暗電流と
呼ばれ、一種の熱的に生成される6もれ電流”である。
In the solid-state imaging device 1, even if the optical input is completely cut off, there is an output component (referred to as a dark output component or dark current, which is a type of thermally generated leakage current).

)が観測され、この出力成分は温度上昇に伴って増加す
る。このような暗電流が大きくなると、垂直CODレジ
スタ3の転送可能な信号電荷量が小さくなるという問題
の他に、電気信号処理回路に必要な、暗時の基準レベル
が変化するという問題が生じる。そこで、温度上昇に伴
なう暗電流成分の増加分を差し引くように信号処理を行
なうことが行なわれておシ、暗電流の増加分を検出する
ために前記OB領領域が設けられている◎したがって、
上記OB領領域は前記アルミニウム膜16が感光画素用
N層層9の上部にも形成されているほかは受光部6と同
じ構造を有している。
) is observed, and this output component increases with increasing temperature. When such a dark current becomes large, there arises the problem that the amount of signal charge that can be transferred by the vertical COD register 3 becomes small, and that the dark reference level required for the electrical signal processing circuit changes. Therefore, signal processing is performed to subtract the increase in dark current component due to temperature rise, and the OB area is provided to detect the increase in dark current. therefore,
The OB area has the same structure as the light receiving section 6 except that the aluminum film 16 is also formed on the N layer 9 for photosensitive pixels.

発明が解決しようとする問題点 前述したようなアルミニウム膜16は蒸着形成されるが
、その際基板部はダメージを受は暗電流は著しく増加す
るために、例えば450℃、窒素(N2)が90%、水
素(N2)が10チの雰囲気中で30分程度のアニール
を行なわなければならない。この場合H2がS 102
膜下の界面準位を低減させるのに重要な役割を果たして
いる。
Problems to be Solved by the Invention Although the aluminum film 16 described above is formed by vapor deposition, the substrate is damaged and the dark current increases significantly. %, hydrogen (N2) for about 30 minutes in an atmosphere of 10 cm. In this case H2 is S 102
It plays an important role in reducing the interface level under the film.

なお、上記アニールはアルミニウム膜15形成後に行な
われる(エツチングを完全にするため)ため、表面にア
ルミニウム膜16が存在しない受光領域6と表面にアル
ミニウム膜15が存在するOB領域7とではN2の侵透
効果が異なるためアニール効果に差が生じる。したがっ
て、アルミニウム膜16が表面に存在するOB領域7の
暗電流と受光領域6の暗電流との間に差が生じることに
なり、このことは前述したような暗電流変動分の相殺処
理を行なう上で大きな問題であった。
Note that since the above-mentioned annealing is performed after the aluminum film 15 is formed (to ensure complete etching), N2 invasion occurs in the light-receiving region 6 where the aluminum film 16 is not present on the surface and the OB region 7 where the aluminum film 15 is present on the surface. Since the penetration effect is different, there is a difference in the annealing effect. Therefore, a difference occurs between the dark current of the OB region 7 on the surface of which the aluminum film 16 exists and the dark current of the light receiving region 6, and this causes the dark current fluctuation to be canceled as described above. That was a big problem.

本発明はこのような問題点を解決するもので、受光領域
とOB領領域で暗電流の差が生じず、上記両領域それぞ
れにおける暗電流の温度による変動分が等しくなり、受
光領域における温度変動に伴なう暗電流分の正確な補償
が可能な固体撮像装置を実現することを目的とするもの
である。
The present invention solves these problems, and there is no difference in dark current between the light-receiving area and the OB area, and the temperature-related changes in the dark current in both areas are equal, thereby eliminating temperature fluctuations in the light-receiving area. The object of the present invention is to realize a solid-state imaging device that can accurately compensate for the dark current component associated with .

問題点を解決するための手段 この問題点を解決するために本発明の固体撮像装置は、
保護絶縁膜の一部に水素イオンを放出する物質からなる
膜を有することを特徴とするものである〇 作  用 この構成により、受光領域だけでな(OB領領域おいて
も水素イオンの侵透効果は大きく、上記両領域それぞれ
における暗電流の差は極く小さいものとなる。
Means for Solving the Problem In order to solve this problem, the solid-state imaging device of the present invention has the following features:
It is characterized by having a film made of a substance that releases hydrogen ions in a part of the protective insulating film. This structure prevents hydrogen ion penetration not only in the light receiving area (OB area) but also in the OB area. The effect is large, and the difference in dark current between the two regions is extremely small.

実施例 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本実施例による固体撮像装置における受光領域
の一部の断面構造の模式図である。第3図を参照して従
来構造と比べて、その表面保護絶縁膜としてのPSG膜
上にさらに300〜1000八程度のプラズマシリコン
ナイトライド(Si3N4)膜17を設けた点が異なり
、その他は同じであるので同一符号を用いてその詳述を
省略する。
FIG. 1 is a schematic diagram of a cross-sectional structure of a portion of a light receiving region in a solid-state imaging device according to this embodiment. Referring to FIG. 3, compared to the conventional structure, the difference is that a plasma silicon nitride (Si3N4) film 17 of about 300 to 10008 is further provided on the PSG film as a surface protection insulating film, and the rest is the same. Therefore, the same reference numerals will be used and detailed description thereof will be omitted.

一般に、プラズマCVD法で生成されるプラズマシリコ
ンナイトライド膜は、現在の半導体技術ではリン珪酸ガ
ラス(PSG)などと同様に表面の保護絶縁膜などとし
て広く用いられており、Naイオン、水分等の浸入を防
止する性質と共に膜内に水素イオンを多量に(原料ガス
にS I H4を用いるため原子数にして通常20〜3
0%)含有している特性を有している。
In general, plasma silicon nitride films produced by plasma CVD are widely used as surface protective insulating films in the same way as phosphosilicate glass (PSG) in current semiconductor technology, and are free from Na ions, moisture, etc. In addition to the property of preventing infiltration, a large amount of hydrogen ions is contained in the membrane (usually 20 to 3 atoms in number because S I H4 is used as the raw material gas).
0%).

そのため、上記本発明による固体撮像素子においては、
プラズマSi3N4膜17形成後における製造工程での
比較的低温の処理においてプラズマSi3N4 膜17
から基板8側に多量の水素イオンが容易に拡散、する。
Therefore, in the solid-state image sensor according to the present invention,
Plasma Si3N4 film 17 is removed during relatively low-temperature treatment in the manufacturing process after plasma Si3N4 film 17 is formed.
A large amount of hydrogen ions easily diffuse from the substrate 8 to the substrate 8 side.

このため、S 10212と基板8の界面に到達し、界
面準位を低減する水素イオンは容易に飽和状態となる。
Therefore, the hydrogen ions that reach the interface between the S 10212 and the substrate 8 and reduce the interface level easily become saturated.

その結果、従来のPSG膜のみを用いた場合に問題とな
ったアルミニウム膜の有無による水素の拡散の差は全く
発生しなくなるので、OB領域7′の暗電流と受光領域
6′の暗電流との差が生じなくなる。そして、上記両領
域6/、7/、(れぞれにおける暗電流の温度による変
動分が等しくなシ、受光領域dにおける温度変動に伴な
う暗電流の変動分の正確な補償が可能になり、周囲温度
が高い使用条件における固体撮像装置の出力特性が大幅
に向上する◇ ここで上記実施例のインターライン転送方式〇CD撮像
装置の製造工程のうち、本発明に強く関わる工程を簡単
に述べる。多結晶シリコンゲート13,14を形成後、
上面前面にCVD法により酸化シリコン膜12を形成す
る。次にこの酸化膜15上にアルミニウム膜16を蒸着
し、RIE(反応性イオンエツチング)法などによって
エツチングしパターンニングし、450′CN2が90
%、N2が10%の雰囲気中で15〜30分間シンター
処理を行なう。さらに上面全面に保護絶縁膜としてPS
G膜16およびプラズマS is N 4膜17を順次
形成し、460℃、N2が90%。
As a result, the difference in hydrogen diffusion due to the presence or absence of the aluminum film, which was a problem when only the conventional PSG film was used, does not occur at all, so the dark current in the OB region 7' and the dark current in the light receiving region 6' are different. There will be no difference between Then, since the temperature-related changes in the dark current in both regions 6/ and 7/ are equal, it is possible to accurately compensate for the dark current changes in the light-receiving region d due to temperature changes. This greatly improves the output characteristics of the solid-state imaging device under usage conditions where the ambient temperature is high.◇Here, we will briefly explain the interline transfer method of the above embodiment.Among the manufacturing processes of the CD imaging device, the steps that are strongly related to the present invention will be briefly explained. After forming the polycrystalline silicon gates 13 and 14,
A silicon oxide film 12 is formed on the front surface of the upper surface by the CVD method. Next, an aluminum film 16 is deposited on this oxide film 15, and etched and patterned by RIE (reactive ion etching) or the like.
%, sintering is performed for 15 to 30 minutes in an atmosphere containing 10% N2. Furthermore, PS is used as a protective insulating film on the entire upper surface.
A G film 16 and a plasma S is N 4 film 17 are formed in sequence at 460° C. and 90% N2.

N2が10%の雰囲気中で再度15〜30分間のアニー
ルを行なう。
Annealing is performed again for 15 to 30 minutes in an atmosphere containing 10% N2.

なお、本発明は上記実施例に限られるものではなく、プ
ラズマSi3N4膜17をPSG膜1膜中6中けても良
い。また、プラズマSi3N4膜17を形成後した後の
アニール雰囲気を100%水素中で行う場合、上記効果
はより確実なものとすることが一可能である。また、プ
ラズマSi3N4膜は500人程程度も本発明の効果は
十分得られるため、入射光の干渉、吸収等による感光特
性不良をまねくことはない。
Note that the present invention is not limited to the above-mentioned embodiment, and the plasma Si3N4 film 17 may be provided in six of the PSG films. Moreover, when the annealing atmosphere after forming the plasma Si3N4 film 17 is performed in 100% hydrogen, the above effect can be made more reliable. Further, since the effects of the present invention can be sufficiently obtained with the plasma Si3N4 film even for about 500 people, poor photosensitivity due to interference, absorption, etc. of incident light will not occur.

また、プラズマSi3N4膜に代えて、同様の要求特性
即ち、熱処理で水素イオンを容易に放出する特性を満足
する他の物質(たとえばプラズマS X02膜)からな
る保護絶縁膜を使用しても良い。
Further, instead of the plasma Si3N4 film, a protective insulating film made of another material (for example, a plasma S X02 film) that satisfies the same required characteristics, ie, the property of easily releasing hydrogen ions during heat treatment, may be used.

また、説明は省略したが、受光領域における暗電流の値
そのものも水素処理効果が従来構造に比べて強化される
ため著しく減少する。このため、暗電流成分によるCO
Dシフトレジスタのダイナミックレンジの低下、あるい
は暗電流の発生の位置的なむらによる画質低下も極めて
小さいものとなる。
Further, although the explanation is omitted, the value of the dark current in the light receiving region itself is significantly reduced because the hydrogen treatment effect is enhanced compared to the conventional structure. Therefore, CO due to dark current component
Deterioration in image quality due to a reduction in the dynamic range of the D shift register or positional unevenness in the generation of dark current is also extremely small.

発明の効果 以上のように本発明によれば、受光領域の暗電流が極め
て小さく、かつOB領領域で暗電流の差が生じないので
温度変動に伴なう暗電流の変動分の正確な補償が可能に
なり、高画質で特性の良い固体撮像装置を実現できる。
Effects of the Invention As described above, according to the present invention, the dark current in the light-receiving region is extremely small and no difference in dark current occurs in the OB region, so it is possible to accurately compensate for the variation in dark current caused by temperature fluctuations. This makes it possible to realize a solid-state imaging device with high image quality and good characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による固体撮像装置の受光領
域およびOB領領域示す断面図、第2図は従来の固体撮
像装置の各構成素子の配置を概略的に示す平面図、第3
図は第2図のA−A/線に沿う受光部およびOB領領域
示す断面図である。 1・・・・・・固体撮像装置、2・・・・・・感光画素
部、3・・・・・・垂直CCDシフトレジスタ、4・・
・・・・水平CCDシフトレジスタ、5・・・・・・出
力部、6・・・・・・受光領域、7・・・・・・オプテ
ィカルブラック(OB)領域、8・・・・・・P形シリ
コン基板、9・・・・・・感光画素部用N+層、1o・
・・・・・垂直CCDレジスタ用N形層、11・・・・
・・チャンネルストッパー用P+層、12・・・・・・
二酸化シリコン膜、13.14・・・・・・多結晶シリ
コン電極、15・・・・・・アルミニウム膜、16・・
・・・・リン珪酸ガラス(psa)膜、17・・・・・
・プラズマシリコンナイトライド(813N4)膜。
FIG. 1 is a sectional view showing a light receiving area and an OB area of a solid-state imaging device according to an embodiment of the present invention, FIG. 2 is a plan view schematically showing the arrangement of each component of a conventional solid-state imaging device, and FIG.
The figure is a sectional view showing the light receiving portion and the OB area along the line AA/ in FIG. 2. 1... Solid-state imaging device, 2... Photosensitive pixel section, 3... Vertical CCD shift register, 4...
...Horizontal CCD shift register, 5...Output section, 6...Light receiving area, 7...Optical black (OB) area, 8... P-type silicon substrate, 9...N+ layer for photosensitive pixel section, 1o.
...N-type layer for vertical CCD register, 11...
...P+ layer for channel stopper, 12...
Silicon dioxide film, 13.14...Polycrystalline silicon electrode, 15...Aluminum film, 16...
...Phosphorsilicate glass (PSA) membrane, 17...
・Plasma silicon nitride (813N4) film.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板と、この半導体基板の表面にそれぞれ
設けられ光入射により生成される信号電荷を蓄積する複
数の感光画素部と、前記感光画素部から信号電荷を読み
出す読み出し部と、前記半導体基板上の絶縁膜上で感光
画素部の上方部分を除いて形成された遮光膜とを具備し
、前記遮光膜より上層に水素イオンを含有する物質を含
む保護絶縁膜が用いられていることを特徴とする固体撮
像装置。
(1) A semiconductor substrate, a plurality of photosensitive pixel sections that are provided on the surface of the semiconductor substrate and accumulate signal charges generated by incident light, a readout section that reads out signal charges from the photosensitive pixel sections, and the semiconductor substrate a light-shielding film formed on the upper insulating film except for the upper part of the photosensitive pixel portion, and a protective insulating film containing a substance containing hydrogen ions is used above the light-shielding film. A solid-state imaging device.
(2)前記、複数の感光画素部のうち一部の感光画素部
は前記遮光膜により光入力が遮断されて暗時出力成分生
成用のオプティカルブラック領域に割り当てられること
を特徴とする特許請求の範囲第1項記載の固体撮像装置
(2) Some of the plurality of photosensitive pixel sections are blocked from light input by the light shielding film and are assigned to an optical black area for generating a dark output component. A solid-state imaging device according to scope 1.
(3)半導体基板の表面に感光画素部と読み出し部とを
形成する工程と、前記感光画素部の上方以外の部分に遮
光膜を形成する工程と、前記遮光膜の上方にプラズマC
VD法を用いてシリコンナイトライド膜を形成する工程
と、水素中あるいは水素を含む雰囲気中で熱処理する工
程とを含むことを特徴とする固体撮像装置の製造方法。
(3) A step of forming a photosensitive pixel section and a readout section on the surface of a semiconductor substrate, a step of forming a light-shielding film on a portion other than above the photosensitive pixel section, and a step of forming a plasma-containing film above the light-shielding film.
A method for manufacturing a solid-state imaging device, comprising a step of forming a silicon nitride film using a VD method, and a step of heat treatment in hydrogen or an atmosphere containing hydrogen.
JP61034669A 1986-02-18 1986-02-18 Solid-state image pickup device and manufacture thereof Pending JPS62190870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034669A JPS62190870A (en) 1986-02-18 1986-02-18 Solid-state image pickup device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034669A JPS62190870A (en) 1986-02-18 1986-02-18 Solid-state image pickup device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62190870A true JPS62190870A (en) 1987-08-21

Family

ID=12420834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034669A Pending JPS62190870A (en) 1986-02-18 1986-02-18 Solid-state image pickup device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62190870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634797A2 (en) * 1993-07-13 1995-01-18 Sony Corporation Thin film semiconductor device for active matrix panel and method of manufacturing the same
JPH0818025A (en) * 1994-06-30 1996-01-19 Nec Corp Solid image pickup element
US6150692A (en) * 1993-07-13 2000-11-21 Sony Corporation Thin film semiconductor device for active matrix panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209270A (en) * 1982-05-31 1983-12-06 Nec Corp Solid-state image pickup element
JPS60102769A (en) * 1983-11-09 1985-06-06 Toshiba Corp Solid image pick-up device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209270A (en) * 1982-05-31 1983-12-06 Nec Corp Solid-state image pickup element
JPS60102769A (en) * 1983-11-09 1985-06-06 Toshiba Corp Solid image pick-up device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634797A2 (en) * 1993-07-13 1995-01-18 Sony Corporation Thin film semiconductor device for active matrix panel and method of manufacturing the same
EP0634797A3 (en) * 1993-07-13 1997-02-26 Sony Corp Thin film semiconductor device for active matrix panel and method of manufacturing the same.
US6150692A (en) * 1993-07-13 2000-11-21 Sony Corporation Thin film semiconductor device for active matrix panel
JPH0818025A (en) * 1994-06-30 1996-01-19 Nec Corp Solid image pickup element

Similar Documents

Publication Publication Date Title
KR20090034763A (en) Solid state imaging device, method of manufacturing the same, and imaging apparatus
JPH02168670A (en) Solid-state image sensing device and manufacture thereof
JP2755176B2 (en) Solid-state imaging device
JPH04286361A (en) Solid-state image sensing device
JPH08288496A (en) Solid-state image pickup device and its manufacture
CN102651372A (en) Complementary metal oxide semiconductor (CMOS) image sensor and manufacturing method thereof
US5246875A (en) Method of making charge coupled device image sensor
JPH0758772B2 (en) Method of manufacturing solid-state imaging device
JPH01274468A (en) Manufacture of solid-state image sensing device
JPS62190870A (en) Solid-state image pickup device and manufacture thereof
JPH05175471A (en) Solid-state image sensing device
JPS6344760A (en) Solid state image sensor
JPH05291553A (en) Solid-state image sensing element
KR20040031862A (en) Productivity and Sensitivity Improved Image Sensor
JPS6089967A (en) Photoelectric conversion element
JPH0438872A (en) Solid camera device
JPS60102769A (en) Solid image pick-up device
JPS62145771A (en) Solid-state image pickup device
JP2002324899A (en) Method for manufacturing solid-state image pickup element
JPS63142856A (en) Solid-state image sensing device
JPH0425756B2 (en)
JPH069236B2 (en) Solid-state imaging device and manufacturing method thereof
JPH0832045A (en) Solid state image pickup element and its manufacture
JP2576813B2 (en) Manufacturing method of vertical overflow image sensor
JPS5870685A (en) Solid-state image pickup device